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Abstract: Waterflooding is one of the methods used for increased hydrocarbon production. Water-
flooding optimization can be computationally prohibitive if the reservoir model or the optimization
problem is complex. Hence, proxy modeling can yield a faster solution than numerical reservoir
simulation. This fast solution provides insights to better formulate field development plans. Due to
technological advancements, machine learning increasingly contributes to the designing and building
of proxy models. Thus, in this work, we have proposed the application of the two-stage proxy
modeling, namely global and local components, to generate useful insights. We have established
global proxy models and coupled them with optimization algorithms to produce a new database.
In this paper, the machine learning technique used is a multilayer perceptron. The optimization
algorithms comprise the Genetic Algorithm and the Particle Swarm Optimization. We then imple-
mented the newly generated database to build local proxy models to yield solutions that are close
to the “ground truth”. The results obtained demonstrate that conducting global and local proxy
modeling can produce results with acceptable accuracy. For the optimized rate profiles, the R2 metric
overall exceeds 0.96. The range of Absolute Percentage Error of the local proxy models generally
reduces to 0–3% as compared to the global proxy models which has a 0–5% error range. We achieved
a reduction in computational time by six times as compared with optimization by only using a
numerical reservoir simulator.

Keywords: global and local proxy modeling; machine learning; derivative-free optimization; reservoir
simulation

1. Introduction

Numerical reservoir simulation (NRS) is one of the most essential aspects of reservoir
engineering. NRS is highly relied upon for the modeling of fluid flow in porous media. This
implies that a reservoir is better when sufficient data are acquired to develop a reservoir
model through NRS. Using NRS, fluids can be more efficiently extracted from the under-
ground to meet the global energy demand. However, NRS suffers from computational
issues, despite today’s advanced computing power. This limitation is still not entirely ad-
dressed, especially when many details are included in building the NRS model. Concerning
this, numerous measures are proposed, including proxy modeling.

Proxy modeling pertains to the modeling of a substitute for a base paradigm, namely
NRS. Such an approach can provide a fast solution when the decision-making is urgent.
There are different examples of proxy modeling available for employment. In this case,
the machine learning (ML) technique is one of them. In general, ML can be perceived as
a computer algorithm that is built to deduce a pattern or relationship between the input
variables and the output provided [1]. Some prevalent examples of ML include artificial
neural networks, support vector machines, and gradient boosting machines. These methods
have been demonstrated to be successful in establishing proxy models. Regarding this,
some literature presented the use of an ensemble of neuro-fuzzy networks as ML-based
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proxy models in several aspects of reservoir engineering, including carbon, capture, and
storage [2] and shale analytics [3].

Apart from these, a variant of the gradient boosting machine, e.g., extreme gradient
boosting machine (XGBoost), was implemented for fast analysis of well placements in a
heterogeneous reservoir [4]. The articles [5,6] also discussed the use of some more advanced
ML methods in simulating the behavior of reservoirs and production trends, which is an
important criterion to be manifested by a proxy model. The potential implementation of
ML methods in proxy modeling was also further highlighted in the domain of secondary
recovery. Waterflooding is one of the most prevalent secondary recovery techniques.
Aside from its economical employment [7], it has been well-received in the oil and gas
industry due to its ability to maintain the reservoir pressure, prevent subsidence, and
simultaneously increase the oil recovery from oil fields. Regarding the technicality of
waterflooding, “voidage replacement” has been a common parameter to guide water
injection, where the total volume of production is equal to the total volume of injection. The
challenge of using a voidage replacement ratio (ratio of the injected to the produced fluid
volumes) with a fixed injector location is the allocation of the water injection for each well.

Changing the injection operations can optimize the waterflooding performance. These
operations include the well control adjustment in which the net present value (NPV) is
set to be the objective function. Conventionally, NRS is used to obtain the result for each
water injection scenario. For a full-field scenario, using NRS will be time-consuming to
maximize the objective function, especially if the geology of the reservoir is sophisticated
or the dimension of optimization variables is high. Therefore, ML-based proxy models
are suggested to mitigate the computational challenges. Several previous works [8,9] have
established a methodology in this context. Nonetheless, the efficiency of the methodology in
resolving the optimization problem with higher dimensionality still requires improvement.
One of the potential solutions lies in the establishment of two different classes of proxy
models, namely global and local proxy models, as discussed in [10,11]. Fundamentally,
local proxy models aim at refining the quality of proxy models in which solutions closer to
the “true” optimal can be determined.

Furthermore, to conduct a successful waterflooding optimization, an optimization
algorithm is another essential tool. There are two main types of algorithms, e.g., gradient-
based and gradient-free. In recent studies of optimization algorithms, gradient-free al-
gorithms have gained increasing attention due to their ability to converge to the global
optimal [12]. The nature-inspired algorithm is the epitome of gradient-free algorithms.
Its successful integration with the ML-based proxy models has been displayed in several
pieces of literature in reservoir and production engineering [13–15]. In this study, two
optimization algorithms are used: the Genetic Algorithm (GA) and the Particle Swarm
Optimization (PSO). These algorithms are only applied to determine the optimal sets of
well control under waterflooding. These algorithms also illustrated good potential to be
used as training algorithms in data-driven modeling [16,17].

In this paper, we aim to illustrate how ML and nature-inspired algorithms can be
coupled with the two-stage proxy modeling to optimize waterflooding. A benchmark
model (UNISIM-I-D) was used to demonstrate that global and local proxy modeling could
be used to replicate the behavior of a real reservoir. The UNISIM-I-D model was created
based on Namorado Field, located in Campos Basin in Brazil. The proxy models are
developed using the multi-layer perceptron (MLP). These proxy models were initiated
to replicate the NRS and coupled with the above-mentioned algorithms for well control
optimization. The proxy models were built using selected geological properties, time, and
output from the NRS. Using the Latin Hypercube Sampling (LHS) method, which was
proposed by McKay et al. [18], multiple injection scenarios were created and divided into the
training set and the blind validation set. NRS was performed on the injection scenarios to
obtain the simulation results. After a successful training and the validation test of the proxy
models, the simulation results could be generated without using NRS. Using the results
from the global proxy model, the local proxy model was trained based on the retrieved
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samples of optimization results. With this method, the optimization result was obtained
by using the local proxy model without the requirement to run the repetitive process of
optimization. Using the global and local proxy models, the optimized water injection
control for the UNISIM-I-D model was determined with higher computational efficiency.

Following this introduction, Section 2 of this paper discusses the details of the UNISIM-
I-D model. Sections 3 and 4 respectively explain the algorithms and the ML method applied.
Thereafter, Section 5 expounds the integration of the concepts presented to scaffold the
establishment of the methodology presented. Section 6 comprises a discussion on the
results obtained from this work. The concluding remarks can be found in Section 7.

2. Reservoir Description

The UNISIM-I-D model was created on the Namorado Field, located in the Campos
Basin in Brazil with known properties [19]. With the benchmark model, it is possible
to ensure the applicability of developed reservoir management methodologies to real
reservoirs. In this study, we used the upscaled model to decrease the computational effort
for multiple scenarios. The grid cell resolution of the upscaled model is 100 × 100 × 8 m,
discretized into a corner point grid 81× 58× 20 cells, with a total of 36,739 active total cells.

2.1. Static Properties Description

The UNISIM-I-D model facies distribution is reflected based on the net-to-gross dis-
tribution. The original fine model has the following rules to set the net-to-gross (NTG)
based on the facies shown in Table 1. The facies modeling is defined using the Sequential
Indicator Simulation with a vertical trend [20].

Table 1. Facies and Net to Gross rules.

Facies Net to Gross

0 1.0

1 0.8

2 0.6

3 0.0

Class 0 is defined as reservoir facies with good properties whereas classes 1 and 2 are
the medium reservoir properties. Class 3 is defined as non-reservoir. The reservoir active
grid is upscaled and results in a continuous distribution of the NTG (Figure 1).

Energies 2023, 16, x FOR PEER REVIEW 3 of 26 
 

 

results from the global proxy model, the local proxy model was trained based on the re-
trieved samples of optimization results. With this method, the optimization result was 
obtained by using the local proxy model without the requirement to run the repetitive 
process of optimization. Using the global and local proxy models, the optimized water 
injection control for the UNISIM-I-D model was determined with higher computational 
efficiency. 

Following this introduction, Section 2 of this paper discusses the details of the UNI-
SIM-I-D model. Sections 3 and 4 respectively explain the algorithms and the ML method 
applied. Thereafter, Section 5 expounds the integration of the concepts presented to scaf-
fold the establishment of the methodology presented. Section 6 comprises a discussion on 
the results obtained from this work. The concluding remarks can be found in Section 7. 

2. Reservoir Description 
The UNISIM-I-D model was created on the Namorado Field, located in the Campos 

Basin in Brazil with known properties [19]. With the benchmark model, it is possible to 
ensure the applicability of developed reservoir management methodologies to real reser-
voirs. In this study, we used the upscaled model to decrease the computational effort for 
multiple scenarios. The grid cell resolution of the upscaled model is 100 × 100 × 8 m, dis-
cretized into a corner point grid 81 × 58 × 20 cells, with a total of 36,739 active total cells. 

2.1. Static Properties Description 
The UNISIM-I-D model facies distribution is reflected based on the net-to-gross dis-

tribution. The original fine model has the following rules to set the net-to-gross (NTG) 
based on the facies shown in Table 1. The facies modeling is defined using the Sequential 
Indicator Simulation with a vertical trend [20]. 

Table 1. Facies and Net to Gross rules. 

Facies Net to Gross 
0 1.0 
1 0.8 
2 0.6 
3 0.0 

Class 0 is defined as reservoir facies with good properties whereas classes 1 and 2 are 
the medium reservoir properties. Class 3 is defined as non-reservoir. The reservoir active 
grid is upscaled and results in a continuous distribution of the NTG (Figure 1). 

 
Figure 1. UNISIM-I-D NTG distribution: (a) Fine grid and (b) Upscaled model [19]. Figure 1. UNISIM-I-D NTG distribution: (a) Fine grid and (b) Upscaled model [19].

Figure 1 shows that after upscaling, the NTG became continuous due to the nature of
the arithmetic volume-weighted method. The method is used to maintain the hydrocarbon
volume constant during flow simulation.
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The effective porosity model is derived from the density log and shaliness of the
properties. After the effective porosity is modeled from log data, it is distributed to the
whole model using the Sequential Gaussian Simulation (SGS) [21]. After the porosity is
modeled on the fine grid, it is upscaled using the same method as NTG upscaling. The
results of upscaled porosity are shown in Figure 2.
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Figure 2. UNISIM-I-D upscaled porosity results.

The permeability model was initially derived from the core analysis data, and a re-
lationship between porosity and permeability was established (Figure 3). This horizontal
permeability is distributed to the model using the correlation, while the vertical perme-
ability is defined by using a multiplier (which ranges from 0 to 1.5) times the horizontal
permeability. The permeability was upscaled by using the flow-based upscaling technique,
FLOWSIM [22]. The results of the porosity and the horizontal permeability relationship of
the upscaled case is depicted in Figure 3b.
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Due to the upscaling method, the horizontal permeability has slightly different values
in I and J directions. Meanwhile, the relationship between the vertical and the horizontal
permeability is scattered due to the different grid resolution in vertical direction. Figure 4
shows the relationship between the horizontal and the vertical permeabilities.
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2.2. Dynamic Properties Description

In this section, the fluid properties and fluid-rock interaction properties used in the
simulation are defined. The fluid model used in the simulation is the Black Oil model with
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the initialization of the oil phase, the dissolved gas and the water phase. Figure 6 shows
the oil properties and Figure 7 demonstrates the gas properties used in the model.
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The water properties are defined in Table 2.

Table 2. Water phase properties.

Properties Value

Reference pressure 0.98067 bara

Water formation volume factor at reference pressure 1.021 rm3/sm3

Water compressibility 4.8579 × 10−5 bar−1

Water viscosity 0.3 cP

Water viscosibility 0 bar−1

The fluid-rock interaction is defined by the relative permeability and the capillary
pressure curves in the simulation. The relative permeabilities used in the simulation are
presented in Figure 8 and capillary pressure curves are illustrated in Figure 9.
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Another dynamic rock property is rock compaction. The rock compaction used is
the standard model, based on the equations of Newman 1973 [23], Hall [24], and Van Der
Knaap [25], to generate rock compaction tables based on the known rock compressibility at
a reference pressure, as shown in Table 3.

Table 3. Rock compressibility at reference pressure.

Properties Value

Rock compressibility 5.4 × 10−5 bar−1

Reference pressure 315.77 bara
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2.3. Initialization

The initialization of the model is conducted by defining two regions with different
water-oil contacts. The region boundary is defined by the normal fault shown in Figure 10a.
The horst (blue area) has a higher water-oil contact at the depth −3100 m than the graben
(magenta are) with water-oil contact at the depth −3174 m, as shown in Figure 10. The
initial pressure is defined based on the reference point at depth of 3000 m where the
pressure is 320.68 bara. Figure 10b shows the distribution of the initial fluid saturation with
the different water-oil contacts for both regions.
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With all the parameters from the static, dynamic, and initialization of the reservoir
model, the initial in-place volume is presented in Table 4. It is confirmed, with the in-place
volume mentioned in the original UNISIM-I-D benchmark model [19], that the model used
in this study is unmodified.
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Table 4. Initial in-place volumes.

Properties Value

Initial Oil In Place 130 MM Sm3

Initial Dissolved Gas In Place 14.7 B Sm3

3. Algorithms

Regarding the selection of mathematical algorithms, nature-inspired algorithms, specif-
ically the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO), were
preferred due to their structural simplicity and successful implementation in several arti-
cles [8,9,14]. These algorithms are derivative-free, implying that computation or approxima-
tion of gradient is unnecessary. They also present a good capability of eluding premature
convergence. This is because they accomplish a good balance between exploration and
exploitation in optimization. Exploration aims at diversifying the solution over the search
space. Exploitation targets to leverage the search for solution over the local region (a more
refined search space).

GA, proposed by Holland [26], is one of the population-based metaheuristic algo-
rithms. Its formulation relies heavily upon the Darwinism Theory of Evolution. GA, in
general, implements different types of genetic operators when it comes to the exploration
and exploitation of the solution (search) space. Fundamentally, an individual solution is
encoded as a string, that is known as a chromosome. Therefore, an initial population of
chromosomes will be generated as potential solutions. The quality of each chromosome is
evaluated by employing an objective function (also known as fitness). These chromosomes
will undergo the genetic operators, for instance, selection, crossover, elitism, and mutation
over several iterations. During the selection process, several chromosomes are chosen as
parents to yield new offspring. Then, elitism ensures the survival of the best chromosome
(highest fitness) which can be inherited in the next generation. Crossover involves the
exchange of certain parts (also termed “genes”) of chromosomes to produce new ones. Mu-
tation modifies certain genes of chromosomes to elude convergence to the local optima [27].
Mathematically, the chromosome population will be subject to these genetic operators for
some iterations until the stopping criterion is met. The final chromosome with the highest
fitness is treated as the final solution.

PSO is another example of the population-based algorithms that was implemented in
this work. PSO was formulated by Kennedy and Eberhart [28], according to the simulation
of a moving stock of birds or a school of fish. In this aspect, an individual solution is
perceived as the particle, in which the initial population of particles (a swarm of particles)
is randomly generated as potential solutions. The quality of each particle is assessed using
an objective function. As PSO commences, the position and velocity of each particle are
randomly initialized. Throughout the iterations, a particle recognizes the previous optimal
value of the objective function. The respective position vector is the local best position
(pbest). The global best position (gbest) is the best position of particles achieved hitherto
in the swarm. At every iteration, the motion of particles is dictated by three parameters,
namely cognitive factors, social factors, and inertia weight. Generally, the cognitive factor
enables the attraction of particles towards the pbest. The social factor aids in attraction
towards the gbest. Inertia weight could be initialized to improve convergence. The pbest
and gbest are determined iteratively to update the velocity at the current step. As the
velocity at the next iteration is evaluated, the update on the position of a particle at the
next iteration is performed. Over some iterations, each particle updates its position via the
minimization of the objective function until the stopping criterion is reached.

4. Machine Learning

Machine learning (ML) is defined as a computer algorithm that can derive inferences
in the pattern of data provided. There are numerous examples of ML techniques, including
support vector machines, random forests, and artificial neural networks (ANN). ANN is
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one of the most popular methods of ML that has been applied extensively. Its mechanism
primarily resembles the neural system in human brains. Mathematically, it comprises
different fundamental components, including layers, activation functions, and nodes.
The layers are input, hidden, and output. Each layer consists of several nodes that are
represented by weights and biases. Starting from the input layer, weights and biases are
consecutively interconnected layer to layer. Thereafter, the respective product will be fed
into a preselected activation function to yield a new value that will propagate to the next
layer. This process of propagation continues until it reaches the output layer. For the
relevant details, refer to the literature [29]. Application of ANN generally gravitates to the
development of data-driven models which are used for prediction and/or optimization.
There are also different variants of ANN, such as multilayer perceptron (MLP), recurrent
neural network (RNN), and convolutional neural network (CNN). In this work, only MLP
is considered due to its successful use in resolving engineering problems.

5. Proxy Modeling and Optimization Problem

To establish proxy models, we need to be cognizant of the functions of the proxy
models before proceeding into the development phase. In our study, we formulate a
waterflooding optimization problem, in which the pertinent objective function is set to be
the net present value (NPV). This NPV function is mathematically expressed in Equation (1).
The control vector is represented by u and the field rates are indicated by Q, in which the
subscripts refer to the types of fluids. P refers to the price or cost of fluid produced/injected.
ntotal is the total number of timesteps whereas ti refers to the cumulative time until timestep
i. ∆ti refers to the timestep difference between the time i and the previous timestep. Such
an optimization problem resonates with some of our previous works [8,9]. However, one
of the distinctive differences pertains to the number of optimization variables (decision
variables) included. In the case of this optimization, NPV is maximized every 365 days by
optimally adjusting each injection rate (within the range of 0 Sm3/day and 2500 Sm3/day)
and bottomhole pressure (BHP) of each producer (within 175 bar and 200 bar). The total
production period lasts for 9125 days.

NPV(u) =
ntotal

∑
i=1

∆ti ×
(

Qi,oil(u)Poil −Qi,wat prod(u)Pwat prod −Qi,wat inj(u)Pwat inj + Qi,gas(u)Pgas

)
(1 + interest rate)ti/365 (1)

Since the UNISIM-I-D reservoir model comprises four injectors and four producers,
this results in 200 variables (8 variables/timestep× 25 timesteps) to be optimized to achieve
a higher NPV. Based on the NPV function, we assume that the produced gas will be sold.
Regarding the economic parameters, the oil price is 503.2 USD/m3, the cost of handling
produced water and injecting water are 62.9 USD/m3 and 50.32 USD/m3, respectively, and
the gas price is 0.265 USD/m3. The interest rate is 0.10 per year. From the NPV function,
we need to develop models that can predict the values of the Field Oil Production Rate
(FOPR), Field Water Production Rate (FWPR), Field Water Injection Rate (FWIR), and Field
Gas Production Rate (FGPR) at each timestep. Keeping in mind our investigation and
previous studies [8,17,30], we decided to build three different proxy models, which can
forecast Field Liquid Production Rate (FLPR), Field Water Cut (FWCT), and FWIR. FLPR
and FWIR are in the units of Sm3/day whereas FWCT is expressed in a fraction. These
proxy models provide the necessary values to compute the NPV. It is essential to know that
FGPR (Sm3/day) can be obtained by multiplying FOPR by the constant gas-oil-ratio Rs,
which is 113.45 Sm3/Sm3.

Proxy modeling can be perceived as establishing a relationship between the input and
the output variables. Our previous studies and some literature suggest that integrating
static and dynamic properties can increase the reliability of the proxy models. Therefore, we
have formulated the mathematical function of the proxy models, as shown in Figure 11. In
Figure 11, k{x,y,z} represents the arithmetic mean of grid block permeability for each layer
in x-, y-, and z-directions. ∅{x,y,z} refers to the arithmetic mean of grid block porosity for
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every layer. k{i,p} and ∅{i,p} respectively correspond to the arithmetic mean of permeability
and porosity of the perforated grid blocks for each injector and producer. Parameters u
and ∆t respectively refer to control variables and cumulative time (days) until the current
timestep. yt−1 and yt correspond to output at previous and current timestep. As discussed,
there are 20 layers and 8 wells in the UNISIM-I-D model, and this yields 112 static inputs.
Considering the dynamic inputs, such as the number of days, 8 control variables, and
output at the previous timestep, there are 122 input variables.
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Understanding the objective of the optimization problem and the formulation of proxy
models provides a clear direction to proceed into the workflow, as shown in Figure 12. This
workflow involves the design of two types of proxy models which we correspondingly
term as the Global Proxy Models and the Local Proxy Models. As displayed in the work-
flow, Latin Hypercube Sampling (LHS) is initiated to create 310 control scenarios. These
300 scenarios are fed into NRS to generate a training database for Global Proxy Modeling.
The other 10 scenarios are applied to create the database for blind validation. The maxi-
mum NPV resulting from these scenarios is 5456.70 million USD. Before proceeding to the
training process, the database is normalized to be between 0 and 1 based on the maximum
and minimum data, as discussed in [9]. After developing the global proxy models, they are
coupled with GA or PSO to generate the database for local proxy modeling. The topologies
of global and local proxy models are decided via a trial-and-error approach, which is
portrayed in Table 5. The terms “Local Proxy-GA” and “Local Proxy-PSO” in the table
imply that the local proxy models are built from the database generated using the global
proxy models coupled with GA and PSO for optimization, respectively. In Table 5, the
number of hidden nodes applies to each hidden layer. Moreover, the activation function in
the output layer for each proxy model is linear. The training uses the algorithm Adam, also
known as Adaptive Moment Estimation [31], iterations of 2000, a learning rate of 0.001, and
a tolerance of 10−6. The early stopping feature is activated. The validation fraction is set to
1/9. The remaining parameters are the default values, as suggested in Scikit-Learn [32].

The inertia weight is 0.80 whereas the cognitive and social learning factors are both
parameterized as 1.05. r1 and r2 are sampled from a uniform distribution between 0 and 1.
For the GA, the crossover probability is 0.8, the mutation probability is 0.8, the elite ratio is
1/30, the parents’ portion is 0.6, and the type of crossover is two-point. The abovementioned
parameters for both GA and PSO were initialized via a trial-and-error approach. For both
algorithms, the number of optimization iteration is 200 and the population size is 30.
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Table 5. Topology of the MLP.

Type of Proxy Models Number of Hidden Layers Number of Hidden Nodes Activation Functions (Hidden Layers)

FLPR

Global Proxy Model 3 250 ReLU

Local Proxy-GA 3 250 ReLU

Local Proxy-PSO 3 200 ReLU

Type of Proxy Models Number of Hidden Layers Number of Hidden Nodes Activation Functions (Hidden Layers)

FWCT

Global Proxy Model 3 150 ReLU

Local Proxy-GA 3 150 ReLU

Local Proxy-PSO 3 150 ReLU

Type of Proxy Models Number of Hidden Layers Number of Hidden Nodes Activation Functions (Hidden Layers)

FWIR

Global Proxy Model 3 200 ReLU

Local Proxy-GA 3 200 ReLU

Local Proxy-PSO 3 200 ReLU

As the training and blind validation results of global proxy models illustrate good re-
sults, these models are coupled with metaheuristic algorithms to conduct the waterflooding
optimization. The optimization is run 110 times (indicating 110 optimal scenarios in which
100 scenarios are for training and the other 10 are for blind validation) and the resulting
optimal solutions (control variables) are sent back to the simulator to create a training
database for local proxy modeling. For this, the calculated NPV is ensured to exceed the
abovementioned maximum NPV. When the local proxy models illustrate good results of
training and blind validation, these models are implemented for the final optimization.
The final optimization is performed 200 times for further analysis. The relevant findings
are summarized and discussed in the following section.
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6. Results and Discussion

The MLP was chosen as the ML technique to develop the proxy models in this work.
The proxy modeling was performed using the Scikit-Learn with the aid of Python program-
ming language [33]. As explained in the workflow, there are two stages of proxy modeling.
To assess the reliability of these proxy models, we implemented three statistical metrics,
namely Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and Average
Absolute Percentage Error (AAPE). Different examples of statistical metrics in tandem with
their formulations can be referred to in [34]. The training and testing results of the first
stage of proxy modeling (global proxy modeling) are presented in Table 6. In addition, the
boxplots of the Absolute Percentage Error (APE) for the training and testing data points are
demonstrated in Figures 13 and 14.

Table 6. The training and testing results of global proxy modeling.

Models (Training) R2 RMSE AAPE

FLPR 0.9510 150.06 3.357

FWCT 0.9933 0.0074 3.196

FWIR 0.9982 54.93 0.842

Models (Training) R2 RMSE AAPE

FLPR 0.9516 153.01 3.440

FWCT 0.9920 0.0081 3.435

FWIR 0.9980 59.37 0.874
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From the boxplots, it can be seen that MLP-FWIR displays the smallest range of APE
as compared to MLP-FLPR and MLP-FWCT, in terms of training and testing. Furthermore,
the statistics on R2 and AAPE provided in Table 6 also confirm the better performance
of MLP-FWIR for training and testing. This better performance does not undermine
the predictability of MLP-FLPR and MLP-FWCT. Numerous outliers are noticed in the
boxplots for all the three models. Hence, the predictability of these models needs to be
further justified by applying blind validation cases. To conduct this justification, ten blind
validation cases were generated, as explained in Figure 12. The performance metrics of
the proxy models for these blind validation cases are displayed in Table 7. The results
consist of the mean of all the ten blind validation cases. It is observed that MLP-FWIR
still outperforms the other two models. In MLP-FLPR, the mean R2, the mean RMSE, and
the mean AAPE might be less satisfactory. From Tables 6 and 7, it is worth noting that
MLP-FLPR generally illustrates relatively poor performance. This could be due to the
complexity of the reservoir model used. This implies that the database provided might not
adequately reflect the physics of the reservoir. In MLP-FWCT too, a similar issue can be
observed in terms of the AAPE. Despite this fact, these models are still considered practical
to generate insightful optimal solutions for local proxy modeling.

Table 7. The blind validation results of global proxy modeling.

Models
(Blind Validation) Mean R2 Mean RMSE Mean AAPE

FLPR 0.9267 183.18 4.274

FWCT 0.9892 0.0092 4.075

FWIR 0.9974 64.03 1.169

Upon completion of the first stage of proxy modeling, the proxy models are readily
employed for optimization with the GA and the PSO. However, optimization at this phase
aims at creating a “useful” database for the training of local proxy models. This database
consists of the data that have a closer proximity to the “true” optimal solution. When the
new “training” database is ready, it can be applied to establish the local proxy models.
In this case, two different algorithms result in two different databases. It is anticipated
that the performance metrics of the local proxy models demonstrated more improvement
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as compared with the global proxy models. For illustrative purposes, the corresponding
boxplots of the APE in the training and testing phases are portrayed in Figures 15 and 16
for GA as well as in Figures 17 and 18 for PSO, respectively. For a more comprehensive
evaluation, the training and testing results of the second stage of proxy modeling (local
proxy modeling) are demonstrated in Table 8 for GA and Table 9 for PSO. The statistics in
Tables 8 and 9, highlight an improvement in terms of R2, RMSE, and AAPE as compared
with the results from Table 6. This fulfills the goal of conducting the second stage of proxy
modeling. In terms of blind validation, ten additional cases were created. The statistics
displayed in Tables 10 and 11 for blind validation, also show a good level of enhancement
in the mean R2, the mean RMSE, and the mean AAPE as compared with those shown
in Table 7.
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Table 8. The training and testing results of local proxy modeling (GA).

Models (Training) R2 RMSE AAPE

FLPR 0.9660 108.69 1.959

FWCT 0.9961 0.0086 2.403

FWIR 0.9975 43.08 0.534

Models (Testing) R2 RMSE AAPE

FLPR 0.9659 119.79 2.123

FWCT 0.9956 0.0094 2.774

FWIR 0.9978 46.51 0.588

Table 9. The training and testing results of local proxy modeling (PSO).

Models (Training) R2 RMSE AAPE

FLPR 0.9632 124.66 2.383

FWCT 0.9962 0.0076 2.276

FWIR 0.9974 52.09 0.620

Models (Testing) R2 RMSE AAPE

FLPR 0.9630 128.53 2.442

FWCT 0.9953 0.0086 2.396

FWIR 0.9962 66.73 0.666

Table 10. The blind validation results of local proxy modeling (PSO).

Models
(Blind Validation) Mean R2 Mean RMSE Mean AAPE

FLPR 0.9578 118.80 2.262

FWCT 0.9935 0.0105 3.037

FWIR 0.9975 42.46 0.581

Table 11. The blind validation results of local proxy modeling (GA).

Models
(Blind Validation) Mean R2 Mean RMSE Mean AAPE

FLPR 0.9418 152.38 3.012

FWCT 0.9905 0.0112 3.155

FWIR 0.9971 51.76 0.681

One of the main goals of this work, which was achieving significant computational
efficiency in tandem with good accuracy of results, was attained. For both the GA and
the PSO algorithms, the framework (considering global and local proxy modeling as well
as optimization) took about two days to complete. However, when the optimization was
conducted with the reservoir simulator, both algorithms required about twelve days to
finish. This demonstrates that the proposed framework can reduce the computational time
by six times. It is essential to note that the framework runs the optimization 100 times in the
case of global proxy modeling and 200 times for local proxy modeling. Nevertheless, the
optimization with the reservoir simulator was only performed once. For this, the optimized
NPVs obtained using the simulator coupled with GA and PSO are 6054.61 million USD
and 5832.55 million USD, respectively.
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To further highlight the improvement of accuracy attained by conducting the two-
stage proxy modeling, the cumulative density frequency (CDF) of absolute percentage error
between the actual NPV and the NPV predicted by both global and local proxy models are
plotted in Figures 19 and 20, respectively. Due to the expensive computational demand of
the reservoir simulator for the optimization task as explained above, the actual NPVs are
calculated by feeding the optimized control variables obtained using the corresponding
proxy model into the reservoir simulator. As the CDF plots display, the range of the APE
yielded by local proxy models reduces as compared with that of global proxy models. Most
of the resulting samples lie within the APE range of 0%–3% for both types of local proxy
models. This verifies that local proxy modeling permits higher accuracy of optimal results.
Additionally, proxy models coupled with PSO exhibit a higher chance of achieving results
within a more desired level of accuracy (compared with GA). In terms of NPV calculation,
the GA produces bigger values than the PSO. This is confirmed by the CDF plots of the
NPVs in Figure 21, which show the actual NPVs obtained from the local proxy models.

The details highlighted in Figure 21 were obtained when the optimization was run
200 times. For each optimization run, there are 200 iterations. Thereafter, as explained
previously, for each run, the resultant optimal control variables are fed into the reservoir
simulator. This denotes that there will be 200 optimal NPV samples. With this, the
highest NPV achieved (out of the 200 optimal solutions) is 6105.79 million USD for the
GA. Using the respective control only in tandem with proxy models, the resulting NPV
is 6131.79 million USD. In the case of the PSO, by feeding the 200 proxy-optimized solutions
into the simulator, the highest NPV obtained is 5976.20 million USD. The computed NPV, by
only employing proxy models, is 5854.37 million USD. The aforementioned scenario with
the highest NPV of 5456.70 USD million was assumed to be the base case. By considering
the NPVs obtained using the proxy models, it can be noticed that the GA resulted in an
improvement of 12.4% (over the base case) whereas the PSO enhanced it by 7.29%. This
shows that the optimality of the solution can be refined through the framework presented.
Nonetheless, more studies need to be conducted to comprehensively discern if conducting
further local proxy modeling enables a closer approximation to the “ground truth”.
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Plots of GA-optimized FOPR, FWPR, FWIR, and FGPR are shown in Figure 22. The cor-
responding metrics are tabulated in Table 12. PSO-optimized rates are shown in Figure 23
and the respective metrics are tabulated in Table 13. Based on these tables, it can be con-
cluded that the values of RMSE and AAPE in general correspond less satisfactorily to the
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values of R2. This is reflected by the error estimation shown by several data points in
both Figures 22 and 23. Despite this fact, the proxy models still successfully capture the
production profiles and serve their practical purposes. For illustration, only the cases with
the highest NPV are shown in the plots. To avoid confusion, the term “simulator-proxies”
refers to the results obtained from the reservoir simulator by implementing the optimal
control produced by local proxy models. Based on these plots, the predictability of the local
proxy models is further validated. The FOPR, FWPR, FWIR, and FGPR profiles obtained
by the local proxy models generally match well with the profiles of simulator-proxies.
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Table 13. Performance metrics of PSO-optimized rates.

Optimized Rate R2 RMSE AAPE

FOPR 0.9777 155.81 3.608

FWPR 0.9648 88.79 6.278

FWIR 0.9902 125.97 1.472

FGPR 0.9777 17,677.16 3.608

In general, the proposed framework has showcased good practical applications, con-
sidering the trade-off between accuracy and computational efficiency. Nonetheless, it is still
subject to several limitations that are worth investigating further. The models developed
from this framework are not “one-size-fits-all”. They are case-specific to serve the objective
of the optimization problem under study. Furthermore, the proposed framework is yet to be
verified in different optimization problems, such as well placement and choke optimization.
This framework is limited to a geological realization and its maturity still needs to be
justified considering geological uncertainty. Moreover, the proposed framework displays
a good path to solving an optimization problem with 200 decision variables (a problem
with a considerably high dimension). However, in terms of handling problems with even
higher dimensionality, as reflected by most real-life applications, it is evident that several
approaches can be integrated into this framework to reduce the pertinent dimension to
increase its practicality. To the best of our knowledge, conducting production optimization
with an efficiently reduced dimension of optimization variables, is still subject to extensive
research. Regarding real-life applications, the proposed framework can also be extended
to the paradigm of Top-Down Modeling [35] that only considers real field data to build
the models.

Integrating another step of parameter optimization regarding both the structure of
MLP and the variables of the nature-inspired algorithms will certainly be insightful. At-
tempting other advanced ML techniques, including Tree-based Pipeline Optimization
Tool [36], can be researched to integrate the use of automated hyperparameter optimiza-
tion in its workflow. In terms of solving a more sophisticated optimization problem, e.g.,
multi-objective optimization, the integration of NSGA-II (Non-dominated Sorting Genetic
Algorithm II), suggested by Deb et al. [37], into the proposed framework can be considered.
Some detailed studies are thus needed to achieve such enhancement by honoring the
balance between computational speed and the accuracy of results predicted by the proxy
models. Additionally, a combination of nature-inspired algorithms and derivative-based



Energies 2023, 16, 3269 24 of 26

algorithms can also be studied and possibly used instead of only applying the nature-
inspired algorithms. This has a good potential to improve the exploitation component of
optimization as the exploration is taken care of by nature-inspired algorithms [38].

7. Conclusions

In this work, we have presented a framework of methodology that couples proxy
models with derivative-free algorithms to conduct waterflooding optimization. The ap-
proach of proxy modeling has been modified by introducing two different stages, namely
global and local proxy modeling. Global proxy models were developed using a database
that was generated by employing the sampling technique and reservoir simulation. Upon
developing the global proxy models, an optimization algorithm was employed with these
models to create a new database. This new database was then applied to develop more
refined proxy models (the local proxy models). We have selected MLP as the ML method
to develop the proxy models. For each stage of proxy modeling, we built three models
to predict the output of FLPR, FWCT, and FWIR at every timestep. These output values
were then utilized to compute the NPV for optimization purposes. The optimization was
performed using GA and PSO. It is important to note that FGPR is also involved in the
computation of NPV. However, for the optimization problem, the profile of FGPR is sim-
ilar to that of FOPR since the solution gas oil ratio, Rs, remains constant for the whole
production period.

The results obtained suggest that the two-stage proxy modeling can improve optimal
solution. Such improvement is noticeable in terms of training, testing, blind validation,
and optimization. Additionally, the computational efficiency of this framework is higher
than solely relying on the reservoir simulator for optimization. The accuracy of results
is not sacrificed upon attaining such a higher computational efficiency. This signifies the
benefit of this framework for practical purposes. The primary objective of the proposed
framework has been accomplished, although there are several limitations associated with it,
such as lack of generalization and consideration of geological uncertainty. Nonetheless, a
rudimentary framework has been successfully developed here, and further improvements
should be considered for more real-life and robust applications. Detailed studies, including
identifying the impact of each step of the framework (such as training of models and
optimization), are recommended to strive for higher maturity of its employment.
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