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Abstract: The electric mode is the main operational mode of dual-motor hybrid electric vehicles
(HEVs), so the reliability of the dual-motor electric drive system (DEDS) is particularly important.
To research the electromechanical coupling mechanism of the DEDS of HEVs, firstly, considering
the time-varying mesh stiffness of gears and the nonlinear characteristics of inverters, an electrome-
chanical coupling dynamics model of the DEDS was established, including the permanent magnet
synchronous motor (PMSM) and the gear transmission system. Then, the electromechanical coupled
dynamic characteristics of the DEDS in the single-motor and dual-motor drive modes were analyzed
under steady-state and impact load conditions, respectively. The results show that the motor stator
current frequency is modulated by the complicated gear meshing frequency, and the operation state
of the gear transmission system can thus be monitored in the stator current. Impact load causes the
instantaneous torsional vibration of the transmission system dominated by the first-order natural
frequency, and the vibration characteristic frequency appears in the form of a side frequency in the
stator current signal; moreover, compared with the single-motor drive mode, the speed synchroniza-
tion error in the dual-motor drive mode will aggravate torsional vibration in the gear system. The
impact energy of the gear system caused by external impact load can be suppressed by reducing the
speed synchronization error.

Keywords: hybrid electric vehicle; dual-motor electric drive system; electromechanical coupling;
dynamic characteristics; impact energy

1. Introduction

Due to the need for energy conservation and environmental protection, countries
around the world are competing to develop hybrid energy vehicles. Compared to single-
motor electric vehicles, hybrid electric vehicles (HEVs) have better range, economy, and
power, and the status of HEVs is constantly improving. In recent years, many automotive
companies have developed a variety of hybrid systems; among these, the dual-motor
system (DEDS) has received increasing attention due to its multiple power drive modes and
better power performance. However, the electrical systems and gear systems of the DEDS
of HEVs are directly coupled through the motor shaft, which leads to the gear meshing
state deteriorating more easily, resulting in vibration and noise. At the same time, there are
multisource compound excitations in DEDS, such as torque pulsation, time-varying gear
stiffness and gear error, and the interaction between electrical system excitation and gear
system excitation, which leads to the deterioration of the whole system’s operational state.
The DEDS of HEVs integrates two drive motors and a relatively complex drive system,
which leads to more complex characteristics in the electromechanical coupling dynamic
under different drive modes. Under unsteady conditions, such as impact conditions, the
DEDS suffers from the transient vibration caused by severe impact loads, which can cause
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fatigue damage to each component. Therefore, it is important to study the electromechanical
coupling effect of DEDS and analyze the dynamic characteristics of electromechanical
coupling in the DEDS under different operating conditions and driving modes.

For the electromechanical coupling dynamics of the electric drive system, Liu et al. [1]
established an electromechanical coupling model of a robot grinding system, and analyzed
the vibration characteristics of the system. The authors finally improved the stability of
the motor speed by establishing a fuzzy controller to suppress the elastic vibration of
the system. Yi et al. [2] established an electromechanical coupling dynamics model of a
multistage gear drive and analyzed the dynamic characteristics and weak points of the
coupled electromechanical system under the excitation of impact loads. Zhang et al. [3]
studied the dynamic characteristics of a high-speed train’s driving system under constant
speed, braking conditions, and traction conditions, and the results showed that the motor
current frequency contains an engagement frequency and a harmonic frequency, and the
motor current has different response characteristics under different operating conditions.
Jiang et al. [4] established an electromechanical coupling model of a multistage gear trans-
mission, analyzed the influence of the electromagnetic effect of the motor on the system,
and revealed the resonance point of the system by using a Campbell diagram. Abouzeid
et al. [5] proposed an active vibration suppression method based on a proportional res-
onance controller to address the torsional vibration problem in an electric transmission
system. Boukhezzar et al. [6] established an electromechanical coupling model of a coal
mining machine, and the research results show that impulse load and stiffness failure
will lead to chaotic motion of the system. Li et al. [7] revealed that the eccentricity of a
motor’s rotor will cause distortion in the air-gap’s magnetic field, and investigated the
relationship between the unbalanced magnetic force and the air-gap. Hu et al. [8] compared
the dynamic characteristics of an electric drive system in the speed mode and torque mode,
and used an active damping control strategy to control the oscillations of the drive system.
Chen et al. [9] developed switched reluctance motor and planetary gear dynamics models
to study the interaction between coupled and uncoupled electromechanical systems un-
der steady-state and impact load conditions, respectively. Huo et al. [10] established an
electromechanical coupling model for the main drive system of a tunnel boring machine.
The results showed that the gears’ load, output torque, and radial vibration between the
motors varied periodically as the cutter rotated. Chen et al. [11] studied the influence law
of electromagnetic and mechanical parameters on vibration stability in coupled electrome-
chanical systems. Shi et al. [12] proposed a new planetary gear mechanism and studied
the vibration characteristics of the system under variable speed conditions, and the results
showed that this new electric drive system can effectively reduce motor speed fluctuations.

The above research mostly focused on electromechanical coupling systems driven
by a single motor, such as single-motor electric vehicles, coal mining machines, shield
machines, wind power generation devices, etc. Research on multimotor drive systems
with complex dynamic characteristics has been carried out by the following scholars. Fan
et al. [13] used the matrix transfer method to establish the dynamics model of a dual-
motor drive system, and studied the effects of external excitation and meshing stiffness
on the dynamic characteristics of the system. Hu et al. [14] revealed that the small sun
gear in the compound planetary gear set is the main source of noise and vibration in
the system in the dual-motor drive mode. Wang et al. [15] proposed a model prediction
and control algorithm to suppress the vibration to reduce the impact of motor torque
mutation on the transmission system. Yue et al. [16] proposed an active control strategy of
motor torque compensation for the torsional vibration problem caused by the rapid change
in the drive torque in the dual-motor electric drive system. Wei et al. [17] investigated
the synchronization characteristics of a multisource drive system under different load
change rates, revealing that the load change rate has little effect on the synchronization
characteristics of the system, but has a significant effect on the electromagnetic torque and
stator current of the motor. Xiong et al. [18] proposed a biased coupling and cognitive
heuristic algorithm to effectively improve the synchronization accuracy of a two-motor
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drive system. Wang et al. [19] established the dynamics model of a three-motor drive and
compared the vibration response of the system with a variable frequency drive and an ideal
power drive. Han et al. [20] established the electromechanical coupling model of a ship’s
dual motor drive system and studied the effect of gear error on system vibration.

To summarize, some scholars have modeled the electromechanical coupling of electric
drive systems by equating the gear system to a spring-loaded oscillator connected to the
motor rotor, simplifying the motor to an equivalent circuit model only, or ignoring the
nonlinear characteristics of the inverter in the motor controller. However, electric drive
systems are multivariable, strongly coupled, and time-varying nonlinear systems, so the
above simplifications make it difficult to accurately study their dynamic characteristics.
In the analysis of the dynamic characteristics of electromechanical coupling of the dual-
motor electric drive systems, the research works of the above scholars mainly focus on
the inherent vibration characteristics of the multisource drive system and the influence of
synchronization characteristics on the dynamic characteristics of the system; few scholars
have analyzed the dynamics of the dual-motor electric drive systems of HEVs under
different operating conditions in different drive modes, and the coupling effect between
the two motors and the gear system has rarely been reported.

To address the above problems, a torque-coupled DEDS of an HEV is taken as the
research object in this paper. Considering the time-varying mesh stiffness of gears and the
nonlinear characteristics of inverters, an electromechanical coupling dynamics model of
the DEDS was established, including the permanent magnet synchronous motor (PMSM)
and the gear transmission system. On this basis, the dynamic characteristics of the coupled
electromechanical system are simulated and analyzed in the single-motor, low-speed gear
drive mode, and the dual-motor, low-speed gear drive mode under steady-state and impact
conditions. Finally, the mapping law of the mechanical system’s vibration signal in the
motor stator current under steady-state and impact conditions is revealed.

The main structure of this paper is as follows: Section 2 couples the electrical system
and gear system to obtain a model of the electromechanical coupling dynamics of a DEDS;
Section 3 analyzes the electromechanical coupling dynamics of a DEDS under constant
speed and constant load conditions in the single-motor drive mode and dual-motor drive
mode; Section 4 analyzes the electromechanical coupling dynamics of a DEDS under impact
conditions in the single-motor drive mode and dual-motor drive mode; Section 5 gives the
conclusion.

2. Electromechanical Coupling Dynamics Model of the DEDS of an HEV

Figure 1 shows the schematic diagram of a torque-coupled dual-motor electric drive
system (DEDS) of a hybrid electric vehicle (HEV).
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Figure 1. Schematic diagram of a torque-coupled DEDS of an HEV. 

2.1. Model of a PMSM 
In modeling the motor for ease of analysis, it is assumed that the three-phase PMSM 

is an ideal motor. Therefore, the losses of the motor are neglected, the saturation of the 
core of the motor is not considered, and the three-phase currents are assumed to be sym-
metrical sinusoidal currents. The stator voltage equation of the motor in the d–q axis is 
shown below: 

d d d e q

q q q e d

du Ri
dt
du Ri
dt

ϕ ω ϕ

ϕ ω ϕ

 = + −

 = + −


  (1)

d d d f

q q q

L i
L i

ϕ ϕ
ϕ

= +
 =

  (2)

The equation of the electromagnetic torque is: 

( )3
2e n q d d q fT P i i L L ϕ = − +    (3)
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stator current of the d–q axis, respectively; R denotes the stator resistance; ߱௘ denotes the 
electric angular velocity; Ld and Lq denote the inductance components of the d–q axis, re-
spectively; ߮௙ denotes the flux linkage of permanent magnets; and Pn denotes the num-
ber of pole pairs in the motor. The parameters of the PMSM are shown in Table 1. 
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Figure 1. Schematic diagram of a torque-coupled DEDS of an HEV.
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2.1. Model of a PMSM

In modeling the motor for ease of analysis, it is assumed that the three-phase PMSM
is an ideal motor. Therefore, the losses of the motor are neglected, the saturation of
the core of the motor is not considered, and the three-phase currents are assumed to be
symmetrical sinusoidal currents. The stator voltage equation of the motor in the d–q axis is
shown below: {

ud = Rid + d
dt ϕd −ωe ϕq

uq = Riq + d
dt ϕq −ωe ϕd

(1)

{
ϕd = Ldid + ϕ f
ϕq = Lqiq

(2)

The equation of the electromagnetic torque is:

Te =
3
2

Pniq
[
id
(

Ld − Lq
)
+ ϕ f

]
(3)

where ud and uq denote the stator voltage of the d–q axis, respectively; id and iq denote
the stator current of the d–q axis, respectively; R denotes the stator resistance; ωe denotes
the electric angular velocity; Ld and Lq denote the inductance components of the d–q axis,
respectively; ϕ f denotes the flux linkage of permanent magnets; and Pn denotes the number
of pole pairs in the motor. The parameters of the PMSM are shown in Table 1.

Table 1. Parameters of PMSM.

Parameter
Value

Motor 1 Motor 2

Power P (kW)
Number of pole pairs Pn

Rated speed n (rpm)
Rated torque Te (Nm)
Stator resistance R (Ω)

D axis inductance Ld (mH)
Q axis inductance Lq (mH)

90
5

4000
214

0.012
0.196
0.149

80
5

4800
153

0.012
0.101
0.296

2.2. Nonlinear Model of the Inverter

In the motor control system, the role of the inverter is to turn the direct current (DC)
voltage into alternating current voltage. The inverter circuit primarily consists of a three-
phase bridge arm. To avoid the bridge arm breaking down and damaging the insulated
gate bipolar transistor (IGBT), it is necessary to set a delay td to protect the transistor before
the drive signal. The same two bridge arm transistors are in the off-state time, called
dead time:

Td = td + ton − to f f (4)

where Td denotes the dead time; td denotes the delay time; ton denotes the time required for
the transistor to turn on; and toff denotes the time required for the transistor to turn off.

Figure 2a shows that when the switching tube is turned on, a drop in the on-state
voltage of the transistor occurs; when the switching tube is turned off, drop in the renewal
voltage of the transistor occurs. The above reasons lead to many harmonic voltages in the
actual output voltage of the inverter, which has a large deviation from the ideal voltage.
The difference between the actual voltage and the ideal voltage is the error voltage, as
shown in Figure 2b.
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Figure 2. Inverter A-phase bridge arm circuit and output voltage waveform: (a) inverter A-phase
bridge arm structure diagram; (b) waveform of A-phase bridge arm signal when ia > 0.

In a pulse width modulation (PWM) cycle, the error voltage is averaged over the cycle
time, according to the area equivalence principle, to obtain the average error voltage:

∆u|ia>0 = − Td
TPWM

(udc + vd − vt)−
vd + vt

2
(5)

∆u|ia<0 =
Td

TPWM
(udc + vd − vt)+

vd + vt

2
(6)

where vt denotes the on-state voltage drop of the switching tube; vd denotes the off-state
voltage drop of the current-continuing diode.

Fourier decomposition of the signal yields an expression for the average error voltage
of the inverter [21]:

∆uerr =
4
π

∆u
(

cos ωt +
1
3

cos 3ωt +
1
5

cos 5ωt +
1
7

cos 7ωt + . . .
)

(7)

From the Fourier decomposition results, the nonlinearity of the inverter generates
many harmonic components into the motor current, which causes the motor to produce
harmonic currents. PMSM stator windings mostly adopt star connections, so the third and
integer third harmonic components of the stator current cannot flow. The parameters of the
inverter are shown in Table 2.

Table 2. Permanents of the inverter.

Parameter Value

Battery DC voltage udc (V)
Modulation carrier period TPWM (us)

Dead time td (us)
IGBT turn-on time ton (us)
IGBT turn-on time toff (us)

The conduction voltage drops of freewheeling diode vd (V)

450
100

4
1
2
2

Voltage drops of IGBT switch vt (V)
Modulation carrier frequency fc (kHz)

3
10

From Figure 3, the nonlinearity of the inverter of motor 1 under rated operating
conditions (rated speed, rated load) causes 6th-order, 12th-order, and 18th-order torque
fluctuations, of which, the amplitude of the sixth harmonic component is the largest,
verifying the theoretical analysis of the nonlinear characteristics of the inverter.
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2.3. Implementation of the SVPWM Algorithm

In the field of inverter control for automotive permanent magnet synchronous motors,
seven-segment space vector pulse width modulation (SVPWM) algorithms are mostly used
to control the operation of the inverters. As shown in Figure 4a, eight combinations of
spatial voltage vectors divide the complex plane into six sectors, and within a switching
cycle, the SVPWM algorithm takes two fundamental voltage vectors within a sector so that
their average value is equal to the voltage vector of a given demand. As shown in Figure 4b,
the switching time point of the inverter in the sector where the demand voltage vector
is located is obtained through calculation, and the switching time point of the inverter is
compared with the triangle carrier signal to generate the PWM pulse signal.
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Based on the average equivalence principle, the SVPWM algorithm uses a segmented
approximation of the voltage vector to drive the motor, which will cause current harmonic
currents, and thus torque fluctuations. The Fourier series expansion of the voltage output
from the inverter is [22]:

F(t) = A00
2 +

∞
∑

k=1
(A0k cos kwrt + B0k sin kwct)+

∞
∑

n=1
(An0 cos nwct + Bn0 sin wct) +

∞
∑

n=1

±∞
∑

k=±1
[Akn cos(kwrt + nwct) + Bkn sin(kwrt + nwct)]

(8)

where wc denotes carrier frequency and wr denotes modulated wave frequency.
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Figure 5 shows the electromagnetic torque of motor 1 under rated operating conditions.
In the low-frequency region, the sixth nth-order harmonic component dominates, and in
the high-frequency region, it is mainly the PWM switching frequency fc, and its side band
has a current frequency. The format is presented as |a fe1 ± fc| (a = 1, 2, . . . ).
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2.4. Vector Control Model for PMSM

Figure 6 shows the vector control block diagram of the three-phase PMSM, which
is primarily composed of the speed loop, current loop, maximum torque per ampere,
SVPWM, the inverter, etc. Where ωe

∗ denotes the target speed of motor; is* denotes the
target current; id* and iq* denote the current instructions of d and q axis, respectively; Ud*
and Uq* denote the voltage instructions of d and q axis, respectively; Uα* and Uβ* denote
the voltage instructions of SVPWM.
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Considering the torsional vibration of the gear, a dynamic model of the torsional
vibration of the gear transmission system is established, as shown in Figure 7.
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The meshing displacement of the gear along the line of engagement is [23]:

δ = R1θ1 − R2θ2 − e (9)

where θ1 and θ2 denote the rotation angles of the main and driven gears, respectively; R1
and R2 denote the gear index circle radii; and e denotes a meshing error.

The dynamic meshing force of the gear considering meshing stiffness and damping is:

F = kv(R1θ1 − R2θ2 − e) + cv

(
R1
·

θ1 − R2
·

θ2 −
·
e
)

(10)

where kv denotes the gear pair meshing stiffness and cv denotes the gear pair meshing damping.
Then, the clearance functions are established, as follows [24]:

f (x) =


x− b, x > b
0,−b ≤ x ≤ b
x + b, x < b

(11)

where 2b denotes the gear pair clearance, when the gear teeth are in a normal meshing state;
when f(x) = x−b, the gear teeth are in normal engagement; when f(x) = 0, the gear teeth are
in a separated state; and when f(x) = x+b, the meshing gear teeth are in the meshing state of
the tooth back.

2.5.2. Dynamic Model of Transmission System

The components of the electromechanical drive system are simplified as concentrated
inertia, and the model of the electromechanical drive system’s dynamics is established
considering the elastic torsional vibration and rigid body rotation of the gear system. In
Figure 8, JM1, JM2, and JLN denote the rotational inertia of motor 1, motor 2, and load,
respectively; Ji (i = 1, 2, . . . , 7) denotes the rotational inertia of the gear; gears 1 and 2
constitute the first gear pair; gears 3 and 4 constitute the second gear pair; gears 5 and 6
constitute the third gear pair; gears 4 and 7 constitute the fourth gear pair; θm1, θm2, and θL
denote the rotational inertia of motor 1, motor 2, and load, respectively; θi (i = 1, 2, . . . , 7)
denotes the angle of rotation of the i-th gear; kj and cj (j = 1, 2, . . . , 5) denote the stiffness
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and damping of the j-th shaft, respectively; kmj and cmj (j = 1, 2, 3, 4) denote the meshing
stiffness and meshing damping of the j-th gear pair, respectively.

JM1
··

θM1 + c1

( ·
θM1 −

·
θ1

)
+ k1(θM1 − θ1)− TM1 = 0

J1
··
θ1 + c1

( ·
θ1 −

·
θe1

)
+ k1(θ1 − θM1)− R1F1 = 0

J2
··
θ2 + c2

( ·
θ2 −

·
θ3

)
+ k2(θ2 − θ3)− R2F1 = 0

J3
··
θ3 + c2

( ·
θ3 −

·
θ2

)
+ k2(θ3 − θ2)− R3F2 = 0

J4
··
θ4 + c3

( ·
θ4 −

·
θ5

)
+ k3(θ4 − θ5)− R4F2 − R4F4 = 0

J5
··
θ5 + c3

( ·
θ5 −

·
θ4

)
+ k3(θ5 − θ4)− R5F3 = 0

J6
··
θ6 + c4

( ·
θ6 −

·
θL

)
+ k4(θ6 − θL)− R6F3 = 0

JLN
··

θL + c4

( ·
θL −

·
θ6

)
+ k4(θL − θ6)− TLN = 0

J7
··
θ7 + c5

( ·
θ7 −

·
θM2

)
+ k5(θ7 − θM2)− R7F4 = 0

JM2
··

θM2 + c5

( ·
θM2 −

·
θ7

)
+ k5(θM2 − θ7)− TM2 = 0

(12)

where Ri (i = 1, 2, . . . , 7) denotes the radius of the i-th gear base circle and Fa (a = 1, 2, 3, 4)
denotes the meshing force of the a-th gear pair.
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Figure 8. Schematic diagram of the transmission system of the DEDS. Figure 8. Schematic diagram of the transmission system of the DEDS.

2.6. Electromechanical Coupling Model of the DEDS

The permanent magnet synchronous motor model established above was coupled
with the gear transmission system model, as shown in Figure 9. The motor rotor is directly
connected to the input shaft of the transmission system, the output speed of the permanent
magnet synchronous motor is equal to the speed of the input shaft of the transmission
system, and the load transmitted to the input shaft of the gear transmission system is used
as the load of the PMSM. The electrical system and the mechanical systems are coupled, to
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obtain the electromechanical coupling model of the DEDS of an HEV; the expression of the
coupled model is:

J
··
θ + C

·
θ + Kθ = TLN + TM (13)

where J denotes the inertia matrix of the system; C denotes the damping matrix of the
system; K denotes the stiffness matrix of the system; θ denotes the angular displacement
matrix of the system; TLN denotes the load torque of the system; and TM denotes the
electromagnetic torque of motor.
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Figure 9. Schematic diagram of the electromechanical coupling model of the DEDS. Figure 9. Schematic diagram of the electromechanical coupling model of the DEDS.

The main parameters of the electromechanical coupling system are shown in Table 3.
The coupled electromechanical system model of the DEDS of an HEV is established in MAT-
LAB/Simulink, and simulated using the fourth- and fifth-order Runge–Kutta algorithms.

Table 3. Parameters of the mechanical system.

Parameter Value

Stiffness (Nm/rad) k1 = k5 = 1.2 × 106; k2 = k3 = 1 × 107; k4 = 8 × 103

Damping (Nm · s/rad) c1= c5 = 4; c2= c3= c4 = 1.7

Inertia (kg ·m2)
JM1 = 6.15 × 10−3; JM2 = 5.36 × 10−3; JLN = 0.36; J1 = 1.51 × 10−4;

J2 = 1.32 × 10−3; J3 = 1.67 × 10−4; J4 = 7.2 × 10−3; J5 = 1.92 × 10−4;
J6 = 1.2 × 10−2; J7 = 1.69 × 10−4

Meshing damping cm 100
Transmission ratio r1 10.5
Transmission ratio r2 8.75

2.7. Analysis of the Inherent Torsional Vibration Characteristics of the DEDS

According to the knowledge of vibration mechanics, ignoring the internal and external
excitation and damping of the system, the free vibration equation of the torsional vibration
model is obtained, as follows:

J
··
θ + Kθ = 0 (14)

where J denotes the inertia matrix of the system; K denotes the stiffness matrix of the
system; and θ denotes the angular displacement matrix of the system.

The eigenvalue problem corresponding to the free vibration equation is as follows:∣∣∣K− fNi
2 J
∣∣∣ = 0 (15)

where fNi (i = 1, 2, . . . ) denotes the natural frequency of the drive mode of motor 1 of
the DEDS, and fNi′ (i = 1, 2, . . . ) denotes the natural frequency of the dual-motor drive
mode of the DEDS. The natural frequencies of the driveline under different drive modes
are shown in Table 4.
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Table 4. Natural frequencies of the driveline under different drive modes.

Order 0 1 2 3 4 5

fNi(Hz) 0 22.1 56.4 159.2 255.3 734.8
fNi′(Hz) 0 23.3 58.6 159.2 255.3 734.8

3. Analysis of Electromechanical Coupling Dynamics of the DEDS under Steady-
State Conditions

To study the electromechanical coupling effect of the DEDS under steady-state con-
ditions, a constant speed and constant load is applied to the system, and parallel control
is applied to both motors in the dual-motor drive mode. The motor speed and system
load torque under different operating conditions and driving modes are shown in Table 5.
fet (t = 1, 2) denotes the current frequencies of motor 1 and motor 2, respectively; fmg (g = 1,
2, 3, 4) denotes the gear meshing frequency of each stage.

Table 5. Parameter of the system under steady-state conditions.

Working Mode System Load Torque (Nm)
Motor Speed (rpm)

Motor 1 Motor 2

Single-motor drive mode 1155 3000 /
Dual-motor drive mode 1155 3000 2500

3.1. Single-Motor Drive Mode

From Figure 10b, the main frequencies of motor 1′s current fluctuation are the current
fundamental frequency fe1, and the harmonic frequencies 5fe1 and 7fe1 caused by the
inverter’s nonlinear characteristics of in the single-motor drive mode, the harmonics
caused by the nonlinearity of the inverter are marked in red in the figure. Because of
the role of low-pass filtering of the motor circuit and the large inertia of the gear system,
resulting in a small amplitude of the higher harmonics, the higher harmonics are not listed
in this paper. In addition, the current spectrum contains mechanical system vibration
frequencies, presented as |a fe1 ± b fmg|(a,b = 1, 2, . . . ), which is due to the direct coupling
of the electrical and mechanical parts through the motor shaft. The current’s fundamental
frequency is modulated by the meshing frequency of gears, so that the current exhibits
complex frequency characteristics, indicating that the operation of the gear system can be
monitored by the current.

From Figure 10d, the electromagnetic torque power spectral density (PSD) contains
abundant information on the meshing frequency of gears and the sixth harmonic compo-
nent due to the nonlinear characteristics of the inverter, indicating that the electromagnetic
torque fluctuations of the motor are mainly excited by the current harmonics and the gear
meshing frequency in the DEDS.

It can be seen from Figure 11 that the meshing force of the first gear pair fluctuates up
and down around the theoretical value, and the PSD contains the meshing frequencies of all
gear pairs, indicating that the gear pairs interact with each other in the gear transmission.
In addition, the sixth harmonic component appears in the PSD of the gear pairs, indicating
that the mechanical system will be influenced by the harmonics of the electrical system
during the operation of the DEDS, and that the DEDS presents a complex electromechanical
coupling effect.
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Figure 11. The meshing force of the first gear pair in the single-motor drive mode: (a) time domain;
(b) PSD.

3.2. Dual-Motor Drive Mode

From Figures 12b and 13b, in the electromagnetic torque PSD of the two motors in
the dual-motor drive mode, in addition to the sixth harmonic component generated by its
inverter’s nonlinearity, the sixth harmonic component generated by the nonlinearity of the
other motor’s inverter also appears. This is because the two motors are coupled together
through the gearing system and affect each other in the dual-motor drive mode. Compared
with the PSD of motor 1’s torque, there is no 3fm1 in the torque PSD of motor 2. The results
show that there is a strong coupling effect between the two motors in the dual-motor
drive mode.
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As can be seen from Figure 14b, the PSD of the meshing force of the first gear pair
contains the sixth harmonic component of both motors, generated by the nonlinearity of
the inverter in the dual-motor drive mode. It shows that the gear transmission system
suffers from harmonic excitation from both motors in the dual-motor drive mode, which
aggravates the fluctuation of the meshing force of the gear pair.
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4. Analysis of Electromechanical Coupling Dynamics of the DEDS under
Impact Conditions

When the dual-motor electric vehicle is driving in complex road conditions, such as
speed bumps or uneven roads, the DEDS will be subjected to severe impact loads and
continuous cyclic oscillations, which may cause serious fatigue damage to the electric
drive system; therefore, it is meaningful to research the dynamic characteristics of the
DEDS under impact conditions. The motor speed and system load torque under different
operating conditions and driving modes are shown in Table 6.

Table 6. Parameter of the system under impact conditions.

Working Mode
System Load Torque (Nm) Motor Speed (rpm)

Before Impact After Impact Motor 1 Motor 2

Single-motor drive mode 1155 2310 3000 /
Dual-motor drive mode 1155 2310 3000 2500

4.1. Single-Motor Drive Mode

To research the dynamic response characteristics of the single-motor drive mode of
the DEDS under impact conditions, the system is simulated by applying an impact load.
The motor speed is set to 3000 rpm, and the load of the DEDS changes abruptly from
1155 Nm to 2310 Nm in the first 1 s, as shown in Figure 15.
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Figures 16 and 17 show the time domain and time-frequency domain of motor 1’s 
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Figures 16 and 17 show the time domain and time-frequency domain of motor 1’s
speed, and the meshing force of the first gear pair, respectively. The system generates
instantaneous vibration, dominated by the first-order intrinsic frequency, when the DEDS
encounters an impact load, and the torsional vibration process lasts approximately 0.58 s.
This repeated impact is prone to cause fatigue damage to the gear drive system.
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Figure 18 shows the response of the motor stator current during the impact process.
After the DEDS suffers from the impact load, side frequencies of the form |fe1 ± fN1|
appear on both sides of the power supply frequency with the system’s first-order natural
frequency as the interval, indicating that the motor stator current has a certain ability to
monitor the transient torsional vibration of the DEDS.
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The PMSM and gear transmission system in the DEDS are directly connected by
the motor shaft, so the stiffness and damping characteristics of the motor shaft directly
determine the vibration response of the DEDS. To investigate the effect of different motor
shaft stiffness damping values on the dynamic characteristics of the gear system caused
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by the impact load, and to verify the monitoring effect of the motor stator’s current on the
vibration of the gear system, five combinations of motor shaft stiffness damping values are
set up for simulation, as shown in Table 7.

Table 7. Motor shaft damping and stiffness.

Case Name Damping (Nm·s/rad) Stiffness (Nm/rad)

Case 1
Case 2
Case 3
Case 4

4
4
4

40

103

104

105

105

Case 5 400 105

Figure 19 shows the time domain of the meshing force of the first gear pair with
the same motor shaft connection stiffness and different connection damping, and as the
motor shaft damping increases, the gear system’s torsional vibration is suppressed, but the
excessive damping value aggravates the torsional vibration of the gear system. The above
results indicate that the damping of the motor shaft can suppress the dynamic load of the
gear pair caused by the impact load, and the suppression of the dynamic load increases
with the increase in the damping value, and then decreases. From Figure 20 that different
torsional vibration information of gears can be well reflected in stator current signals.
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According to Figure 21, a lower motor shaft stiffness can suppress the torsional
vibrations of the gear system caused by impact loads. The motor shaft should thus be made
of materials with lower stiffness. However, the stiffness of the motor shaft should not be
too low, since the motor shaft must meet a certain strength threshold.
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gear system. The expression of the synchronization error of the output speed of the two 
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Figure 21. The meshing force of the first gear pair with different connection stiffness.

From Figures 20 and 22 it can be seen that after the system is subjected to an impact
load, there is a sudden change in the amplitude of the frequency related to the gear
meshing information in the motor stator current frequency, and the amplitude of the
different torsional vibrations of the gear system can be reflected in the current signal. It
shows that the motor stator current has an obvious feedback effect on the vibration of the
gear system.
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4.2. Dual-Motor Drive Mode

To investigate the dynamic response of the electromechanical coupling of the DEDS
dual-motor drive mode under impact conditions, the speed of the two motors and the load
of the system are shown in Figure 15.

The third gear pair is fully loaded in both single- and dual-motor drive modes, so it
is necessary to compare the dynamic response of the third-stage gear pair in both modes
with the other conditions held constant. As can be seen in Figure 23, the meshing force of
the third gear pair oscillates at a greater amplitude under impact load conditions in the
dual-motor drive mode.

The cause of this phenomenon in Figure 23 may be the synchronization error of the
speed of the two motors, which leads to the deterioration of the torsional vibration of the
gear system. The expression of the synchronization error of the output speed of the two
motors is as follows [25]:

E =
(ω1 −ωmean)

ωmean
× 100%, ωmean =

ω1 + Keω2

2
(16)

where ω1 and ω2 denote the output speeds of motors 1 and 2, respectively, and Ke denotes
the ratio factor of the speed of the two motors.
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To verify the conjecture that the speed synchronization error will lead to the deteri-
oration of the torsional vibration of the gear system under impact conditions, the speed
synchronization error of the two motors is changed by varying the speed loop parameter
of the proportional integral (PI) controller in the motor controller to make the motor speed
fluctuate to different degrees according to the method of [26], as shown in Figure 24. Differ-
ent combinations of the PI controller parameters are set as follows: case 1: P = 0.1, I = 80;
case 2: P = 0.5, I = 80; case 3: P = 1, I = 80.
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Figure 24. Schematic diagram of PI parameter changes of the speed loop of motor 1. 

The load of DEDS changes abruptly from 1155 Nm to 2310 Nm in 1.5 s. Figure 25b 
shows the relationship between motor 1’s speed and the speed synchronization error un-
der different PI parameters. After changing the speed ring parameters of motor 1, the 
speed of motor 1 fluctuates to different degrees, and the synchronization error increases 
with the increase in the fluctuation amplitude of motor 1’s speed. The synchronization 
error under case 3 is the largest, and the synchronization error under case 1 is the smallest. 
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Figure 25. Motor 1 speed and synchronization error under different combinations of PI parameters: 
(a) motor 1 speed; (b) synchronization error. 

From Figure 26 it can be seen that the oscillation amplitude of the meshing force of 
the first gear pair increases with the increase in synchronization error after a sudden 
change in the external load of the system at 1.5 s. The above results indicate that the syn-
chronization error aggravates the gear system’s torsional vibration in the dual-motor 
drive mode under impact conditions, and the torsional vibration of the gear system caused 
by the change in external load can be suppressed by reducing the synchronization error. 

Figure 24. Schematic diagram of PI parameter changes of the speed loop of motor 1.

The load of DEDS changes abruptly from 1155 Nm to 2310 Nm in 1.5 s. Figure 25b
shows the relationship between motor 1’s speed and the speed synchronization error under
different PI parameters. After changing the speed ring parameters of motor 1, the speed of
motor 1 fluctuates to different degrees, and the synchronization error increases with the
increase in the fluctuation amplitude of motor 1’s speed. The synchronization error under
case 3 is the largest, and the synchronization error under case 1 is the smallest.
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From Figure 26 it can be seen that the oscillation amplitude of the meshing force of 
the first gear pair increases with the increase in synchronization error after a sudden 
change in the external load of the system at 1.5 s. The above results indicate that the syn-
chronization error aggravates the gear system’s torsional vibration in the dual-motor 
drive mode under impact conditions, and the torsional vibration of the gear system caused 
by the change in external load can be suppressed by reducing the synchronization error. 

Figure 25. Motor 1 speed and synchronization error under different combinations of PI parameters:
(a) motor 1 speed; (b) synchronization error.

From Figure 26 it can be seen that the oscillation amplitude of the meshing force of the
first gear pair increases with the increase in synchronization error after a sudden change in
the external load of the system at 1.5 s. The above results indicate that the synchronization
error aggravates the gear system’s torsional vibration in the dual-motor drive mode under
impact conditions, and the torsional vibration of the gear system caused by the change in
external load can be suppressed by reducing the synchronization error.
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To further analyze the effect of impact loads on the gear transmission system under
different synchronization errors, the performance index of the absolute value of the error
integral was used [27], i.e., the area enclosed by the actual dynamic meshing force curve
due to the impact load and the vertical coordinate was obtained by integration. It was
found that impact energy decreases with the decreasing area.

S =
∫ t2

t1

∣∣F(t)− F′(t)
∣∣dt (17)

where S denotes impact energy; F(t) denotes the actual value of meshing force; and
F′(t) denotes the meshing force of the steady-state target value.

The statistical results of the impact energy generated by the first gear pair due to
the impact load under different synchronization errors are given in Table 8 and Figure 27;
the impact energy of the gear pair under impact load increases with the increase in the
synchronization error.

Table 8. Calculation results of the impact energy of the transmission system with different
PI parameters.

PI Parameter Combinations Impact Energy (×102 N·s)

Case 1
Case 2
Case 3

8.4432
6.0279
4.8503
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5. Conclusions

In this study, a torque-coupled DEDS of an HEV was taken as the research object.
Considering the time-varying mesh stiffness of gears and the nonlinear characteristics of
inverters, a model of the electromechanical coupling dynamics of the DEDS, including the
PMSM and the gear transmission system, is established, and on this basis, the dynamic
characteristics of the electromechanical coupling system in the single-motor drive mode
and dual-motor drive mode were simulated and analyzed under steady-state and impact
conditions. The main conclusions are as follows:

Under steady-state conditions, the motor stator’s current spectrum contains abundant
gear meshing frequency information, present in the following format |a fe1 ± b fmg|
(a,b = 1, 2, . . . ); the stator current can be used as the monitoring signal of the steady-state
healthy operation of the gear transmission system. The fluctuations of the electromagnetic
torque and the dynamic meshing force of the gear pair are primarily excited by the meshing
frequency of the gear pair at each level, and the harmonic frequency generated by the
nonlinearity of the inverter; the electromagnetic torque spectrum of one motor in the
dual-motor drive mode contains the harmonic components of the other motor, and the
dynamic meshing force of the gear pair contains harmonic components of both motors in
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the frequency domain. There is an obvious electromechanical coupling effect between the
electrical system and gear system of the DEDS. There is also a significant coupling effect
between the two motors in the dual-motor drive mode.

The impact load causes the instantaneous torsional vibration of the transmission
system dominated by the first-order natural frequency, and the vibration characteristic
frequency appears in the form of the side frequency |fe1 ± fN1| in the stator current’s signal.
This indicates that the stator current has a feedback effect on the torsional vibration of the
system caused by the change in the external load; appropriate damping of the motor shaft
and reducing its stiffness will reduce the torsional vibration of the gear system caused by
impact load. The different torsional amplitude values of the gearing system can be reflected
in the motor stator current’s frequency signal. Moreover, compared with the single-motor
drive mode, the speed synchronization error of the dual-motor drive mode will aggravate
the torsional vibration amplitude of the gear system under impact conditions. The impact
energy caused by an external impact load on the gear system can be suppressed by reducing
the speed synchronization error with appropriate control measures.

Author Contributions: S.G. conceived this research; S.H. wrote the original draft and deduced the
calculation; editing and review of this article were completed by M.Y. All authors have read and
agreed to the published version of the manuscript.
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Nomenclature

HEV Hybrid electric vehicle
DEDS Dual-motor electric drive system
PMSM Permanent magnet synchronous motor
DC Direct current
IGBT Insulated gate bipolar transistor
SVPWM Space vector pulse width modulation
PWM Pulse width modulation
PSD Power spectral density
PI Proportional integral
Formula Symbols
ud Stator voltage of the d axis uq Stator voltage of the q axis
id Stator current of the d axis iq Stator current of the q axis
ϕd Flux linkage of the d axis ϕq Flux linkage of the q axis
ωe Electric angular velocity R Stator resistance
P Power of PMSM n Rated speed of PMSM
Te Rated Torque of PMSM ϕ f Flux linkage of permanent magnets
Ld Inductance component of the d axis Lq Inductance component of the q axis
udc Battery direct current voltage Pn Number of pole pairs
TM1 Electromagnetic torque of PMSM 1 TM2 Electromagnetic torque of PMSM 2
Td Dead time of the inverter td Delay time of the inverter
ton IGBT turn-on time to f f IGBT turn-off time
∆u Average error voltage of A-phase bridge vd Conduction voltage drops of freewheeling diode
TPWM Pulse width modulation cycle vt Voltage drops of IGBT switch
wr Modulated wave frequency fc Modulation carrier frequency
ωe
∗ Target speed of the motor is

∗ Target current
id
∗ Current instruction of the d axis iq

∗ Current instruction of the q axis
Ud
∗ Voltage instruction of the d axis Uq

∗ Voltage instruction of the d axis
Uα
∗ Voltage instruction of the SVPWM Uβ

∗ Voltage instruction of the SVPWM
wc Carrier frequency δ Meshing displacement of the gear
kv Gear pair meshing stiffness cv Gear pair meshing damping
e Gear meshing error b Gear pair clearance
JM1 Rotational inertia of motor 1 k1 Stiffness of shaft 1
JM2 Rotational inertia of motor 2 k2 Stiffness of shaft 2
J1 Rotational inertia of gear 1 k3 Stiffness of shaft 3
J2 Rotational inertia of gear 2 k4 Stiffness of shaft 4
J3 Rotational inertia of gear 3 k5 Stiffness of shaft 5
J4 Rotational inertia of gear 4 F1 Meshing force of gear pair 1
J5 Rotational inertia of gear 5 F2 Meshing force of gear pair 2
J6 Rotational inertia of gear 6 F3 Meshing force of gear pair 3
J7 Rotational inertia of gear 7 F4 Meshing force of gear pair 4
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JLN Rotational inertia of load θ1 Rotation angle of gear 1
c1 Damping of shaft 1 θ2 Rotation angle of gear 2
c2 Damping of shaft 2 θ3 Rotation angle of gear 3
c3 Damping of shaft 3 θ4 Rotation angle of gear 4
c4 Damping of shaft 4 θ5 Rotation angle of gear 5
c5 Damping of shaft 5 θ6 Rotation angle of gear 6
R1 Radius of gear 1 θ7 Rotation angle of gear 7
R2 Radius of gear 2 θM1 Rotation angle of motor 1
R3 Radius of gear 3 θM2 Rotation angle of motor 2
R4 Radius of gear 4 TLN Load torque of system
R5 Radius of gear 5 TLN1 Load torque of motor 1
R6 Radius of gear 6 TLN1 Load torque of motor 1
R7 Radius of gear 7 θ Angular displacement matrix of system
r1 Motor 1 to load transmission ratio r2 Motor 2 to load transmission ratio
J Inertia matrix of system K Stiffness matrix of system
C Damping matrix of system cm Meshing damping of gears
fNi Natural frequency of motor 1 drive mode of system fNi ′ Natural frequency of motor 2 drive mode of system
fe1 Current frequencies of motor 1 fe2 Current frequencies of motor 2
fm1 Meshing frequency of gear pair 1 fm2 Meshing frequency of gear pair 2
fm3 Meshing frequency of gear pair 3 fm4 Meshing frequency of gear pair 4
ω1 Speed of motors 1 ω2 Speed of motors 2
ωmean Average speed of two motors Ke Ratio factor of the speed of the two motors
E Speed synchronization error S Impact energy
F(t) Actual value of dynamic meshing force F′(t) Dynamic meshing force steady-state target value
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