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Abstract: This paper presents a life cycle assessment (LCA) analysis of a new, high-concentration
photovoltaic (HCPV) technology developed as part of the HIPERION project of hybrid photovoltaics
for efficiency record using an integrated optical technology. In the LCA calculations, the production
stage of a full module was adopted as a functional unit. SimaPro version 9.00.49, the recent Ecoinvent
database (3.8), and the IPCC 2021 GWP 100a environmental model were applied to perform the
calculations. The environmental impact of the HCPV panel was determined for constructional data
and for recycling of the main elements of the module. The results of the calculations show that
recycling of PMMA, rubber, and electronic elements reduced the total carbon footprint by 17%, from
240 to 201 kg CO2-eq. The biggest environmental load was generated by the PV cells: 99.9 kg CO2eq.,
which corresponds to 49.8% (41.7% without recycling) of the total environmental load due to the
large number of solar cells used in the construction. The emission of CO2 over a 25-year lifespan
was determined from 17.1 to 23.4 g CO2-eq/kWh (20.4 to 27.9 without recycling), depending on the
location. The energy payback time (EPBT) for the analyzed module is 0.87 and 1.19 years, depending
on the location and the related insolation factors (Madrid: 470 kWh/m2, Lyon: 344 kWh/m2). The
results of the calculations proved that the application of recycling and recovery methods for solar
cells can improve the sustainability of the photovoltaic industry.

Keywords: solar energy; high-concentration photovoltaics (HCPVs); environmental impact; life cycle
assessment (LCA); recycling

1. Introduction

The current demand for energy requires an increase in the share of renewable energy
and the development of high-efficiency technologies. In particular, solar power has a
significant potential of being the biggest source of alternative energy [1]. In 2020, renew-
able sources accounted for almost 13% of world energy use, including 1.56% of the solar
input [2]. Considering the technical potential and environmental benefits, the contribution
of solar power to the global energy demand is still negligible. Despite serious technological
developments in photovoltaic (PV) systems, the conversion efficiency is relatively low. The
crystalline Si-based solar cell, which is dominating in the market, is able to achieve 26.7%
conversion efficiency [3,4]. Moreover, power generation in PV systems heavily depends on
environmental variables, such as weather, seasons, and times of day [5,6]. The position of
the PV module (i.e., orientation and inclination) is an important parameter as well, and
the optimal angle of solar incidence ensures the highest energy extractions [7]. Therefore,
the installation site of the module cannot be random. Additionally, solar installation costs
are high, which limits the widespread installation of photovoltaic systems, especially for
domestic use [8]. As estimated, materials correspond to even 70% of the total cost of the
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technology [9]. Therefore, innovative proposals and technologies for solar systems are still
needed so as to improve system efficiency.

Concentrated photovoltaic (CPV) has become a contemporary option for solar energy
generation, eliminating some disadvantages of conventional systems. A novelty compared
to conventional photovoltaic technologies is implementing an optical system, in the form
of lenses or curved mirrors [10]. Such solutions intensify the focus of the sun rays on
small cells and, ultimately, increase the efficiency of the panels. A major advantage of
CPV is the potential to reduce the overall cost of the system with minimal impact on the
environment. These economic and ecological benefits are achievable by applying low-cost
optical devices and low semiconductor material employment [11,12]. In general, CPV
systems are differentiated, according to the concentration factor, into a low-concentrated
photovoltaic system (LCPV), medium- (MCPV), or high-concentrated photovoltaic system
(HCPV) [13,14]. CPV can also operate in ultra-high-concentrated PV implementations
(UHCPV) [15]. However, most of the globally installed capacity of CPV systems is based
on HCPV technologies [16,17], simultaneously having the best perspective on cost re-
duction [14]. Efficiency is, thus, key to the return on investment to ultimately decrease
the cost of energy in the future [18]. Along with the economy of new technologies, the
environmental aspects should also be considered.

An environmental load of HCPV systems can be successfully evaluated based on the
LCA methodology, as demonstrated by Ziemińska-Stolarska et al. [19]. Crucially, LCA
is a normalized method to assess the environmental impact associated with all stages
of a product’s life (i.e., from cradle to grave) [20]. An LCA study is particularly impor-
tant for emerging technologies that have not yet been tested in real operating conditions.
The preliminary results of the analysis, which allow for conclusions to be drawn at the
design stage of the system, are also of great importance. Consequently, an LCA analy-
sis has become an integral part of projects developing new technologies with a market
implementation potential.

An important indicator of the environmental performance of PV is energy payback
time (EPBT) [21] and greenhouse gas (GHG) emissions [22]. In general, EPBT depends on
location and the related irradiation, efficiency, and cumulative energy demand (CED) of PV
systems [23]. While mono-crystalline and multi-crystalline Si-PV systems have an energy
payback time of about 1.1 and 0.9 years, respectively [24], some HCPV installations have
an estimated EPBT value of 0.22–0.33 years, depending on location [25]. In turn, lifetime
assumptions and system locations can affect the carbon footprint of PV technologies [26].
GHG emissions, usually expressed as g CO2-eq per unit of electricity produced, indicate a
trend in decreasing the carbon footprint of the HCPV technology [27].

One of the first mounted CPV modules, produced under the Apollon project, produced
20 g CO2-eq/kWh with an EPBT of 1 year [28]. Fthenakis and Kim [29] performed an LCA
analysis of the Amonix 7700 HCPV module in operation in Phoenix, USA. The estimated
EPBT was only 0.9 years. The calculated carbon footprint was closely dependent on the
assumed life cycle of the system, and was 26–27 g CO2-eq/kWh and 16 g CO2-eq/kWh for
30 and 50 years, respectively. A study of Corona et al. [30] reported an EPBT of 1.457 years
and 53.3 g CO2-eq/kWh for a commercial 1.008 MWp HCPV plant located in Casablanca
(Morocco), operating with an 820× concentration factor.

The huge variety of PV modules makes it difficult to unequivocally answer the ques-
tion of which module components produce the greatest environmental load. Literature
studies based on an LCA analysis show that the main contribution to the environmental
load is focusing optics (often more than 50% of the contribution), a tracking system, and
the frame (aluminum alloy or steel).

The variations between the environmental metrics of particular PV modules result,
among others, from system specifications, e.g., module types and energy conversion effi-
ciency and degradation. In general, the efficiency of the PV module in energy generation
gradually decreases as the system’s lifetime increases. Natural degradation occurs due to
corrosion, temperature variations, humidity, irradiation, etc. [31]. For this reason, the degra-
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dation rate can vary with climate conditions and geographical locations. Khan et al. [32]
investigated the performance parameters of c-Si PV modules installed on a concrete base
to evaluate photovoltaic degradation in damp–heat stress. The results demonstrated that
PV module installation on concrete, in low humidity regions, decreases the loss in effi-
ciency and degradation rate in relation to the reference module. The beneficial impact
of the concrete slab on the performance degradation of PV modules was also noticed for
temperature fluctuation stress [33]. Nordin et al. [34] found that neglecting the degradation
factor prompts a significant underestimation of the LCA results. Their results showed that
PV module degradation increases cumulative energy demand (CED) and greenhouse gas
(GHG) emissions. Moreover, small variations in GHG emissions were observed for different
geographical locations of CdTe PV systems, mainly due to a lower module degradation rate.

1.1. Recycling of PV Modules

An environmental load of solar panels cannot be assessed without the parallel consid-
eration of the end-of-life scenario. Even though most modules have a long service life, the
management of waste panels is an important environmental issue [35]. The literature data
proved that photovoltaic modules have a great recycling value, both in the “closed-loop”
(incorporating material from used modules in new modules) and “open closed-loop” (when
the recycled material goes to another product system) recycling approaches [36]. According
to Calì et al. [37], currently, existing technologies are capable of recycling 95–99% of PV
panel materials. In particular, glass, aluminum, silicon, and wires made of copper are
recyclable materials in PV modules. However, different recycling methods reach different
efficiencies, and the cost/benefit ratio of the process cannot be neglected. The technologies
of separation and the recovery of particular materials from PV panels can be divided
into physical, chemical, and thermal treatments. Standard recycling approaches for the
individual components of PV module recycling are shown in Table 1. Disassembly and
separation of the aluminum part from the glass part is the first step in recycling Si-based
PV panels. It was estimated that more than 90% of the removed glass can be reused in a
closed-loop method of recycling [38]. As indicated by Strachala et al. [39], glass recycling
can reduce energy consumption for PV module production by about 40%. High-value
recycling methods are based on the recovery of silicon, semiconductors, and silver for reuse
or return to the resource pool. Thermal and chemical treatments are used to recover silicon
particles. If the Si is chemically coated, a hydrometallurgy process is used to extract the
element [37]. In this way, it is possible to recover metals, such as indium and gallium [40].
In the case of concentrated PV modules, the recycling process includes optical devices, such
as the Fresnel lens, constructed from polymethyl methacrylate (PMMA). This thermoplastic
material can be recovered by means of pyrolysis and depolymerization. Moreover, the
Fresnel lens can be reused in a new module if it is still in a usable condition [41]. The
incorporation of recycling into the life cycle of photovoltaic modules further reinforces
their “clean” image. Regardless of the energy consumption and emissions during recycling,
the environmental impact of the process is insignificant in relation to the production stage
of PV modules. Furthermore, the usage of secondary materials in the production of Si-solar
cells can reduce the environmental load by almost 60%, as compared to applying virgin
materials [42].

Table 1. Recycling techniques for particular components of solar panels.

Component Recycling Techniques

Glass

Closed-loop-recycled glass can be used to manufacture the same product.
The glass should be separated from PV modules (using chemical or thermal procedures). The first step is the cleaning
process of removing unwanted layers, such as an anti-reflective coating [39]. Chemical delamination to separate such

materials from PV modules is possible with tetrahydrofuran (THF) [42]. The separated glass is then washed and crushed. If
further purification of the glass cullet is required, the remaining contamination can be optically sorted by blowing

compressed air at the point detected by the optical sensor. Standard glass cullet is melted at a high temperature (about 1550
◦C). Adhesives based on synthetic polymers generally do not disturb the recycling process because they burn at high

temperatures without influencing glass recycling [43].
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Table 1. Cont.

Component Recycling Techniques

Solar cell Chemical and thermal separation. Si particles are eliminated with acid and then melted to be reused.
Si doped by chemical additives can be extracted by hydrometallurgy processes [37].

Fresnel lens
(PMMA)

Crushing and pyrolysis—Fresnel lenses.
Thermal methods such as the melting and shaping of PMMA into other forms at temperatures above 160 ◦C.

Depolymerization process such as by mixing with molten lead
at approximately 500 ◦C, which produces a 98% pure methyl methacrylate (MMA) monomer [41].

1.2. Policies for End-of-Life Disposal of PV Modules

As the lifetime of photovoltaic modules is approximately 20–25 years, the waste gener-
ated by this technology will increase significantly over the next few years. Waste generated
from the photovoltaic sector is estimated at 1.7 million tons by 2030 and is expected to
increase to more than 60 million tons by 2050 [44]. Hence, PV waste management should
be supported by an adequate regulatory framework. Nowadays, management policies
for photovoltaic modules are scarce, even in countries with fast-expanding PV markets,
such as China, Japan, India, Australia, and USA. Currently, only Europe has a strong
end-of-life disposal policy for photovoltaic modules [38]. In the European Union, end-
of-life PV regulations are part of the Waste Electrical and Electronic Equipment Directive
(WEEE Directive) [45]. Since 2014, the collection, transport, and recycling of end-of-life PV
modules have been regulated in EU member states. The WEEE Directive stipulates that
PV producers bear the primary responsibility for collection, handling, and treatment costs.
In addition, manufacturers and importers of PV modules must register products with the
relevant specifications and are responsible for managing the end-of-life of their products.

1.3. New HCPV Module

Recently, as part of the HIPERION project, novel, highly-efficient solar modules (>30%
STC—standard test conditions for solar module evaluation) combining space-grade solar
cells and optical micro-tracking have been developed, as shown in Figure 1.
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Figure 1. Optical micro-tracking technology of HIPERION panel (http://www.hiperion-project.eu/,
accessed on 6 March 2023).

The combination of optical micro-tracking and space-grade photovoltaic cells enables
module efficiencies of more than 30% under direct sunlight, compared to an average of
17–20% for standard silicon modules. Thanks to the optical concentration, only 0.5% of the
total surface has to be covered with cells to reach optimal efficiency and cost-effectiveness.
Since only a scattered array of cells is needed, space-grade cells become affordable.

http://www.hiperion-project.eu/
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This technology consists of an overlay assembled on top of a silicon backplane and
enables the module’s performance to be significantly enhanced under direct sunlight. The
overlay is a concentrating system that focuses sunlight on high-efficiency space-grade
multi-junction solar cells (III-V cells), regardless of the orientation of the sun and without
tilting the module. A micro-tracking system mounted on a conventional silicon backplane
concentrates sunlight on the multi-junction solar cells [46]. The panels act as silicon modules
under diffuse sunlight and provide record-breaking energy production per m2, with gains
of up to 50% in Central Europe and up to 80% in Southern Europe.

The presented study applied life cycle assessment (LCA) to evaluate the environmental
performance of the innovative HCPV system developed as part of the HIPERION project.

2. Materials and Methods

An LCA study can be performed using a variety of different calculation techniques
and a wide range of approaches. Extensive literature screening revealed that the most
suitable methodology for life cycle assessment of PV panels is SimaPro®. The software
enables the measurement of the environmental impact of products and services at all stages
of the life cycle and the identification of hotspots in each link of the supply chain. SimaPro
version 9.00.49 and Ecoinvent 3.8 database were used to perform the LCA calculations.
The Ecoinvent database contains life cycle inventory (LCI) data from various sectors,
such as energy production, transport, building materials, production of chemicals, metal
production, etc. The entire database consists of over 10,000 interlinked datasets, each of
which describes the life cycle inventory at the process level. SimaPro provides six libraries,
each containing all the processes found in the Ecoinvent database, but uses different system
models (substitution point allocation, classification cut-off, and consequential) and includes
either unit or system processes. Unit processes contain links to other unit processes from
which SimaPro can calculate inventory flows. System processes use the already-calculated
inventory flows and do not contain links to other processes [29,47].

This project uses the IPCC 2021 GWP 100a environmental model and the APOS-
allocation methodology at the point of substitution to determine the environmental profile
of the PV module [48–50].

The LCA analysis was carried out according to ISO 14040 and ISO 14044, with the
following steps: goal and scope definition, inventory analysis, impact assessment, and
interpretation of results [51]. In this project, the full CPV module was adopted as the
functional unit. The cradle-to-grave approach was selected. In order to ensure reliable
results, an inventory analysis was collected from the producers (primary data), which
should identify and quantify all material and energy flows and all waste discharges to the
environment throughout the life cycle. Available databases and expert estimates, mass,
and energy balances (secondary data) were also used to complete the inventory table. The
boundary of the HIPERION HCPV panel production system is shown schematically in
Figure 2.

The manufacturing process of the HIPERION HCPV panel begins with the production
of a monolithic backplane using raw glass and cell wafers. In the next step, the backplane is
mounted on the SI cells, and in parallel, the top glass is produced using PMMA lenses and
anti-reflective glass. The final assembly of the module includes mating of the backplane
and top glass, and assembling the membrane, frame, and actuators. Material and energy
data were collected at each stage of the panel manufacturing process.

In addition, the impact of transporting raw materials was assessed. At the impact
assessment stage, the potential effects of the system on the environment were identified
and characterized.

In the interpretation phase, a review of all LCA stages to check the compliance with the
assumptions and data quality in relation to the goal and scope of the study was performed.
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Figure 2. Flow diagram of the HCPV module production process.

3. Results

The development of new rooftop HCPV solar panels based on the planar optical
micro-tracking technology should reduce environmental load due to the high efficiency of
the module. To verify this assumption, an LCA analysis was performed according to ISO
14040-14044:2006.

In the first step of the LCA analysis, the inventory table for the HIPERION PV module
was completed. The life cycle of a PV module (Figure 2) starts with the acquisition of mate-
rials, encompasses their production, component manufacturing, assembly/installation, and
operation/maintenance, and then ends with the disposal. Not all of the elements used in
the production of the HIPERION panel were available in the Ecoinvent database; appropri-
ate substitutes were selected for inaccessible elements. Table 2 presents the materials used
for the construction of the module and the materials finally used in the LCA calculations.

Based on the data provided, LCA calculations of CO2 emissions and the impact
of particular elements of the HIPERION module on the environmental burden at the
production stage were carried out.

The environmental impact at the production stage of the HCPV panel was determined
for the basic construction of the panel and for the recycling of the main components of
the module.

The results of the LCA calculations of CO2 emissions for the constructional data of the
HCPV panel are shown in Figure 3.
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Table 2. Inventory table for HCPV module.

Materials Ecoinvent Database

Top glass

Glass Solar glass production

AR (anti-reflective) coating Market for anti-reflex coating,
etching, solar glass

Poly(methyl methacrylate) (PMMA) Polymethyl methacrylate

PMMA Polymethyl methacrylate

Monomer (60%) 1 or mixture for balance properties: methyl
methacrylate/butyl acrylate

Additives (0.1–1%) light stabilizer: octabenzone
Photo initiator (1–6%): Hydroxy dimethyl
acetophenone/α-Hydroxy-acetophenone

Methyl methacrylate
Butyl acrylate

Octabenzone

2,5-dimethylhexane-2,5-dihydroperoxide

Typical formulation for acrylic adhesive (two-component):
Butyl acrylate (26%)
Vinyl acetate (26%)
Acrylic acid (1%)

Ethylene oxide condensate (0.5%)
Water (45%)

Potassium peroxide disulfate (0.05%)

Butyl acrylate
Vinyl acetate
Acrylic acid

Ethylene oxide
Water

Potassium peroxide

Backplane

Glass Solar glass production, low-iron

AR coating
Market for anti-reflex-coating, etching, solar glass

Titanium dioxide
Zirconium oxide

Solar cells include the latest triple and quadruple junction
technology

Gallium, semiconductor-grade
Indium

LED package
Ceramic

Silicon production,
electronics-grade

Diode Diode production, auxiliaries
and energy use

Row material: plastic—polypropylene
Semiconductor material: silicon, germanium, selenium

Polypropylene
Silicon production, electronics-grade

Selenium

Structural
element

Flexible film: polyimide/polyester/fluoropolymer
(standard PCD: epoxy resin plus glass fiber plus copper) Electronic component

Window material with resin coating Ceramic

Photosensitive area (Si photodiode) with silicone resin Diode production, auxiliaries
and energy use

Silicone resin sealant Silicone product production

Resistor Resistor production, auxiliaries and energy use

Sensor made of silicon Silicon production, electronics-grade

Sensor housing: plated copper, lead frame, epoxy-based
mold compound

Copper
Market for epoxy resin, liquid

Aluminum Aluminum/
market for aluminum

Stainless steel Stainless steel

Silicone adhesives and sealants PDMS
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Figure 3 shows the elements of the process tree with a contribution to the environmen-
tal load higher than 3.5% in terms of the emission of kg CO2-eq. of the materials used in
the production process of the module.

Figure 4 displays elements of the process tree with a contribution to the environmental
load higher than 3.5% in terms of the emission of CO2-eq. (in %) of the materials used in
the production process of the module.
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The total CO2 emission per HIPERION module construction was 240 kg CO2-eq, giv-
ing CO2 emissions from 20.4 to 27.9 g CO2-eq/kWh over its lifetime (25 years). The PV cells
generated the biggest load: 99.9 kg CO2-eq. (41.7% of the total environmental load) due to
the large amount of material covering 0.68 m2 of the module surface. PMMA (16.2%), inte-
grated circuits (12.9%), and aluminum frame (3.64%) also made a significant contribution.

In terms of the panel manufacturing process, the biggest load was produced by
the backplane assembly (56.3%), top glass (21.1%), and structural elements (14.1%). In
the next step, LCA calculations were carried out for the HIPERION module with the
recycling of PMMA, rubber, and electronic elements. The calculation results are shown in
Figures 5 and 6.
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Recycling of PMMA, rubber, and electronic components reduced the total environ-
mental load of the module by 20%, from 240 to 201 kg of CO2-eq. The PV cells generated
the greatest environmental load: 99.9 kg of CO2-eq., which corresponds to 49.8% of the
total environmental load. Reducing the environmental load also decreased the emissions of
CO2 over 25 years of operation from 17.1 to 23.4 g CO2-eq/kWh per module for different
locations. In terms of system production, the biggest load was produced by the backplane
assembly (67.2%), top glass (5.95%), and structural elements (16.7%). The environmen-
tal load produced by PMMA was reduced from 38.9 to 0.22 kg CO2-eq due to the 100%
recyclability of this material.

Figure 7 shows the percentage share of individual components of the module. The
largest percentage applies to the backplane (67.2%) and, in particular, PV cells. The share
of structural elements at the level of 16.67% is related to the use of integrated circuits and
electronic components, both active and passive.

For the HIPERION module, the energy payback time (EPTB) was calculated, which is
defined as the period required for a renewable energy system to generate the same amount
of energy that was used to produce and manage the system itself [29].

The energy payback time of the HCPV module was calculated by using the Cumulative
Energy Demand (CED) method. Equation (1) illustrates the integral elements of the EBPT
computation methodology [27]:

EPBT =
CEDmat + CEDmanu f + CEDtrans + CEDin f s + CEDEOL

((
Eagen

ηG
)− CEDO&M)

(1)

CEDmat: CED (in MJ) to produce the materials comprising the PV system, CEDmanuf:
CED (in MJ) to manufacture the PV system, CEDtrans: CED (in MJ) to transport the materials
during the life cycle, CEDinfs: CED (in MJ) to install the system, CEDEOL: CED (in MJ)
for end-of-life management, Eagen: mean annual electricity generation (in kWhelectric),
CEDo&m: CED (in MJ) for operation and maintenance, and ηG: grid efficiency, primary
energy to electricity conversion at the demand side (kWhelectric MJ).

EPBT is dependent on irradiation, but also on other factors, such as grid efficiency.
Mean annual electricity generation (Eagen) is converted into its equivalent primary energy,
based on the efficiency of electricity conversion at the demand side, using the grid mix
where the system is installed. Therefore, in order to calculate the primary energy equivalent
of the annual electricity generation (Eagen/ηG), knowledge of the energy conversion effi-
ciency (ηG) of the country-specific energy mix used for electricity generation and material
production is required. The average ηG for Western Europe is approx. 0.31 [52]. Better
grid efficiency in Europe may decrease EPBT by typically 9.5% compared to PV modules
produced in China [53]. Based on the obtained results, the EPBT for the analyzed module
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is 0.87 and 1.19 years, depending on the location and the related insolation factors (Madrid:
470 kWh/m2, Lyon: 344 kWh/m2).
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Figure 7. Percentage share of the HIPERION module system components.

4. Conclusions

The LCA calculations took into consideration the environmental impact of recycling
HIPERION module components. The total carbon footprint of the module was estimated
at 201 kg CO2-eq, while at 240 kg without recycling of the module components. PV cells
produced a decisive contribution to the environmental load of the module: 99.9 kg CO2-eq
(49.8%).

Recycling of PMMA reduced the environmental load from PMMA by 38.5 kg CO2-eq
(−19.2%). In terms of the system, the biggest load was produced by the backplane assembly
(67.2%), structural elements (16.7%), and top glass (5.95%).

The carbon footprint generated by the HIPERION module is in the range of 17–29 g
CO2-eq/kWh, depending on the location. For PMMA and aluminum recycling, the emis-
sions of CO2 over 25 years were estimated at between 17.1 and 23.4 g CO2-eq/kWh per
module. The LCA analysis shows that the focusing optics have the most significant impact
on total carbon dioxide emissions, making it difficult to significantly reduce the environ-
mental impact of the modules as this part of the panel cannot be replaced.

The EPBT for the HIPERION module is 0.87 and 1.19 years, which is a typical value
for HPCV panels.

The recycling and recovery of solar cells made of III-V semiconductors, which are
currently being disposed of as hazardous waste, can improve the sustainability of the
photovoltaic industry.

The novel architecture of the HIPERION modules can reduce the cost of solar en-
ergy due to the high efficiency of energy conversion and high energy yield compared to
crystalline silicon panels.
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