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Abstract: Among the most widespread systems in industrial plants are automated drive systems, the
key and most common element of which is the induction motor. In view of challenging operating
conditions of equipment, the task of fault detection based on the analysis of electrical parameters
is relevant. The authors propose the identification of patterns characterizing the occurrence and
development of the bearing defect by the singular analysis method as applied to the stator current
signature. As a result of the decomposition, the time series of the three-phase current are represented
by singular triples ordered by decreasing contribution, which are reconstructed into the form of
time series for subsequent analysis using a Hankelization of matrices. Experimental studies with
bearing damage imitation made it possible to establish the relationship between the changes in the
contribution of the reconstructed time series and the presence of different levels of bearing defects.
By using the contribution level and tracking the movement of the specific time series, it became
possible to observe both the appearance of new components in the current signal and the changes in
the contribution of the components corresponding to the defect to the overall structure. The authors
verified the clustering results based on a visual assessment of the component matrices’ structure
similarity using scattergrams and hierarchical clustering. The reconstruction of the time series
from the results of the component grouping allows the use of these components for the subsequent
prediction of faults development in electric motors.

Keywords: digital technologies; induction motor; reliability; fault detection; time series analysis;
singular spectrum analysis; SSA; singular decomposition; SVD; machine learning

1. Introduction

The new era of smart manufacturing is characterized by the development of both
industrial technologies and information systems. Furthermore, the components of indus-
trial systems are becoming increasingly complex and at the same time “connected”. Every
technical system, even the most reliable, requires maintenance and repair. The complexity
and diversity of the equipment used in the oil and gas industry necessitates the presence of
a wide range of specialists. The failure of even one element of the production system will
lead to increased downtime, which rises in proportion to the remoteness of the plant and
the complexity of logistics, which are particularly relevant as oil and gas production moves
into more inaccessible regions.

Reliability and availability are the best metrics for quantifying equipment longevity
and resilience. Reliability is defined as the probability of completing a work task without
failure within a specified time period [1,2]. Availability means the likelihood that the
equipment will be in operational condition during the scheduled working hours [3]. The
efficiency of operations, which depends on the performance of the equipment, has a direct
impact on the competitive edge of any producing company [4–6].

According to research by the International Energy Agency, electric motors consume
over 40% of the world’s electricity [7–9] and produce around 5 Gt of CO2 emissions [10].
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In addition, even small improvements in electric motor efficiency can significantly reduce
energy consumption and emissions. The cost-effective potential for improving the energy
efficiency of electromechanical systems with unregulated drives is about 20–30%, which
will reduce the overall electricity demand by 10% [11].

Electric drive systems account for more than 60% of the total electricity consumption
in the oil and gas industry. In both regulated and non-regulated drives, squirrel cage
induction motors are mainly used nowadays. An electric drive based on an induction
motor (IM) is considered the main one in oil production facilities. Any failure in the drive
system results in significant economic losses, while the presence of developing defects in
the induction motor leads to a decrease in its energy efficiency and additional energy losses.
Considering the continuous operation of electrical machines in the oil and gas industry and
a life cycle of more than 15–20 years, the occurrence of a flaw results in increased economic
losses and deterioration of the company’s environmental performance [12,13].

In order to create a reliable and efficient equipment lifecycle model, it is necessary to
have tools that help identify the point in time when equipment needs to be replaced based
on a pre-established usage plan. This will outline the phase of decreasing ownership costs
and increasing operating costs [14,15].

The maintenance strategy and the appropriate statistical distribution should be based
on the occurrence rate of system failures and breakdowns. Much work has been carried out
by researchers in the field of creating such tools: transport optimization methods have been
proposed [16,17]; the advantages and uses of ANNs for forecasting in various operations
have been reviewed [18–25]; and studies are also underway to develop an intelligent
optimal energy management strategy [26–34]. The subject of improving the reliability
and availability of equipment through the use of various intelligent computer systems
is highly relevant [35–37]; the chosen approach will directly determine the planning and
maintenance strategy, the length of the equipment lifecycle and, subsequently, the entire
plant lifecycle.

Nowadays, in the conditions of digital transformation of industry, enterprises includ-
ing oil and gas companies, are equipped with systems that allow the automatic collection
and analysis of parameters of technological processes, equipment and energy supply sys-
tems. However, the lack of models for identifying faults and estimating the energy costs
associated with the level of technical condition does not allow the full use of the data col-
lected [38–40]. The main purposes for using such data today include assessing performance
degradation, constructing a performance index, and predicting the remaining equipment
life [41–44]. However, the trend in industry and academia is to develop effective methods
for the early detection of equipment failures, to decompose the factors influencing technical
condition, and to identify the energy losses associated with technical condition [45–49].

The search for new methods of fault detection using available data from power quality
analyzers, electricity meters, Internet of Things devices, smart sensors, and other emerging
sources of information in intelligent power systems is promising [50–52]. On the basis of the
proposed approaches to the analysis of electrical parameter data, it is possible to perform
signal decomposition and provide users with reliable information for algorithms to estimate
the energy resource, current losses, comparison of load modes or technological process and,
subsequently, when integrating information with other sources, to identify the causes of
equipment failures that have occurred. The main contribution of this paper in relation to
recent publications on this research topic is that we propose a comparative evaluation of
the different ways of combining components in damage modes, while focusing on the early
changes in modes due to the initial stage of the bearing degradation.

In order to influence the reliability and availability of the equipment for further
planning of the maintenance and repair strategy, we offer our tool for the early detection of
motor failure. We have found this method to be effective in detecting bearing spalls; it is
also cost-effective and does not require additional equipment.

The list of the acronyms used is presented in Abbreviation part. The remainder of this
paper is structured as follows:
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• Section 2 presents the reasons why predictive diagnostics are important for electric
motors and industries. An overview of existing electrical-based diagnostic methods
and their shortcomings is also presented. Initial information about the SVD technique
under consideration is given, as well as its applicability in similar tasks;

• Section 3 describes the experimental methodology;
• The next section provides general information about the methodology used, and also

describes the Singular Spectrum Analysis (SSA) algorithm step by step;
• Section 5 presents and discusses the results obtained. Comparisons with other compo-

nent grouping techniques are given in order to verify the results;
• The final section outlines the conclusions and future research.

2. Materials and Methods

Despite the high development rate of intelligent systems, fault detection and increased
energy consumption algorithms for electrical machines frequently face a number of limita-
tions, such as a lack of access to historical data [53] or to a qualitative determination of the
presence and, moreover, the type of defect. Developing a reliability model for electrical
drive systems requires a well-documented database of motor failures on which to base
failure predictions or numerical models of the equipment [54]. Therefore, a large number
of studies have focused precisely on investigating this area [48,55–59]. The aging of en-
ergy infrastructure is a global challenge, so the scientific search for and active action in
technologies’ improvement that is capable of affecting rates of depreciation and reducing
operating costs will give a significant boost not only to the oil and gas industry, but to all
sectors [60–62].

Intelligent methods will allow earlier fault detection and the subsequent elimination of
both the flaw itself and possibly the source of the problem, thereby extending the lifecycle
of electric drive systems and improving energy efficiency and lowering environmental
impact. Starting from the most important element of the drive system, the production
base, the transition to predictive maintenance and the “digital enterprise” will be realized;
however, to achieve this, the decision support system (DSS) for equipment maintenance
and repair (MRO) needs to be completely reformed [11].

Among the works analyzing IM failures, more than 40% [63] of electrical machine
faults are caused by bearing breakdowns. This phenomenon is explained by the high
speeds (RPMs) and the harsh conditions in which the electric motor may be used. The
most common causes of rolling bearing failure are raceway surface spalling, improper
mounting, operating errors and corrosion [64]. The IM bearing provides support for the
rotating shaft located at both rotor ends. This type of damage carries an increased growth
rate, resulting in the rapid destruction of mechanical and related motor parts. With bearing
failure, shaft friction increases, causing a further temperature rise in the bearings and
increased energy loss. Damage can also be caused by radial clearance, which initially
appears as localized pitting on the bearing [65]. This can occur on the inner raceway, outer
raceway, cage or ball surface [66]. Operating an electric drive with such a defect does not
lead to its immediate failure, but it decreases the reliability of operation, durability, energy
efficiency and environmental performance of the entire technological process. This also
explains the research interest in analyzing drive system data to identify this type of defect.
At present, in exploring the behavior of complex systems and in experimental studies,
the approach based on the analysis of the signals produced by the system is widely used.
This is relevant whenever a mathematical description of the process under study is not
possible, but some distinctive observable values are available in the set. In the case of
defect identification, we are faced with the task of extracting from the signal the component
responsible for some distortion of the original signal (of a serviceable motor). Usually, such
“sub-signals” are insignificant, especially in the early stages of defect evolution, which
creates additional difficulties in their differentiation. Therefore, in most cases bearing
fault detection is handled as follows: fault signal extraction, signal amplification and fault
identification [67].
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However, we do not strictly state that this approach would also be valid for other
types of defects, such as rotor eccentricity or misalignment, although, like bearing wear,
these types of defect lead to higher levels of vibration and power consumption.

To form a comprehensive approach for the identification of various kinds of defects, it
is necessary to proceed to the generalized problem of the investigation and decomposition
of the time series [68,69].

Among the methods for exploring the dynamics of processes that contain a complex
variable structure, the method based on a singular decomposition of the original sample
has largely proved its worth (Singular Value Decomposition, SVD) [70]. This approach is
quite widely used in tasks of determining periodic dependencies in observational time
series, noise filtering and smoothing of time series, as the use of a singular (spectral)
decomposition of the matrix allows the extraction of the most significant components of
the series and the screening out of random perturbations.

In recent years, SVD has found applications in many industries and is also commonly
used in the signal analysis of mechanical systems. For example, ref. [67] outlines a method
for diagnosing bearing faults, combining singular value decomposition (SVD) and square
envelope spectrum (SES) to determine the type of fault with respect to the traction system
of a high-speed vehicle; in [71], the SVD with a modified matrix size for vibration signal
analysis is considered; the authors succeed in detecting misalignment faults. In [72], the
authors propose a new feature extraction algorithm called Singular Value Decomposition
Amplitude Filter (SVD-AF) and confirm the detection of a misalignment fault and a rotor
friction fault. In [73], a comparison of SVD and wavelet transform approaches is discussed
in terms of the vector space basis. The attention of researchers has also been drawn to
combined methods; for example, in [74] the authors used SVD to localize the fault frequency
and then estimate it with a Kalman filter. In [75], the authors proposed an SVD method
based on short-term STMS matrix series using singular value ratio (SVR), and it was shown
to have positive local identification capabilities in diagnosing rolling bearing faults.

However, all of these methods, as well as most other techniques (empirical mode
decomposition (EMD), variation mode decomposition (VMD), ensemble empirical mode
decomposition (EEMD), wavelet transform, etc.) are aimed at analyzing the vibration signal.
EMD is widely used, but issues of mode mixing, end effects, out-of-envelope, etc., occur in
the decomposed signal [76]. VMD requires knowledge of the mode counts, which affects the
decomposition result, accuracy, and the computational resources and time [77]. The EEMD
yields a varying set of components each time the signal is decomposed, which prevents
its application in fault monitoring and prediction. Combining EEMD with Independent
Component Analysis (ICA) enables more efficient feature extraction for complex faults [78].
However, the drawback is the implementation complexity associated with the use of
vibration sensors, which place stringent requirements on their mounting location and
require additional cabling for communication with the data processing unit. In the oil and
gas industry, access to equipment (submersible pumps, for example) is limited, and in
some cases there are additional parasitic vibrations that distort the analysis, such as drilling
rigs. In these scenarios, it is almost impossible to use vibration-based methods to diagnose
IM. According to many studies, bearing failure causes the most severe distortion of the
IM air gap magnetic field, which manifests itself as a sinusoidal distortion of the stator
current draw. To identify faults based on current analysis, a fast Fourier transform followed
by a frequency spectrum analysis is often used. The disadvantages of this method are its
sensitivity to a number of factors and the need for additional information. For example,
if the mechanical load of a motor varies over time, it should be considered in the stator
current spectral analysis that the appearance of the exact same frequency components
may have different causes. In addition, the FFT decomposition of the original function
into its elementary components results in a decomposition into harmonic oscillations of
different frequencies, thus making it impossible to identify and track the generalized signal
produced by the defect and its progression under various load conditions. Induction
motors are widely used in industry for a variety of applications, including for highly
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time-varying loads. In particular, slow-running, unsteady processes are typical of pump
and compressor systems. Variable loads create additional components in the motor current
spectrum, possibly masking indications of motor faults themselves. As a consequence, for
the analysis of the motor current spectrum it is complicated to identify and differentiate
between signatures related to actual faults and signatures related to motor load variability.
In some cases, in order to use a frequency-analysis-based diagnosis method, a reference
spectrum corresponding to the normal operating condition of the motor is first obtained;
when new components appear in the spectrum, the presence of a fault is indicated. This
approach has limitations due to the lack of a reference spectrum in actual production.

The fourth industrial revolution is now increasingly affecting condition monitoring
methods. The development of online monitoring with fog computing capabilities, enabling
continuous sensor collection and computation in maintenance applications, requires inves-
tigations in the fields of big data and machine learning. The integration of intelligent power
supply systems in the production and the availability of electrical data from distribution
nodes make the use of electrical parameters for fault detection attractive. Therefore, this
paper proposes to use the singular decomposition method of initial sampling applied to an
electric motor stator current signal to identify patterns that characterize the occurrence and
evolution of a bearing fault.

3. Methodology of Experiments

The collection of current signal data for further analysis was carried out in the labo-
ratories of the Educational Research Center for Digital Technologies of the St. Petersburg
Mining University. The experimental procedure was necessary due to the unavailability of
actual production data and the lack of similar datasets in the public domain on the Internet.
High-frequency digitization of the analog signal up to 600,000 points/min, representing a
sampling rate of 10 kHz, was used to investigate and confirm the hypotheses of early detec-
tion possibilities for bearing faults. Future studies are foreseen to explore the boundary
sampling rate requirements for fault detection by the proposed algorithm.

The bearing fault was selected as one of the most common types of defects, and as a
classic example to consider the performance of the proposed method. The experimental
procedure consists of artificially fracturing the inner rings of the bearing as a series of
friction-induced fracture shells in a deep-groove ball bearing. Thus, the formation of
fatigue spalls was artificially created. It should be noted that the occurrence of spalls in
bearings is not always caused by the fatigue fracture material process, and it is also quite
long-term in nature, and not detectable in the vibration signal analysis in the early stages of
development [79]. Based on these considerations, the gradation of bearing fault evolution
is defined by one spall (early stage) and three fatigue spalls (and also an early stage with a
more visible presence in the signal).

The experiments were performed on an induction motor AIR132M4, Pnom = 11 kW,
supplied with 50 Hz mains voltage in continuous running mode and with a constant shaft
load during the test (Table 1).

Table 1. Induction motor data sheet.

Motor Brand Pnom, kW Inom, A n, r/min cosϕ ηm, % λ Kp Ki

AIR132M4 11.00 23.40 1450 0.82 87.1 2.3 2.2 6.8

Pnom—nominal motor power, kW; Inom—nominal motor current, A; n—motor shaft speed, r/min; ηm—motor
efficiency; cosϕ—power coefficient; λ—overload capability; Kp—multiplicity of starting torque; Ki—starting
current multiplicity.

AIR electric motors for general industrial applications are the most popular in indus-
try for driving pumps, compressors, fans, machine tools, mills, grinders and transport
mechanisms. They have a robust construction, with good starting, vibration and acoustic
characteristics.
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The external view and wiring diagram of the IM is given in Figure 1. The constant
load was controlled by an electromagnetic brake (EMB). High sampling rate data collection
was implemented with the NI PXI-1042 universal chassis and the PXI-6251 multifunction
input/output module.
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Figure 1. General scheme of the study, including the SSA algorithm.

The experiment was performed in three machine states:

1. Operation of the serviceable motor under standard conditions at rated load;
2. Operation of the motor with one spall in the bearing inner ring at rated load;
3. Operation of the motor with three spalls in the bearing inner ring at rated load.

For this experiment, a single-row, closed-type, deep-groove ball bearing 6208 ZZ C3
with shields was investigated (Figure 2, Table 2).
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Table 2. Bearing data sheet.

Bearing
Brand d D B r Cr, N C0r, N Cr, kgs C0r, kgs f Nmax, r/min

(Grease)
Nmax, r/min

(Oil)

6208 ZZ C3 40 80 18 1.1 29,100 17,900 2970 1820 14 8500 10,000

D, d, B, r—dimensions of the bearing, mm; Cr , C0r—basic dynamic and static load rating; f —coefficient
depending on the geometry of the bearing parts; Nmax—limiting speeds for different lubrication methods, r/min.

It is possible to calculate the lifespan for each component of an induction motor,
including bearings, but in practice a percentage of bearings breakdown before their lifespan.
Throughout the bearing lifecycle, the main stages that have a significant impact on bearing
life can be identified: bearing mounting and lubrication, alignment, relubrication, condition
monitoring and dismounting. The most common causes of bearing damage are lubrication
failures (36%), mounting failures (16%), lubricant contamination (14%) and fatigue wear
(34%). Detecting a developing defect will significantly extend the bearing lifespan, thereby
increasing the efficiency and productivity of the machinery in which the IM is used.

Three time series of motor current and voltage consumption were used as experimental
data: the first set of data was without defects; two sets had 1 or 3 defects of the same type,
respectively (spalls in the inner ring of the bearing), on the rear end shield. These time
series had an identical sinusoidal structure; however, minor distortions were present, the
nature of which was visually indeterminate (Figure 3).

Energies 2023, 16, x FOR PEER REVIEW 7 of 24 
 

 

 

Figure 2. Bearing 6208 ZZ C3. 

Table 2. Bearing data sheet. 

Bearing 

Brand  
𝒅 𝑫 𝑩 𝒓 𝑪𝒓, N 𝑪𝟎𝒓, N 𝑪𝒓, kgs 𝑪𝟎𝒓, kgs 𝒇 

𝑵𝒎𝒂𝒙, r/min 

(Grease) 

𝑵𝒎𝒂𝒙, r/min 

(Oil) 

6208 ZZ C3 40 80 18 1.1 29,100 17,900 2970 1820 14 8500 10,000 

𝐷, 𝑑, 𝐵, 𝑟—dimensions of the bearing, mm; 𝐶𝑟 , 𝐶0𝑟—basic dynamic and static load rating; 𝑓—coeffi-

cient depending on the geometry of the bearing parts; 𝑁𝑚𝑎𝑥—limiting speeds for different lubrica-

tion methods, r/min. 

It is possible to calculate the lifespan for each component of an induction motor, in-

cluding bearings, but in practice a percentage of bearings breakdown before their lifespan. 

Throughout the bearing lifecycle, the main stages that have a significant impact on bearing 

life can be identified: bearing mounting and lubrication, alignment, relubrication, condi-

tion monitoring and dismounting. The most common causes of bearing damage are lubri-

cation failures (36%), mounting failures (16%), lubricant contamination (14%) and fatigue 

wear (34%). Detecting a developing defect will significantly extend the bearing lifespan, 

thereby increasing the efficiency and productivity of the machinery in which the IM is 

used. 

Three time series of motor current and voltage consumption were used as experi-

mental data: the first set of data was without defects; two sets had 1 or 3 defects of the 

same type, respectively (spalls in the inner ring of the bearing), on the rear end shield. 

These time series had an identical sinusoidal structure; however, minor distortions were 

present, the nature of which was visually indeterminate (Figure 3).  

 

Figure 3. Current signals for the bearing without faults, the bearing with one spall and the bearing 

with three spalls. 

Figure 3. Current signals for the bearing without faults, the bearing with one spall and the bearing
with three spalls.

As is visible from the oscillograms, the presence of a defect with a single spall does
not contribute to the current and voltage distortions. The further development of the defect
appears as a current distortion, but this does not occur on the voltage. Therefore, in our
case, the voltage signals are not of interest (Figure 4). However, in the case of a real process,
the voltages may contain distortions that are determined by the presence of a non-linear
and abruptly variable load on the common power bus [80]. In this case, the voltage time
series should be used to find these distortions and to exclude their influence on the fault
detection result, and subsequent studies can focus on this.
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4. Performing Singular Spectrum Analysis

The core of the fault detection algorithm is the Singular Spectrum Analysis (SSA)
method for processing the stator current signals. SSA is based on the decomposition of
a time series into its elementary additive components, which allows its structure to be
considered and investigated [81,82].

The SSA method consists of transforming a univariate series into a multivariate series
using a single-parameter shift procedure, exploring the resulting multivariate trajectory
using principal component analysis (singular decomposition) and reconstructing (approxi-
mating) the series using the selected principal components. The result of the method is a
time series decomposed into simple components: trends, periodic or oscillatory compo-
nents and noise components. The resulting decomposition components and their variations
are compared with the operating mode and the level of the bearing fault. The identification
of the necessary components can provide a basis for predicting both the time series itself
and its individual components as the fault progresses and reaches the limit values. At the
same time, the method does not require stationarity of the series, any knowledge of the
trend, or knowledge of the presence of harmonic and cyclic components in the series.

The proposed algorithm, based on singular decomposition, can be applied for the
detection of damage-related components, the smoothing of time series, for the investigation
of changes during bearing degradation and for the evolution of bearing damages caused
by wear.

4.1. Embedding (Constructing a Trajectory Matrix)

The IM phase current signals recorded in the file at a certain load mode and defect level
were transformed into vector X, representing an ordered set of N instantaneous current
values. Then, an embedding procedure was performed, representing the transformation
of the original one-dimensional series X = [xi, . . . , xN ] of length N into a sequence of
L-dimensional vectors, the number of which was equal to K = N − L + 1; L was the
window length, 1 < L < N:

Xi = (xi−1, . . . , xi+L−1)
T , 1 ≤ i ≤ K. (1)
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These vectors formed a trajectory matrix X = [X1 : . . . : XK] of the original time series,
which is Hankel’s and had the same elements on the diagonal i + j = const:

X =


x1 x2 x3 · · · xK
x2 x3 x4 · · · xK+1
x3 x4 x5 · · · xK+2
...

...
...

. . .
...

xL xL+1 xL+2 · · · xN

. (2)

4.2. Singular Value Decomposition

The singular decomposition for the matrix A ∈ Rm×n is a decomposition of the
following form:

A = UΣVT , (3)

where U = (u1, u2, . . . , um) ∈ Rm×m is the unitary matrix of left singular vectors,
V = (v1, v2, . . . , vn) ∈ Rn×n is a unitary matrix of right singular vectors and Σ is a di-
agonal matrix of size m× n (Figure 5), whose diagonal elements are non-negative values
of the singular values of the matrix A in descending order, Σ = [diag(σ1, σ2, . . . , σm), 0] ∈
Rm×n, σ1 ≥ σ2 ≥, . . . , σm > 0 [72,83].
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Matrix A is also representable as a sum of submatrices:

A =

 | | |
u1 u2 · · · ur
| | |

×


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr
0 0 · · · 0

×

− vT

1 −
− vT

2 −
...

− vT
r −

 = σ1u1vT
1 + σ2u2vT

2 + . . . + σmumvT
m =

r

∑
i=1

Ai, (4)

where r = min(m, n) is the rank of the matrix A; respectively, Ai = σiuivT
i , ( i = 1, 2, . . . , r)

is the submatrix of the i-th sub-signal.
To decompose the trajectory matrix X obtained in the previous step, consider the

matrix S = XXT , with eigenvalues λ1 ≥ . . . ≥ λL ≥ 0 non-negative and in descending
order. Let d = rank X = max

{
j : λj > 0

}
, U1, . . . , UL be the corresponding eigenvectors

of the matrix S, and Vj = XTUj/
√

λj, j = 1, . . . , d be the factorial vectors.
The decomposition of the trajectory matrix can then be written as follows:

X = X1 + . . . + Xd, Xj =
√

λjUjVj
T , (5)

where
(√

λjUjVj
T
)

is the j-th eigenvector of the singular decomposition containing the

singular value σj =
√

λj, the left singular vector Uj and the right singular vector Vj of the
trajectory matrix X.

As a result of applying the SVD method, we obtain:

X = ∑i Xi, Xi = σiUiVi
T . (6)
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A visualization of the decomposed trajectory matrix into its components is necessary
in order to assess the structure of the components in advance. An example of such a
visualization for the A-phase signal is shown in Figure 6. A summary of the decomposition
results for all phases is shown in Figure 7.
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4.3. Component Grouping

This step is based on Equation (1). Let I =
{

i1, . . . , ip
}
⊂ {1, . . . , d}, then the resulting

matrix XI , corresponding to group I is defined as XI = Xi1 + . . . + Xip . The grouping
procedure splits the whole set of indices {1, . . . , d} into m disjoint subsets I1, . . . , Im. Then,
the decomposition (Equation (5)) can be written in the form:

X = XI1 + . . . + XIm . (7)

The procedure for sampling subsets I1, . . . , Im represents the procedure for grouping
own triples.

Several clustering approaches are considered in this study, and the clustering results
are summarized in Table 4. The authors consider grouping results based on a visual assess-
ment of the component matrix structure similarity, a method based on two-dimensional
scatter plots and grouping based on the W-correlation matrix.

4.4. Reconstruction of the Original Signal

In the final step of the algorithm, each of the matrices XIm of the decomposition
(Equation (7)) is transformed back to the original form of the object X. This operation is
implemented using a Hankelization of matrices (diagonal averaging). The output is the
closest matrix relative to the Frobenius norm, which respects the properties of the Hankel
matrix and preserves its size.

Let Y ∈ RL×K, 1 ≤ i ≤ L, 1 ≤ j ≤ K. Usually L < K, but for generality let
L∗ = min(L, K), K∗ = max(L, K) and N = L + K− 1. Let y∗ij = yij at L < K, and y∗ij = yji
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otherwise. Let s = i + j, and then the diagonal averaging equation for the matrix Y takes
the form:

ỹij =



1
s−1 ∑s−1

l=1 y∗ l,s−l

1
L∗ ∑L∗

l=1 y∗ l,s−l

1
N−s+2 ∑L∗

l=s−K∗ y∗ l,s−l

f or 2 ≤ s ≤ L∗,

f or L∗ ≤ s ≤ K∗ + 1,

f or K∗ + 2 ≤ s ≤ N + 1.

(8)

The diagonal averaging applied to each resulting component matrix creates a re-
constructed time series. Thus, the original series is decomposed into the sum of the
reconstructed series.

5. Results and Discussion

Based on the presented decomposition and grouping algorithm, the current signals of
the three phases of the induction motor in the considered operating modes were processed.

Figure 7 shows the first 12 components of the original series in the form of Hankelized
elementary matrices, arranged in descending order of their contribution to the reconstructed
time series. There are no practical recommendations in the literature on the number of
components to consider for damage analysis. The number of types of possible factors
forming the current signal can be used to justify considering no more than 12 components
out of the 350 singular values used in decomposing. The factors affecting the current signal,
in addition to constructional motor and load features, also include the presence of defects.
Consequently, the number of possible faults is a limit to be considered for significant
components. The faults that can be detected by the electrical signals are bearing failure,
shaft misalignment, inter-phase faults, eccentricity and rotor bar breakage.

Characteristic changes in several components, which are highlighted in the figure, are
visually detectable. As the defect appears and increases, the non-stationary component
increases its contribution to the overall signal structure, resulting in an increased order
number. It should be noted that, in the presence of three spalls (that is, a clear appearance
of the flaw) a degenerated component appears in all phases X̃2 : det(X̃2)→ 0 .

The estimation of the components’ relative contributions to the trajectory matrix, as
well as the cumulative contribution, are calculated using the following equations:

RCi =
σ2

i

∑d−1
k=0 σ2

k

,
i

∑
i=0

RCi =
∑i

j=0 σ2
j

∑d−1
k=0 σ2

k

. (9)

The plots in Figure 8 show the relative and cumulative contributions of the first
12 components. Due to the significant contribution of the first two components, the plots
are presented in pairs: the upper plots in each mode include all components, while the
subsequent (lower) plots exclude the first two components for a better presentation.
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The complete result of the component contribution calculation is shown in Table 3.

Table 3. Comparison of the results obtained from the component contribution calculations.

i
Relative Contribution, % Cumulative Contribution, %

No Faults 1 Spall 3 Spalls No Faults 1 Spall 3 Spalls

Phase A

0 54.588734 56.928886 52.862365 54.588734 56.928886 52.862365
1 45.365214 43.030047 46.825041 99.953948 99.958933 99.687407
2 0.005713 0.006323 0.259554 99.959661 99.965256 99.946961
3 0.005507 0.002725 0.006455 99.965169 99.96798 99.953416
4 0.003133 0.002691 0.006271 99.968302 99.970671 99.959687

. . . . . . . . .
11 0.001077 0.001114 0.001792 99.982723 99.981136 99.978045

Phase B

0 53.291363 54.165786 56.725008 53.291363 54.165786 56.725008
1 46.668971 45.80813 43.042536 99.960334 99.973915 99.767544
2 0.004136 0.002663 0.196508 99.96447 99.976578 99.964052
3 0.004097 0.002637 0.004419 99.968566 99.979215 99.96847
4 0.002899 0.001347 0.004193 99.971465 99.980562 99.972664

. . . . . . . . .
11 0.000956 0.000639 0.001333 99.985164 99.986743 99.983865

Phase C

0 56.876428 53.698498 54.712877 56.876428 53.698498 54.712877
1 43.059692 46.248323 45.048668 99.936119 99.946822 99.761545
2 0.023789 0.021773 0.171188 99.959908 99.968595 99.932733
3 0.00614 0.00317 0.024359 99.966048 99.971764 99.957092
4 0.005854 0.003154 0.008227 99.971903 99.974919 99.965319

. . . . . . . . .
11 0.001128 0.000945 0.001319 99.984939 99.984089 99.983881
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The estimation results show that the first 12 singular values describe 99.98% of the
total information of the original signal in all three modes, and therefore a significant
loss of informativeness is excluded. By highlighting the components that change on the
diagnostic component map (Figure 7) when the spall occurs, we can compare the increase
in contribution to the increase in defects. As can be seen from Table 3, the cumulative
contribution of components X̃0 and X̃1 is more than 99%, making it impossible to track the
manifestation of the defect at an early stage. There was no explicit correlation between
changes in these components and the presence of the spall. In the presence of three spalls,
the overall increase in the contribution of these components relative to the normal state
was implicit. In order to unambiguously estimate the contribution and determine the
manifestation of the component change in the current signal due to the presence of the
initial stage of the defect, it was necessary to single out groups of lower-order components,
which changed their position in the level of contribution in the presence of damage, and to
estimate the change of their contribution in all three states.

Moreover, it is possible to determine the number of informative components based on
the principal component similarity matrices calculated by the distance between pairs of
Hankel matrices.

||X ||F =

√√√√ L

∑
i=1

K

∑
j=1

∣∣xij
∣∣2, (10)

where ||X ||F is the Frobenius norm. Analyzing the distance matrix (Figure 9), we could
distinguish a clear boundary in the range F̃ij = [10, . . . , 20], which confirmed the similarity
of the first components and discarded uninformative components F̃ij = [20, . . . , 350].
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Figure 9. Distance matrix based on the Frobenius norm for phase A of the bearing without faults,
on the left for the complete set of components (350) and on the right for the investigated set of
informative components (20).

The time series reconstruction from the component grouping results based on a visual
assessment of the matrix structure is shown in Figure 10.

Due to the component’s poor visual separability, we propose considering two-dimensional
scattergrams and grouping based on the W-correlation matrix to verify the component
grouping hypotheses based on the visual comparison of the trajectory matrices.

Two-dimensional scattergrams are pairwise representations of the eigenvectors Vi
and Vi+1 for finding pairs of eigenvectors corresponding to the same harmonic. The
orthogonality property of the eigenvectors allowed us to identify the harmonic as an image
of a closed curve of regular shape (Figure 11).
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Figure 11. Scattergrams of eigenvectors for phase A of the bearing without faults, the bearing with
one spall and the bearing with three spalls.

According to the figure, the smooth shape of the circle represents a distinct relationship
between components 1 and 2 in each of the cases under consideration. Likewise, we can
group components 5, 6, 7 and 8 together for a bearing without defects because of the
similarly shaped closed curves. Additionally, for both cases of bearings with spalls, we
could not combine component 2 with any of the neighboring groups.

The W-correlation matrix is used to verify and quantify the degree of separability be-
tween the elementary components. Correlation matrix analysis identifies pairs of correlated
components and groups them together. Then, the measure of separability between the two
reconstructed time series F̃i and F̃j is determined as follows:

Wij =

(
F̃i, F̃j

)
w

||F̃i||w||F̃j||w
, (11)
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where
(

F̃i, F̃j

)
w

is the weighted internal (scalar) product,
(

F̃i, F̃j

)
w

= ∑N−1
k=0 wk f̃i,k f̃ j,k;

f̃i,k, f̃ j,k are the k-th values of F̃i and F̃j, respectively; wk = min{k, L, N − k + 1}; and

||F̃k||w =

√(
F̃k, F̃k

)
w

for k = i, j. The lower the value of Wij, the higher the separability of

the components; accordingly, if the reconstructed F̃i and F̃j were close to each other, then(
F̃i, F̃j

)
w
→ ||F̃i||w||F̃j||w , and Wij → 1 . Wij = 0, if F̃i and F̃j were orthogonal. This de-

pendence (measure) is needed to calculate the dissimilarity when performing hierarchical
clustering for automatic component grouping: d(i, j) = 1−

∣∣Wij
∣∣.

The hierarchical clustering method consists of sequentially grouping similar pairs
based on distances; the grouping continues until all objects form a single cluster. The result
is a tree of groups, called a dendrogram, that represents the mutual relationships between
objects in a given set (Figure 12). The number of groups depends on the threshold; the
higher the threshold (Y-axis), the smaller the number of output groups.
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Figure 12. Schematic diagram of the component grouping algorithm implementation.

Table 4 presents the results of the hierarchical clustering method and a comparison
with scattergram-based grouping and visual grouping based on Hankel matrices. The
combination of major components X̃0 and X̃1 occurred in all grouping methods regardless of
the mode caused by the level of bearing defect. The second group varied depending on the
method of grouping, phase numbering, and mode, but mainly component X̃2 fell into this
group; in variations where other components were added, there was always component
X̃3. As the defect grew, we saw a steady increase in component X̃2 and a decrease in
component X̃3, and these trends were always opposite. As the damage increased in all
phases, there was a regrouping, and component X̃3 was grouped with component X̃4,
equal in contribution, while component X̃2 was singled out into a separate group with the
largest contribution and degenerated. Each method of grouping was uniquely sensitive
to the presence of a defect: in the presence of three spalls, grouping gave the same result
regardless of the method. The presence of a defect resulted in a redistribution of the
component composition and a change in the level of contribution. However, in the early
stages of bearing degradation, the scattergram-based grouping method was more robust
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in isolating component X̃2 into a separate group. Regardless of the grouping method,
components X̃2 and X̃3 were the most important for tracking the manifestation of defects.

Table 4. Comparison of the results obtained by grouping the components.

Visual Assessment Scatterplots W-Correlation Matrix,
Threshold = 0.8

W-Correlation Matrix,
Threshold = 0.9

No faults

Ia

Trend: [0, 1]
Group 1: [2, 3]

Group 2: [4]
Group 3: [9, 10, 11]
Group 4: [5, 6, 7, 8]

Trend: [0, 1]
Group 1: [2, 3]
Group 2: [4]

Group 3: [5, 6, 7, 8]
Group 4: [9, 10, 11]

Trend: [0, 1]
Group 1: [2, 3]
Group 2: [4]

Group 3: [5, 6, 7, 8]
Group 4: [9, 10, 11]

Trend: [0, 1, 9, 10, 11]
Group 1: [2, 3, 5, 6, 7, 8]

Group 2: [4]

Ib

Trend: [0, 1]
Group 1: [2, 3]
Group 2: [4, 5]

Group 3: [6]
Group 4: [7, 8, 9, 10, 11]

Trend: [0, 1]
Group 1: [2, 3]
Group 2: [4, 5]
Group 3: [6]

Group 4: [7, 8]
Group 5: [9, 10]

Group 6: [11]

Trend: [0, 1]
Group 1: [2, 3]
Group 2: [4, 5]
Group 3: [6]

Group 4: [7, 8]
Group 5: [9, 10]
Group 6: [11]

Trend: [0, 1, 2, 3, 7, 8]
Group 1: [4, 5, 9, 10, 11]

Group 2: [6]

Ic

Trend: [0, 1]
Group 1: [2, 9]
Group 2: [3, 4]

Group 3: [10, 11]
Group 4: [5, 6, 7, 8]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5, 6]
Group 4: [7, 8]

Group 5: [9, 10, 11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5, 6]
Group 4: [7, 8]

Group 5: [9, 10, 11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4, 5, 6, 9, 10, 11]
Group 3: [7, 8]

One spall

Ia

Trend: [0, 1]
Group 1: [2]

Group 2: [5, 6]
Group 3: [7, 8, 11]

Group 4: [3, 4, 9, 10]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5, 6]

Group 4: [9, 10]
Group 5: [7, 8, 11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5, 6]

Group 4: [7, 8, 11]
Group 5: [9, 10]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4, 7, 8, 11]
Group 3: [5, 6, 9, 10]

Ib

Trend: [0, 1]
Group 1: [4, 5]

Group 2: [8, 11]
Group 3: [9, 10]

Group 4: [2, 3, 6, 7]

Trend: [0, 1]
Group 1: [2, 3]
Group 2: [4, 5]
Group 3: [6, 7]

Group 4: [8, 9, 10, 11]

Trend: [0, 1]
Group 1: [2, 3, 8, 9, 10, 11]

Group 2: [4, 5]
Group 3: [6, 7]

Trend: [0, 1, 4, 5]
Group 1: [2, 3, 6, 7, 8, 9, 10, 11]

Ic

Trend: [0, 1, 7]
Group 1: [2, 3]
Group 2: [4, 5]
Group 3: [6, 8]

Group 4: [9, 10, 11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5, 6, 7, 8]

Group 4: [9, 10]
Group 5: [11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5, 6, 7, 8]

Group 4: [9, 10]
Group 5: [11]

Trend: [0, 1, 11]
Group 1: [2, 5, 6, 7, 8]

Group 2: [3, 4]
Group 3: [9, 10]

Three spalls

Ia

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4, 8, 9]
Group 3: [5]

Group 4: [6, 7, 10, 11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4, 5]
Group 3: [6, 7]
Group 4: [8, 9]

Group 5: [10, 11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4, 5]
Group 3: [6, 7, 8, 9]
Group 4: [10, 11]

Trend: [0, 1, 6, 7, 8, 9]
Group 1: [2]

Group 2: [3, 4, 5, 10,11]

Ib

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4, 8, 11]
Group 3: [5]

Group 4: [6, 7, 9, 10]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5]

Group 4: [6, 7]
Group 5: [8]

Group 6: [9, 10]
Group 7: [11]

Trend: [0, 1]
Group 1: [2]

Group 2: [3, 4]
Group 3: [5]

Group 4: [6, 7]
Group 5: [8, 11]
Group 6: [9, 10]

Trend: [0, 1, 3, 4, 8, 11]
Group 1: [2]
Group 2: [5]

Group 3: [6, 7, 9, 10]

Ic

Trend: [0, 1]
Group 1: [2]
Group 2: [3]

Group 3: [4, 5, 10, 11]
Group 4: [6, 7, 8, 9]

Trend: [0, 1]
Group 1: [2]
Group 2: [3]

Group 3: [4, 5]
Group 4: [6, 7]
Group 5: [8, 9]

Group 6: [10, 11]

Trend: [0, 1]
Group 1: [2]
Group 2: [3]

Group 3: [4, 5]
Group 4: [6, 7]
Group 5: [8, 9]

Group 6: [10, 11]

Trend: [0, 1, 10, 11]
Group 1: [2]
Group 2: [3]

Group 3: [4, 5, 6, 7, 8, 9]
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Indicators for tracking can be the structure of the components that compose the group
and the total contribution they make to the overall signal. Future research is needed to
analyze the grouping results in different ways to test the hypothesis of decomposition and
mutual correlation in the presence of multiple combinations of defect levels and types.
It is also of interest to reduce the data resolution to a level where the scattergram-based
grouping method loses its ability to detect the initial and advanced stages of the defect.

6. Conclusions

The identification of faults in rotating equipment in general and induction motors in
particular, based on the analysis of the electrical parameter, is a rather time-consuming
yet relevant and promising task due to the complicated operating conditions of the equip-
ment. The identification of vulnerabilities at an early stage of development in individual
components will extend the lifecycle of the entire process and significantly reduce energy
consumption and emissions.

In this paper, the authors proposed an approach based on the singular decomposition
of the original sample applied to the electric motor stator current signal to identify the
patterns characterizing the occurrence and evolution of the bearing fault. In order to verify
the hypothesis of component extraction using SSA and SVD, experiments were performed
and the results were explored using component contribution estimation; two-dimensional
scatter plots and grouping by the hierarchical clustering method based on a weighted
correlation matrix were considered for verification.

The results showed a tendency to isolate the components X̃2 and X̃3 into individual
groups; this trend was evident in each of the given grouping approaches; also, the contribution
of these grouped components increased by orders as the damage progressed steadily. The
analysis of the obtained results allows the authors to conclude that these components are most
likely to be responsible for fault development, thus confirming the possibility of identifying
the defect at an early stage on the current signature basis by the proposed algorithm.

The proposed methodology has advantages over classical methods due to the lack of a
need for additional sensors and the lack of additional knowledge of the original time series.

Research into other fault types, combinations of fault types and levels, and subsequent
analysis of electrical signals using singular decomposition are of interest for future work by
the authors.

In addition, future research includes:

• The investigation of the boundary sampling rate requirements for fault detection by
the proposed algorithm;

• Testing the proposed algorithm on other non-obvious fault types, such as misalignment
and loose motor mounts;

• The creation of a component map using the presented approaches for individual
electromechanical equipment.

Identifying faults at an early stage and monitoring changes will allow for the intelligent
management of maintenance and repair, as well as energy efficiency levels derived from
the equipment’s technical condition.
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Abbreviation

ANN Artificial Neural Network
CO2 Carbon Dioxide
DSS Decision Support System
EEMD Ensemble Empirical Mode Decomposition
EMB Electromagnetic Brake
EMD Empirical Mode Decomposition
FFT Fast Fourier Transform
ICA Independent Component Analysis
IM Induction Motor
MRO Maintenance and Repair
RPM Revolutions Per Minute
SES Square Envelope Spectrum
SSA Singular Spectrum Analysis
STMS Short-Term Matrix Series
SVD Singular Value Decomposition
SVD-AF Singular Value Decomposition Amplitude Filter
SVR Singular Value Ration
VMD Variation Mode Decomposition
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