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Abstract: Nano fluids are widely used today for various energy-related applications such as cool-
ants, refrigerants, and fuel additives. New coolants and design modifications are being explored 
due to renewed interest in improving the working fluid properties of heat exchangers. Several stud-
ies have investigated nanofluids to enhance radiator and heat exchanger performance. A new class 
of coolants includes single, binary, and tertiary nanoparticle-based hybrid nano-coolants using eth-
ylene glycol/deionized water combinations as base fluids infused with different nanoparticles. This 
review article focuses on the hydrothermal behavior of heat exchangers (radiators for engine appli-
cations) with mono/hybrid nanofluids. The first part of the review focuses on the preparation of 
hybrid nanofluids, highlighting the working fluid properties such as density, viscosity, specific 
heat, and thermal conductivity. The second part discusses innovative methodologies adopted for 
accomplishing higher heat transfer rates with relatively low-pressure drop and pump work. The 
third part discusses the applications of mono and hybrid nanofluids in engine radiators and fuel 
additives in diesel and biodiesel blends. The last part is devoted to a summary of the research and 
future directions using mono and hybrid nanofluids for various cooling applications. 
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1. Introduction 
One of the dominant threats in the current energy scenario is the depletion of energy 

reserves. Thermal systems such as refrigerators, heat pumps, and air conditioners place 
enormous energy demands. Due to limited energy resources, several investigations have 
been conducted to improve thermal system efficiency and performance by reforming the 
design of system components or changing the working fluid. Many small heating devices 
(such as tube heat exchangers, plate heat exchangers, and mini-channel heat exchangers) 
with mono/hybrid nanofluid usage improve the system’s performance. 
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1.1. Heat Exchanger 
Heat exchangers (HEs) play an essential role in thermal energy management. Re-

garding the energy crisis, efficient HEs are needed to develop new energy-efficient tech-
nologies for industries to reduce energy consumption. Therefore, researchers are focusing 
on improving the design of equipment and the thermal properties of working fluids. En-
ergy optimization also becomes very important due to the limitations associated with con-
ventional fuels. Energy savings can be achieved by increasing the performance of HEs. 
HEs available are plate-type heat exchangers (PHEs), double-pipe heat exchangers 
(DPHEs), heat pipes (HPs), and mini-channel/heat sinks (Figure 1). Because of compact-
ness, high effectiveness, flexibility, ease of handling, and high thermal performance, PHEs 
originated to meet the requirements of the dairy industries and other engineering appli-
cations (such as heat recovery, HVAC, cooling, offshore oil, breweries, power generation, 
dairy, food processing, chemical, pulp and paper production, and refrigeration). In 
DPHEs, both fluids can move in the same or opposite directions [1]. Power plants use 
shell-and-tube or double-pipe HEs to generate electricity. Heaters and economizers are 
components of these plants [2]. DTHEs have become widespread in use due to their sim-
ple design, easy cleaning, and low cost involved [3]. Portable devices (laptops, mobile 
phones, etc.) are preferable, which require limited space. Cooling these small objects is a 
challenge. Thus, mini/micro channels have emerged [4]. HPs also play an essential role in 
cooling these small devices [5]. Improved heat transfer in HEs is accompanied by higher 
pumping power. Therefore, the benefit of enhanced heat transfer and associated pressure 
loss must be balanced [6]. 

 
Figure 1. Heat exchangers. 

1.2. Hybrid Nanofluids 
Industries with cooling solution requirements have focused on the use of modified 

fluids with various additives [7] to obtain improved thermal properties. Nanofluids are 
colloidal mixtures of nanosized particles (10–100 nm) suspended in base fluids [8]. They 
possess good physical or chemical properties and thermal or rheological properties [9,10]. 
Hybrid nanofluids are suspensions of a mixture of dissimilar nanoparticles or nanocom-
posites infused in the conventional base fluid, which yield better thermal conductivity 
and heat transfer characteristics due to hybridization [11]. They are used in phase change 
materials, heat exchangers, solar energy, electronics, agriculture, chemical, manufactur-
ing, and automobile industries [12–25]. The two-step method is used for preparing hybrid 
nanofluids. Different nanoparticles are prepared and mixed in the primary liquid through 
magnetic or mechanical stirring. The solution is sonicated and characterized to ensure 
stable and homogeneous mixing, providing improved heat transfer characteristics [26]. 
Enhanced heat transfer is due to increased surface area, collision, interactive effect, and 
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proper mixing of nanoparticles in base fluids (causing micro turbulences). Hybrid 
nanofluids play four roles (used as refrigerant, lubricant, absorbent, and secondary refrig-
erant) in improving the thermal system performance in low-temperature applications. 
The effects of nanoparticle concentration and size on the performance of water-based CuO 
nanofluids were investigated in [27]. The synthesis, stability, and thermo-physical prop-
erties of hybrid nanofluids were studied in [28]. Zaynon and Azmi [29] presented the in-
fluence of nanoparticle type, concentration, temperature, shape, and size on the nanofluid 
properties. The amount of grapheme required in the base fluid to improve thermal per-
formance was suggested in [30]. 

1.3. Secondary Refrigerant 
Global warming has been a significant concern for environmentalists during the past 

couple of decades. Refrigeration industries replaced chlorofluorocarbons (CFCs) and hy-
drochlorofluorocarbons (HCFCs) with hydrofluorocarbons (HFCs) to overcome the ozone 
depletion problem. Supermarket refrigeration systems utilize direct expansion systems 
with separate evaporation units. Up to 30% loss of refrigerant charges is estimated annu-
ally [31]. This refrigerant charge leak exacerbates the global warming problem. There is a 
necessity for a secondary refrigerant to reduce the leak. Liquid cooling systems are used 
in industrial refrigeration and commercial air conditioning [32]. A secondary circuit cool-
ing system uses primary and secondary refrigerants. The primary refrigerant (while un-
dergoing a phase change in the evaporator) cools the secondary pumping fluid to the su-
permarket for cooling. Secondary refrigerants minimize the leakage of primary refriger-
ants with the possibility of load sharing and easy maintenance. They improve the thermo-
physical properties of the primary refrigerants, overcoming the additional investment 
cost and pump work requirement. 

1.4. Objectives 
The remainder of this review describes the hydrothermal characteristics of a 

nanofluid-driven single/hybrid plate heat exchanger (PHE), covers the creation of hybrid 
nanofluids, the empirical relationship with thermo-physical properties, and innovative 
ways to achieve high heat transfer with relatively low-pressure drops, as well as the re-
search on using single and hybrid nanofluids for heat exchangers (HE) and internal com-
bustion engines (ICEs), and highlights the potential for using single and hybrid nanofluids 
in the low-temperature sector. 

2. Preparation of Mono/Hybrid Nanofluids 
Nanofluids are organized according to their preparation using one- or two-step 

methods (Figure 2). In a one-step approach, nanoparticles are prepared and mixed directly 
in a base fluid using physical or chemical processes. In the two-step method, nanoparticles 
are obtained using physical or chemical methods and then effectively infused in an essen-
tial base liquid [33]. Several investigators have reviewed the preparation of different 
mono/hybrid nanofluids based on various base fluids [34–44]. Spherical ZnO particles 
were synthesized using a sol–gel annealing process at 500–600 °C in [45]. The ball milling 
process was used to grind aluminum nitride carbon nanocomposite (a nontoxic ceramic) 
for heat transfer experiments [46]. Making nanofluids through a single-step method is ex-
pensive and time-consuming. The control of particle agglomeration is the primary prob-
lem in the two-step method. Ultrasonication minimizes nanoparticle sedimentation and 
improves nanofluid stability [47]. Due to simplicity, 95% of researchers used a two-step 
method when preparing nanofluids (see Table 1). 
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Figure 2. Flowchart for producing hybrid nanofluids [48]. 

Table 1. Examples of hybrid nanofluids adopting two-step preparation. 

Author(s) Nanoparticle Base Fluid 
Jana et al. [49] Au–CNT, Cu–CNT Water 
Han et al. [50] Sphere–CNT Oil 
Turcu et al. [51] Fe3O4–polypyrrole Water 
Jha and Ramaprabhu [52] Cu–MWCNT Water/EG 
Han and Rhi [53] Ag–Al2O3 Water 
Baby and Sundara [54] CuO–HEG Water/EG 
Paul et al. [55] Al–Zn EG 
Suresh et al. [56] Al2O3–Cu Water 
Botha et al. [57] * Ag–SiO2 Oil 
Ho et al. [58] Al2O3–PCM Water 
Baby and Sundara [59] Ag–HEG Water/EG 
Amiri et al. [60] Ag–MWCNT Water 
Chen et al. [61] Ag–MWCNT Water 
Aravind and Ramaprabhu [62] Graphene–MWCNT Water and EG 
Bhosale and Borse [63] Al2O3–CuO  Water 
Balla et al. [64] CuO–Cu Water 
Abbasi et al. [65] ϒ-Al2O3–MWCNT Water 
Nine et al. [66] Cu–Cu2O Water 
Munkhbayar et al. [67] * Ag–MWCNT Water 
Sundar et al. [68] Nanodiamond–nickel Water/EG 
Parameshwaran et al. [69] Ag–TiO2 PCM 
Batmunkh et al. [70] Ag–TiO2 Water 
Madhesh et al. [71] Cu–TiO2 Water 
Chen et al. [72] MWCNT–Fe3O4 Water 
Parekh [73] Mn0.5Zn0.5Fe2O4 Oil 
Luo et al. [74] Al2O3–TiO2 Lubricating oil 
Madhesh and Kalaiselvam [75] Cu–TiO2 Water 
Zubir et al. [76] Graphene oxide–CNT  Water 
Qadri et al. [77] Graphene–Cu2O Water/EG 
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Karimi et al. [78] NiFe2O4 Water 
Chakraborty et al. [79] Cu–Al Water 
Megatif et al. [80] CNT–TiO2 Water 
Abbasi et al. [81] MWCNT–TiO2 Water 
Toghraie et al. [82]  ZnO–TiO2 EG 
Bhanvase et al. [83] PANI–CuO Water 
Asadi et al. [84] CuO–TiO2 Water 
Chen et al. [85] Al2O3 Liquid paraffin 
Asadi et al. [86] MWCNT Water 
Gulzar et al. [87] Al2O3–TiO2 Therminol-55 
Alarifi et al. [88] MWCNT–TiO2 Oil 
Akram et al. [89] CGNP DI Water 
Sharafeldin and Grof [90] WO3 Water 
Chen et al. [91] MWCNT Water 
Ali et al. [92] Al Water 
Mahbubul et al. [93] Al2O3 Water 
Mahyari et al. [94] GO–SiC Water/EG 
Chen et al. [95] Fe3O4–MWCNT Brine water 
Okonkwo et al. [96] Al2O3–Fe Water 
Terueal et al. [97] MoSe2 Water 
Li et al. [98] SiO2 Liquid paraffin 
Geng et al. [99] ZnO–MWCNT Oil 
Li et al. [100] SiO2 EG 
* Single-step method. 

Jana et al. [49] infused various volume fractions of CNTs in water to obtain CNT 
suspensions. Au nanoparticles were suspended with CNT in varying volume fractions to 
obtain CNT–Au suspensions. The hybrid suspension was sonicated for 1 h using an ultra-
sonic cleaner to get an adequately dispersed solution. Bhosale and Borse [63] prepared a 
hybrid nanofluid (Al2O3–CuO water) by mixing 2.5 mg of CuO and Al2O3 in distilled wa-
ter. Later, the concentration was varied to 0.25%, 0.5%, and 1.0% volume. Toghraie et al. 
[82] prepared ZnO–TiO2/EG hybrid nanofluids by dispersing equal volumes of ZnO and 
titanium dioxide (TiO2) nanoparticles in a given amount of pure EG as a base liquid. The 
stability of the prepared nanofluid was confirmed, ensuring no sedimentation. Paul et al. 
[55] synthesized Al–Zn nanoparticles by stirring. They prepared hybrid nanofluids 
through a two-step process. Al–Zn nanoparticles were added to ethylene glycol (base 
fluid), followed by sonication and magnetic stirring. Suresh et al. [56] obtained a hybrid 
powder of alumina–copper using a thermochemical method, including spray-drying, ox-
idation of the precursor powder, hydrogen reduction, and homogenization. They used 
different volume fractions (0.1%, 0.33%, 0.75%, 1.0%, and 2.0%). Baby and Sundara [54] 
used a hydrogen-induced exfoliation and chemical reduction process of graphite oxide 
(GO) to synthesize grapheme decorated with CuO (CuO/HEG). The HEG obtained was 
functionalized by acid treatment and coated with CuO nanoparticles. CuO/HEG was dis-
persed in the base liquid (water/EG) by ultrasonication. Nine et al. [66] reported an eco-
nomical and beneficial process for synthesizing Cu2O and Cu/Cu2O nanoparticles with a 
mean size of less than 30 nm. A ball milling process was used to synthesize Cu/Cu2O–
water hybrid nanofluids. Madhesh et al. [71] prepared a copper–titania hybrid nanofluid 
by uniformly dispersing an aqueous solution of titania (5 g) and copper acetate (0.5 g) in 
an ultrasonic vibrator for 2 h using reducing agents at 45 °C and atmospheric pressure. A 
one-step method was described for a hybrid nanofluid containing silver and silica nano-
particles by Botha et al. [57]. Ho et al. [58] prepared phase change material (PCM) suspen-
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sions using interfacial poly-condensation and emulsion techniques. Nanofluid Al2O3–wa-
ter was obtained by adding Al2O3 nanoparticles in water (base liquid). Chen et al. [61] 
prepared Ag/MWCNT nanocomposites using the silver mirror reaction. Functionalized 
MWCNTs were used to fabricate Ag/MWCNT nanocomposites using sodium dodecyl 
sulfate (SDS) as a surfactant and formaldehyde as a reducing agent. 

3. Characterization and Stability of Mono/Hybrid Nanofluids 
Several forces, such as van der Waals attraction, buoyancy, gravity, and electrostatic 

repulsion, cause destabilization and sediment formation. Van der Waals attraction and 
gravity decrease the stability of colloidal suspensions. Stability is a critical factor in the 
effectiveness of nanofluids for technological applications. All thermo-physical properties 
of nanofluids depend on their stability. The instability of nanofluids can reduce their ef-
fectiveness in many heat transfer applications. It is caused by the tendency of nanoparti-
cles to form clusters in liquids. An SEM image of the Al2O3–MWCNT/water hybrid 
nanofluid is shown in Figure 3 [101]. 

The particle aggregation causes the separation of nanoparticles from base fluids and 
forms sedimentation [102]. The coagulation rate is determined from the collision fre-
quency of particles in Brownian motion and cohesion probability [103]. Removal of ag-
glomeration propensity yields stable nanofluids. Methods adopted for assessing the sta-
bility of nanofluids are the sedimentation method, spectral absorbance, centrifugation 
method, transmittance measurement, zeta potential measurement, and dynamic light 
scattering [104]. For long-term stable and homogenous nanofluids, the following surfac-
tants can be added [105,106]: anionic (sodium dodecyl sulfate and sodium dodecyl ben-
zene sulfonate), cationic (cetyl trimethyl ammonium bromide), nonionic (Span-80 and 
Tween-20), and polymer (polyvinyl pyrrolidone, polyvinyl alcohol, and gum Arabic). Sur-
factants improve the wettability of the nanoparticles and the base fluids by reducing the 
base fluid’s surface tension and improving the nanoparticles’ dispersibility [107]. 

 
Figure 3. SEM image of Al2O3–MWCNT/water hybrid nanofluid [101]. 

Ultrasonic mills, baths, stirrers, and high-pressure homogenizers are used for the dis-
persion of nanoparticles. Baby and Sundara [59] used an economical method to synthesize 
hydrogen-functionalized, exfoliation-induced silver-decorated graphene (Ag/HEG) and 
prepared nanofluids. Ag/HEG was distributed in a mixture of deionized water/ethylene 
glycol using ultrasonic agitation without surfactant. The hybrid nanofluid was observed 
to be stable for more than 3 months. Aravind and Ramaprabhu [62] prepared MWCNT 
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nanocomposites with graphene shells and synthesized them by chemical vapor deposi-
tion. The prepared hybrid nanofluid was stable for an extended period. Megatif et al. [80] 
prepared a CNT–TiO2 hybrid nanocomposite and dispersed it in water to obtain a hybrid 
nanofluid. The surfactant SDBS was added to the suspension for proper dispersion. They 
sonicated the solution for 15 min and tested its stability. The solution was stable for 2 days. 

Although most (95%) of the researchers adhered to the two-step method, nanofluids 
synthesized by the expensive and complex one-step method improve the stability of na-
noparticle suspensions in base oils due to high sedimentation rates with short sonication 
times [108]. Ultrasonication lessens the sedimentation of nanoparticles, resulting in en-
hanced nanofluid stability. A better understanding of the mechanisms of nanofluids at the 
atomic level is required to address particle transport, aggregation, and stability issues 
with minimal experimentation. 

No sophisticated equipment is required to produce nanofluids using a simple two-
step method. Dispersion of nanoparticles requires sonication times of 3–10 h [109]. Amin 
et al. [110] critically reviewed the properties of single and hybrid nanofluids based on 
organic and synthetic materials. Malika and Sonavan [111] used a two-step method to 
prepare CuO–ZnO/water hybrid nanofluids. Ultrasonication provided nanofluid stabil-
ity. FESEM/EDS, dynamic light scattering, and zeta potential measurements provide in-
sight into nanoparticle morphology, shape, and size. The stability of Al2O3–CuO/(50/50) 
EG/W (ethylene glycol/water) hybrid nanofluids at 60 °C was confirmed by zeta potential 
measurements [112]. 

The stability of trihybrid nanofluids was tested by mixing three types of nanoparti-
cles (i.e., Al2O3, TiO2, and SiO2 with volume concentrations of 0.05–0.3%) in a water/eth-
ylene glycol-based fluid [113] and a recommended sonication time of 10 h at a zeta poten-
tial of 25.1 mV. To improve the stability of nanofluids, Afshari et al. [114] highlighted 
properties such as the acidity degree of the nanofluid, ultrasonication, nanoparticle mate-
rial, base fluid type, nanoparticle concentration, surfactants, and surface modification of 
nanoparticles. Arora and Gupta [115] reviewed stability evaluation techniques (spectral 
absorbance, sedimentation, zeta-potential, and electron microscopy) and enhancement 
techniques (ultrasonication, surfactant addition, particle surface modifications, and pH 
change). Future research should focus on industrial applications to minimize pressure 
losses, the concentration of nanoparticles, and the long-term stability of hybrid nanoflu-
ids. 

The stability characteristics of mono and hybrid nanofluids have been studied using 
zeta potential measurements and vibrating sample magnetometry (VSM) analysis [116]. 
To maintain nanofluid stability, Zainon and Azmi [29] recommend analysis by sonication, 
pH modification, surfactant, TEM, field emission scanning electron microscopy (FESEM), 
XRD, zeta potential, and UV/visible spectroscopy techniques. Bumataria et al. [117] used 
single and hybrid nanofluids to study heat transfer consider in heat pipe technologies. 
The use of dispersing agents and sonication increases the stability of nanofluids [118]. Ex-
cellent suspension stability could be obtained by adding small amounts of SDBS and PEG 
to DW (hybrid nanofluid 25% Al2O3 + 75% TiO2) [119]. The hybrid nanofluid’s stability 
was high, as the zeta potential value (i.e., the electrostatic repulsive force between the 
nanoparticle and the base fluid) was 42.6 mV compared to the reference value of 30 mV. 
Said et al. [120] investigated the stability of carbon nanofibers (CNF), functionalized car-
bon nanofibers (F-CNF), reduced graphene oxide (rGO), and F-CNF/rGO nanofluids. Hy-
brid nanofluids (FCNF/rGO) showed higher stability than CNF, F-CNF, and rGO nanoflu-
ids. 

Muthoka et al. [121] investigated the stability of hybrid nanofluids with two nano-
particles in PCM/DI water. The stability of surfactant-free MgO and 24 wt.% primary liq-
uid was poor after 24 h, whereas the functionalized MWCNT solution showed no separa-
tion after 24 h. It was confirmed that the nanofluid’s low-temperature stability was in-
creased using a surfactant. Acid treatment with CNF was used to test stability [122]. The 
zeta potential of 0.02 vol.% F–CNF nanofluids measured after 2 and 90 days was −42.9 and 
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−41.8 mV, indicating improved stability compared to the −16.3 and −15.5 mV UNV zeta 
potentials, which were characterized by relatively unstable dispersion. Alawi et al. [123] 
synthesized aqueous nanofluids PEG–GnP, PEG–TGr, Al2O3, and SiO2. The dispersion sta-
bility of the carbon-based nanofluid and the metal oxide nanofluid was observed for 30 
days, and the high dispersibility of PEG–HNP and PEG–TGr in an aqueous medium with 
low sedimentation was confirmed. Compared to GnP/DW nanofluids, TiO2/DW nanoflu-
ids showed superior stability [124]. The addition of CTAB surfactant showed excellent 
stability of ternary hybrid nanofluids [125]. Uysal [126] used a 500 rpm homogenizer to 
mix and stabilize nano-graphene in vegetable oil. Al-Waeli et al. [127] demonstrated high 
nanofluid stability (over 80 days) with CTAB and tannic acid + ammonia solution. The 
stability of Al2O3/water nanofluids using CTAB and SDBS surfactants was investigated 
for various pH values [128]. Kazemi et al. [129] visually observed the stability of SiO2/wa-
ter and G/water nanofluids. SiO2/water nanofluids were found stable at all pH values (see 
Table 2 for the stability of various nanofluids). 

Table 2. Stability of different nanofluids with surfactants. 

Author(s)  Nanoparticle  Base Fluid Surfactant (s) 
Xian et al. [130] COOH-GnP, TiO2 DW/EG SDC, CTAB *, SDBS 
Almanassra et al. [131] CNT Water GA *, PVP, SDS 
Cacua et al. [132] Al2O3 Water CTAB, SDBS * 
Kazemi et al. [129] SiO2, graphene Water CMC * 
Ouikhalfan et al. [133] TiO2 DW CTAB*, SDS 
Siddiqui et al. [134] Cu-Al2O3 DI water  
Cacua et al. [128] Al2O3 DI water CTAB, SDBS * 
Etedali et al. [135] SiO2 DI water CTAB *, SLS * 
Giwa et al. [136] Al2O3-Fe2O3 DW SDS *, NaDBS * 
Kazemi et al. [137] G-SiO2 DW CMC * 
Gallego et al. [138] Al2O3 Water SDBS * 
Shah et al. [139] (rGO) EG CTAB *, SDBS, and SDS 
Ilyas et al. [140] GnP Saline water SDS * 

* Recommended surfactant for improved stability of hybrid nanofluids. 

Brownian motion of nanoparticles, micro-convection, clustering, and pH value 
strongly affect the thermal properties of hybrid nanofluids [141]. Solidification and clus-
tering of nanocomposites of different sizes in nanofluids affect their thermal properties 
[142,143]. The stabilization and evaporation of single and hybrid nanofluids have been 
studied in specific systems from a statistical point of view [144,145]. 

4. Thermo-physical Properties of Mono/Hybrid Nanofluids 
This section summarizes the influence of using hybrid nanofluids on effective ther-

mal conductivity, dynamic viscosity, density, and specific heat [146–148]. Devices com-
monly used for measuring the properties (density, specific heat, thermal conductivity, and 
viscosity) of working fluids, including nanofluids and hybrid nanofluids, are shown in 
Figure 4. The density of a liquid can be measured by taking the weight of the liquid and 
dividing it by its volume. A digital scale can be used to measure mass. Viscosity can be 
measured with a Brookfield DV1 digital viscometer, and thermal conductivity and spe-
cific heat can be measured with a hot disc thermal constant analyzer. 



Energies 2023, 16, 3189 9 of 39 
 

 

 
Figure 4. Photographs of (a) digital weighing balance, (b) Brookfield DV1 digital viscometer, and 
(c) hot disc thermal constant analyzer apparatus [48]. 

4.1. Density and Specific Heat of Mono/Hybrid Nanofluids 
Density and specific heat capacity are among the most important thermo-physical 

properties of hybrid nanofluids when studying the heat transfer properties of working 
fluids. Ho et al. [149] studied aqueous hybrid nanofluids of Al2O3 nanoparticles and mi-
croencapsulated particles of phase change materials. They measured various thermo-
physical properties of the hybrid nanofluids. Baghbanzadeh et al. [150] studied the therm-
o-physical properties of aqueous hybrid nanofluids containing different weights of silica 
and MWCNTs. They observed that the density and viscosity of the hybrid nanofluids in-
creased with concentration but decreased with increasing temperature. Labib et al. [151] 
found that density increased more than the viscosity with the volume fraction of a hybrid 
suspension containing carbon nanotubes and oxides. 

Some studies of hybrid nanofluids concluded that the specific heat increases with 
particle volume concentration and temperature, while the density enhances with concen-
tration and drops with the temperature. The increase in specific heat is related to the for-
mation of nanostructures at the solid–liquid interface, whereas particle aggregation harms 
the increase in specific heat. The hybrid nanofluid’s density ratio [152] is obtained from 
the mass balance and the specific heat capacity from the energy balance. The generalized 
form of the density and specific heat equations for hybrid nanofluids are as follows: 

(1 )nf p p bf pρ φ ρ ρ φ=  + − , (1)

(1 )nf nf p p p bf bf pc c cρ φ ρ ρ φ=  + − , (2)

where ρ is the density, φ  is the volume fraction, and c is the specific heat. 

4.2. Viscosity of Mono/Hybrid Nanofluids 
Viscosity is one of the critical thermophysical properties for studying the behavior of 

hybrid nanofluids because the required pressure drop and pump operation depend on it. 
Numerous physical parameters affect the viscosity of nanofluids. Large particles have a 
relatively higher viscosity than small particles [153]. Nanofluids at low volume concen-
trations exhibit Newtonian behavior [154]. Ho et al. [149] reported the viscosity of a 10 
wt.% hybrid suspension compared to water. Baghbanzadeh et al. [150] studied the rheo-
logical properties of aqueous hybrid nanofluids containing silicon dioxide and MWCNTs 
in weight ratios of 80:20 and 50:50. They observed that the nanofluid’s viscosity increased 
as the concentration and temperature decreased. The viscosity increase was the smallest 
for the 50:50 wt.% ratio. Abashi et al. [65] measured the viscosity of MWNT–TiO2/water 
suspensions. They observed an increase in fluid viscosity, and the enhancement was more 
significant when there were more MWCNT nanoparticles than TiO2 nanoparticles in the 
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solution. Sundar et al. [68] experimentally determined the viscosity of the nanocomposite 
hybrid nanofluid MWCNT–Fe3O4 and observed an increase in viscosity up to 1.5 times at 
3 vol.% concentration and 60 °C compared to water. 

Esfe et al. [155] and Dardan et al. [156] studied an oil-based hybrid nanofluid con-
taining MWCNT nanoparticles. They observed a significant increase in viscosity. Soltani 
and Akbari [157] studied ethylene glycol-based hybrid nanofluids containing MgO and 
MWCNT nanoparticles. They observed an increase in viscosity of up to 168% when in-
creasing the particle volume fraction to 1.0%. Esfe et al. [158] studied the viscosity of 
MWCNT–TiO2 hybrid nanofluids using brine as the base fluid. They observed an 83% 
increase in viscosity at 10 °C. Asadi and Asadi [159] proposed a correlation for the viscos-
ity of motor oil-based hybrid nanofluids containing MWCNTs and ZnO nanoparticles 
(15:85). The maximum increase in viscosity was about 45% at 55 °C and 1.0% concentra-
tion. Suresh et al. [56] tested a hybrid nanofluid of aluminum oxide and copper, showing 
that the viscosity increased by 115% at a concentration of 2.0 vol.%. At low concentrations, 
the effect was negligible. Suspensions containing silica and silver particles had lower vis-
cosities than those containing only silica particles [57]. A 24% increase in viscosity was 
observed at a concentration of 0.02 vol.% [160]. 

Yarmand et al. [161] found a 30% increase in viscosity and 0.09% density for the nano-
composite hybrid nanofluid GNP–silver at 40 °C. The thermal conductivity and viscosity 
of nanodiamond–Fe3O4 nanofluids were noted for 20 to 60 °C temperature and concentra-
tions up to 0.2 vol.% [162]. They suggested a correlation for the viscosity ratio at different 
temperatures, which was exponential and depended only on the volume concentration. 
An expression was proposed for the viscosity of hybrid oil-based MWCNT nanofluids at 
25–60 °C [155,163,164]. A correlation for the viscosity of the hybrid nanofluids was estab-
lished according to the shape function [165]. 

21 1 2
nf

bf

μ
ψ φ ψ

μ
φ= + + , (3)

where φ  is the total volume fraction of particles. μnf and μbf are the viscosities of the hy-
brid nanofluid and base fluid, respectively, and Ψ1 and Ψ2 are coefficients, whose values 
were given by Sheikholeslami and Shamlooei [165]. Correlations for the viscosity and vis-
cosity ratio for different hybrid nanofluids are summarized in Table 3. The viscosity data 
obtained from the test and proposed empirical relations were compared for the 0.1% vol-
ume concentration of alumina nanofluid (Figure 5). It can be observed that some results 
matched the test data, whereas others showed deviation. The reason can be negligence of 
particle size or working temperature, whereas different relationships may be valid for 
other working parameters. Therefore, researchers must choose an appropriate empirical 
ratio or develop one suitable for the nanofluid synthesized. 

Table 3. Summary of correlation for the viscosity of hybrid nanofluids. 

Author(s) Nanoparticle/Base Fluid Working 
Condition 

Correlation 

Esfe et al. [160] Ag–MgO (50: 50)/water φ = 0–2% 
= 1 + 32.795𝜙 − 7214𝜙 + 714600𝜙 −0.1941 × 10 𝜙  

Asadi and Asadi [159] MWCNT–ZnO (15:85)/engine 
oil 

T = 5–55 °C,  
φ = 0.125–1.0% 

 𝜇 = 796.8 + 76.26𝜙 + 12.88𝑇 + 0.7965𝜙𝑇 −196.9√𝑇 − 16.53𝛷√𝑇 

Afrand et al. [163] MWCNT–SiO2 (equal 
portion)/SAE40 

T = 25–60 °C,  
φ = 0–1% 

 = 0.00337 + exp( 0.07731𝜙 . 𝑇 . ) 

Asadi et al. [166] MWCNT–MgO (20:80)/SAE50 T = 25–50 °C,  
φ = 0–2% 

 = (328201𝑇 . 𝜙 . ) 



Energies 2023, 16, 3189 11 of 39 
 

 

Dardan et al. [156] MWCNT–Al2O3 (25:75)/SAE40 
T = 25–50 °C,  
φ = 0–2% 

= 1.123 + 0.3251𝜙 − 0.08994𝑇 +0.002552𝑇  − 0.00002386𝑇 + 0.9695 .
 

Soltani and Akbari 
[157] MWCNT–MgO/EG 

T = 30–60 °C,  
φ = 0.1–1.0% 

 = 0.191𝜙 + 0.240(𝑇 . 𝜙 . )  ×exp(1.45𝑇 . 𝜙 . ) 

 
Figure 5. Comparison of experimental and empirical results for viscosity. 

4.3. Thermal Conductivity of Mono/Hybrid Nanofluids 
Thermal conductivity is one of the essential physical properties of fluid for improv-

ing the heat transfer performance of a working fluid because the heat transfer character-
istics increase as the thermal conductivity increases. The mechanism of Brownian motion 
enhances the thermal conductivity of nanofluids at low temperatures [167]. Hamze et al. 
[168] studied the influence of thermal conductivity on FLG properties. Triton X-100 sur-
factant increased thermal conductivity and dynamic viscosity in [169]. Batmunkh et al. 
[70] showed a 0.8% increase in thermal conductivity for silver–titanium hybrid nanoflu-
ids. Hybrid silver–magnesium nanofluids showed a rise of 8.6% in thermal conductivity 
at a concentration of 0.02 vol.% [160]. Charab et al. [170] developed a thermal conductivity 
model for Al2O3–TiO2 hybrid nanofluids. They found a nonlinear relationship between 
particle volume concentration and thermal conductivity due to stability issues in nanoflu-
ids. 

Baghbanzadeh et al. [150] observed 23.3% and 8.8% increases in thermal conductivity 
for MWCNT nanofluids and silica nanofluids. The effect of nanoparticle shape on fluid 
thermal conductivity was examined using alumina–MWCNT hybrid nanofluids [171]. 
The thermal conductivity was found to be enhanced. However, spherical particles give 
better results than cylindrical particles. Sundar et al. [68] and Shahsavar et al. [172] saw 
increased thermal conductivity when using CNT–Fe3O4 hybrid nanofluids. Farbod and 
Ahangarpour [173] and Munkhbayar et al. [67] studied the thermal properties of water-
based hybrid Ag–MWCNT nanofluids. They found that the resulting thermal conductiv-
ity was 20% and 14.5% higher than the base fluid. Soltani and Akbari [157] analyzed eth-
ylene glycol-based hybrid nanofluids containing MgO and MWCNT nanoparticles. Ther-
mal conductivity increased by 14.5% at 40 °C. Harandi et al. [174] experimentally studied 
the thermal conductivity of EG-based hybrid nanofluids containing functionalized 
MWCNTs and Fe3O4 nanoparticles. They found an augmentation in thermal conductivity 
of 30% at a temperature of 50 °C and a concentration of 2.3%. 

Botha et al. [57] studied an oil-based hybrid nanofluid of silver and silica (a nano 
lubricant) and observed a 15% increase in thermal conductivity for 0.6 wt.% Ag and 0.7 
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wt.% silica by weight. Al2O3–Cu hybrid nanofluids gave better results than aluminum ox-
ide nanofluids with an augmented thermal conductivity of 12.11% [56]. Adding 0.2 vol.% 
ND–Fe3O4 nanoparticles increased the thermal conductivity of water by 17.8% [162]. 
Yarmand et al. [175] studied the thermal conductivity of graphene (0.06 wt.%) activated a 
carbon suspension in ethylene glycol and observed 4.17% and 6.47% increases at 20 °C 
and 40 °C. Various researchers have proposed correlations for hybrid nanofluids with 
various base fluids (deionized water, motor oil, vegetable oil, glycols, mixtures of glycols, 
and water). Table 4 summarizes the correlations proposed by the researchers for the ther-
mal conductivity of hybrid nanofluids.  

 
Table 4. Summary of correlation for the thermal conductivity of hybrid nanofluids. 

Author(s) Nanoparticle/Base 
Fluid 

Working 
Condition 

Correlation 

Chougule and Sahu 
[176] 

- -  = 1 + ( ) + ( ) 
Takabi and Salehi [177] Al2O3–Cu/water φ = 0.1–2.0%   

𝒌𝒏𝒇𝒌𝒃𝒇 = 𝝓𝟏𝒌𝟏 𝝓𝟐𝒌𝟐𝝓 𝟐(𝟏 𝝓)𝒌𝒃𝒇 𝟐(𝝓𝟏𝒌𝟏 𝝓𝟐𝒌𝟐)𝝓𝟏𝒌𝟏 𝝓𝟐𝒌𝟐𝝓 (𝟐 𝝓)𝒌𝒃𝒇 (𝝓𝟏𝒌𝟏 𝝓𝟐𝒌𝟐)  

Esfe et al. [178] CNTs–Al2O3/water 
T = 27–57 °C, 
φ = 0–1% 

 = 1.05 + 0.005𝑇 + 0.06𝜙 + 0.0099𝜙𝑇 +0.00317𝑇 + 0.026𝜙 + 0.0034𝑇 𝜙 + 0.00735𝑇𝜙  

Esfe et al. [160] Ag–MgO 
(equal)/water φ = 0–2%  = . ×. × . × . × . ×  

Esfe et al. [179] Cu–TiO2/water–EG 
(60:40) 

T = 30–60 °C,  
φ = 0.1–2.0% 

 = 1.07 + 0.000589𝑇 − . + 4.44𝑇𝜙 ×𝑐𝑜𝑠(6.11 + 0.00673𝑇 + 4.41𝜙𝑇 − 0.0414 𝑠𝑖𝑛 𝑇) −32.5𝜙 

Esfe et al. [180] 
DWCNT–ZnO/water–
EG (60:40) 

T = 25–50 °C,  
φ = 0.025–1.0% 

 = 0.0288 × 𝑙𝑛(𝜙) + 1.085 exp( 0.001351𝑇 +0.13𝜙 ) 

Harandi et al. [174] 
MWCNT–Fe3O4 
(equal)/EG 

T = 25–50 °C,  
φ = 0.1–2.3% 

 = 1 + 0.0162𝜙 . 𝑇 .  

Afrand [181] MgO–fMWCNT/EG T = 25–50 °C,  
φ = 0.0–0.6% 

 = 0.8341 + 1.1𝜙 . 𝑇 .  

Vafaei et al. [182] MgO–MWCNT/EG T = 25–50 °C,  
φ = 0.0–0.6% 

 = 0.9787 + 𝑒𝑥𝑝(0.3081𝜙 . − 0.002𝑇) 

Esfe et al. [183] SWCNT–MgO 
(20:80)/EG 

T = 30–50 °C,  
φ = 0.0–2.0% 

 = 0.90844 − 0.06613𝜙 . 𝑇 . + 0.01266𝜙 . 𝑇 

Esfe et al. [184] 
MWCNT–SiO2 
(15:85)/EG 

T = 30–50 °C,  
φ = 0.0–2.0% 

 = 0.905 + 0.002069𝑇𝜙 +0.04375𝜙 . 𝑇 . − 0.0063𝜙  

Esfe et al. [185] MWCNT–SiO2 
(30:70)/EG 

T = 30–60 °C,  
φ = 0.025–0.86% 

 = 1.01 + 0.007685𝑇𝜙 − 0.5136𝜙 𝑇 . +11.5𝜙 𝑇 .  

Esfe et al. [186] DWCNT–SiO2/EG T = 30–50 °C,  
φ = 0.03–1.71% 

 = 0.9896 − 0.07122𝜙 + (0.02705𝜙 . 𝑇 . ) +1.531 × 10 𝑇  

Esfe et al. [187] 
SWCNT–Al2O3 
(15:85)/EG 

T = 30–50 °C,  
φ = 0.0–2.5% 

 = 0.963 + 0.008379 𝜙 . × 𝑇 .  

Rostamian et al. [188] 
CuO–SWCNT 
(50:50)/water–EG 
(60:40) 

T = 20–50 °C,  
φ = 0.02–0.75% 

 = 1 + 0.04056𝜙𝑇 − 0.003252(𝜙𝑇) +0.0001181(𝜙𝑇) − 0.000001431(𝜙𝑇)  

Zadkhast et al. [189] MWCNT–CuO/water 
T = 25–50 °C, φ = 
0.0–0.6% 

 = 0.907 𝑒𝑥𝑝( 0.36𝜙 . + 0.000956𝑇) 
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Elias et al. [190] proposed the following correlation for the thermal conductivity of 
hybrid nanofluids according to their shape function: 

1 1 1 1 1 2 2 2 2 2

1 1 1 1 2 2 2 2

( 1) ( 1)( ) ( 1) ( 1)( )
( 1) ( ) ( 1) ( )

nf bf bf nf nf

bf bf bf nf nf

k k n k n k k k n k n k k
k k n k k k k n k k k

φ φ
φ φ

=
  + − − − − + − − − −
    + − + − + − + −  

, (4)

where n1 and n2 are shape functions whose values differ for different shapes. knf and kbf are 
the thermal conductivities of the hybrid nanofluid and base fluid, respectively. k1 and k2 
are the thermal conductivities of particles 1 and 2, respectively. φ 1 and φ 2 are the vol-
ume fractions of particles 1 and 2, respectively. Different shapes, such as cylinders, blades, 
bricks, and plates, were considered in [190], revealing that cylindrical particles performed 
better than other shapes. 

For thermal conductivity, some empirical relationships have been presented that are 
not valid for all nanofluids with different concentrations of nanoparticles. This can be seen 
from Figure 6, where test data are compared with the results obtained from other empir-
ical relations. Therefore, researchers must choose an appropriate empirical ratio or de-
velop a relation suitable for the developed nanofluid. It was observed that the viscosity 
and thermal conductivity of the working fluid increased with the addition of nanoparti-
cles. The researchers observed this at low concentrations of nanoparticles and assumed 
that the same trend would continue at higher concentrations. Experiments revealed that 
the Prandtl number (ratio of viscosity to thermal conductivity) increases up to a specific 
concentration of nanoparticles. Then, it starts to fall because the two properties do not 
increase proportionally [190]. This increasing–decreasing trend in the Prandtl number af-
fects the Nusselt number, which in turn affects the performance of the heat exchanger. 

 
Figure 6. Comparison of experimental and empirical results for thermal conductivity. 

Table 5 represents the thermo-physical properties of different fluids measured by de-
vices mentioned in Figure 4. It also shows the variation of properties at different working 
temperatures (10–25 °C). It can be observed that the thermal conductivity, density, and 
viscosity increase with the addition of nanoparticles in the base fluid. The fluid’s thermal 
conductivity increases with the temperature increase, whereas density and viscosity de-
crease. No change is observed for the specific heat as the studied temperature range is 
small. Table 6 compares the test data and theoretical data obtained from Equations (1)–(4) 
for different thermo-physical properties of alumina nanofluid with 0.1 vol.% concentra-
tion. It can be observed that the specific heat and density data are the same for the exper-
imental data and theoretical prediction from the empirical relation. Whereas there is a 
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deviation in the case of thermal conductivity and viscosity, as indicated in the provided 
empirical relations, the influence of temperature and particle size is neglected. Hence, cor-
relations containing the effect of temperature and particle size are needed for predicting 
accurate results. 

Table 5. Experimental data for thermo-physical properties of different fluids. 

T (°C) Water TiO2 (0.1 vol.%) Al2O3 (0.1 vol.%) 
 Thermal conductivity, k  (W/m-K) 

10 0.5823 0.5919 0.5922 
15 0.5896 0.5979 0.5994 
20 0.5964 0.6036 0.6047 
25 0.6014 0.6091 0.6109 
 Density, ρ  (kg/m3) 

10 997.8 1001.0 1000.7 
15 996.8 1000.0 999.5 
20 996.0 999.0 998.6 
25 994.7 997.9 997.3 
 Viscosity, μ  (mPa·S) 

10 0.9549 0.9684 0.9684 
15 0.8706 0.8935 0.8786 
20 0.8150 0.8275 0.8187 
25 0.7493 0.7690 0.7535 
 Specific Heat, PC  (J/kg·K) 

10 4183 4168 4170 
15 4183 4169 4169 
20 4183 4169 4169 
25 4183 4169 4169 

Table 6. Comparison of experimental and theoretical data for thermo-physical properties of Al2O3 

nanofluid. 

T (°C) K_Test (W/m-K) K_th (W/m-K) 
test_μ  

(mPa·S) 
th_μ  

(mPa·S) 
testCP _

(J/kg·K) 
thCP _

(J/kg·K) 

test_ρ
(kg/m3) 

th_ρ
(kg/m3) 

10 0.5922 0.5829 0.9684 0.9559 4170 4170 1000.7 1001 
15 0.5994 0.5902 0.8786 0.8715 4169 4169 999.5 1000 
20 0.6047 0.597 0.8187 0.8158 4169 4169 998.6 999 
25 0.6109 0.602 0.7535 0.7501 4169 4169 997.3 997.7 

5. Hydrothermal Characteristics of Heat Exchanger 
Focused extensive research is being conducted to enhance the performance of heat 

exchangers under laminar and turbulent flow. Providing the corrugation and chevron an-
gle on a flat surface augments the heat transfer behavior because it increases the surface 
area and includes turbulence, further increasing the heat transfer coefficient [191]. Differ-
ent mono and hybrid nanofluids have been introduced to enhance the performance of 
thermal devices, and their hydrothermal characteristics have been studied [192–202]. Heat 
transfer increases with the heat transfer coefficient, which nanofluids enhance due to in-
creased thermal conductivity via several mechanisms. It was observed that heat transfer 
and pressure drop both increase using nanofluids, but the rise in pressure drop is com-
paratively insignificant. This section is divided into two parts: experimental and numeri-
cal studies of mono/hybrid nanofluids for heat exchangers (plate heat exchanger, tubular 
heat exchanger, mini-channel heat exchanger, and heat pipe). 
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5.1. Experimental Studies on Heat Exchangers 
Pandey and Nema [203] analyzed an alumina–water solution as the refrigerant in a 

corrugated plate heat exchanger. They observed enhanced heat transfer properties with 
the Reynolds number. Tiwari et al. [204,205] conducted experimental studies on plate heat 
exchangers using various nanofluids to improve their performance. Barzegarian et al. 
[206] studied the hydrothermal characteristics of a plate heat exchanger for domestic hot 
water application using TiO2–water nanofluid. Tabari et al. [207] used TiO2–water 
nanofluid in a PHE for milk pasteurization considering mass concentrations (0.25%, 
0.35%, and 0.8%) and concluded that the heat transfer rate increased due to the increased 
thermal conductivity. The effect of plate orientation in an alumina nanofluid plate heat 
exchanger was studied experimentally by Prashant et al. [208]. They found that the heat 
transfer decreased with the Reynolds number when the plate orientation was changed 
from horizontal to vertical. The heat transfer coefficient was reduced by 10–15% at a tilt 
angle of 30°. Huang et al. [209] used a mixture of Al2O3–water and MWCNT–water at a 
ratio of 2.5:1 in a plate heat exchanger and observed an increase in HTC and a pressure 
drop when using the hybrid solution compared to the primary fluid. Bhattad et al. 
[210,211] conducted experiments with plate heat exchangers using different hybrid 
nanofluids as refrigerants and observed changes in the volume ratio of the particles and 
an influence of particle size on the heat exchanger performance. They discussed the rank-
ing of different fluids based on the achieved thermal conductivity, viscosity, density, and 
specific heat properties. According to heat transfer performance, studied nanofluids were 
arranged in ascending order as TiO2, CuO, Al2O3, MgO, AlN, SiC, and MWCNT. Similarly, 
according to pump work, different fluids were arranged in descending order as MWCNT, 
CuO, TiO2, Al2O3, MgO, AlN, and SiC. Bhattad [212,213] performed experiments with hy-
brid nanofluids in plate heat exchangers and found that hybrid nanofluids increased the 
heat transfer efficiency of the heat exchanger. 

Kavitha et al. [214] experimented with CuO–water nanofluid as a coolant to improve 
a two-tube heat exchanger. Jassim and Ahmed [215,216] experimentally evaluated the ef-
fect of Al2O3 nanofluids on heat exchanger performance. Mansoury et al. [217] experimen-
tally studied the heat transfer characteristics and flow of Al2O3–water nanofluids in heat 
exchangers. Pipe heat exchangers offer higher heat transfer coefficients than plate heat 
exchangers. Henein et al. [218] improved the thermal performance of a heat pipe vacuum 
tube solar collector using MgO–MWCNT/water hybrid nanofluids as the working fluid. 
It was interpreted that the energy and exergy efficiency increased as the mass ratio of 
MWCNT nanoparticles increased. The heat transfer properties of heat exchangers were 
improved [219–223]. Cylindrical (MWCNT) and various spherical (MgO) nanoparticles 
have been used to study the properties of two-pipe heat exchangers [224,225]. The heat 
transfer rate was increased by 115% using the MWCNT nanofluid. Subramanian et al. 
[226] experimentally found that the heat transfer of the TiO2–water nanofluid was higher 
than that of the primary fluid (water). The pump work required due to the differential 
pressure could be estimated from the equations mentioned in the study by Dalkilic et al. 
[227]. Bahmani et al. [228] studied forced convection in a tube heat exchanger using a 
nanofluid (aluminum oxide/water). The extreme increase rate of the average Nusselt 
number and increase rate of thermal efficiency were 32.70% and 30%, respectively. Later, 
Bahmani et al. [229] studied forced convection in a two-tube heat exchanger with nanoflu-
ids at various Reynolds numbers ranging from 100 to 1500. Kristiawan et al. [230] ob-
served enhancement in the thermal performance of helical micro-fin tubes using titania 
nanofluid with different particle concentrations. They also proposed a correlation to pre-
dict the Nusselt number. 

Heat pipes are designed to act as heat transfer and thermostats. They were first in-
troduced by Akachi [231]. A survey was conducted on heat pipe stability and operating 
limitations [232]. The heat transfer ability of nanofluid-filled PHP depends more on fac-
tors such as the nanofluid’s thermal conductivity and viscosity. A variety of nanoparticles, 
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including metals [233], oxide particles [234], graphene, graphene oxide [235], and dia-
mond particles [236], have been tested to understand their effect on the heat transfer prop-
erties of a PHP. Heat flux increases with nanofluid concentration, while a higher concen-
tration leads to a higher viscosity [237]. Qu and Wu [238] tested the thermal performance 
of a PHP using SiO2/water and Al2O3/water nanofluids. Experimental results showed that 
the Al2O3/water nanofluid improved the heat transfer performance of the PHP. Goshaye-
shi et al. [239] compared the properties of CLPHP charged with nanofluid Fe3O4 and 
ɤFe2O3. Results showed that Fe3O4 exhibits higher thermal performance than ɤFe2O3. 

The thermal resistance and critical thermal load of FP–PHP decreased with increas-
ing nanoparticle concentration/mass fraction [240]. Li [235] investigated the change in heat 
transfer efficiency in a PHP of graphene/water–ethylene glycol nanosuspensions at vari-
ous concentrations and packing factors. Xu et al. [241] performed experiments considering 
hybrid working fluids. Zufar et al. [242] investigated a PHP using various hybrid nanoflu-
ids and concluded that the thermal resistance of the PHP for SiO2–CuO and Al2O3–CuO 
hybrid nanofluids was 50% and 34% lower than that of water, respectively. Khodami et 
al. [243] studied a PHP heat exchanger prototype. The results showed that silver nanofluid 
improved exergy efficiency and reduces exergy loss. Jahani et al. [244] studied the thermal 
properties of nanofluidic PHP charges. The results showed the improvement in PHP per-
formance using silver nanofluid. Su et al. [245] showed that self-wetting nanofluids have 
better heat transfer properties than charged self-wetting liquids and nanofluids alone over 
the entire operating range. 

Several experimental studies on the hydrothermal behavior of HyNfs in mini/micro-
channel heat sinks are available [246]. Selvakumar and Suresh [247] synthesized hybrid 
AlO–Cu nanoparticles and studied the properties of HyNf Al2O3–Cu/water in a mini-
channel. Ahammed et al. [248] showed a 63.13% increase in the convective heat transfer 
coefficient when using HyNf Al2O3–graphene in a mini-channel. Nimmagadda and Ven-
katasubbaiah [249] experimentally studied the behavior of Al2O3–Ag HyNf in microchan-
nels. Ho et al. [250] looked at nano-encapsulated phase change materials at MCHS and 
found up to 70% improvement in heat transfer. Kumar and Sarkar [251] determined vari-
ous combinations of HyNf-based nanoparticles in MCHS and showed that the Al2O3–AlN 
combination performed best. Similar investigations on micro/mini-channel heat exchange 
devices using HyNfs were performed in [252–259]. 

5.2. Numerical Studies on the Heat Exchangers 
Pantzali et al. [260] investigated the operation of a miniature plate heat exchanger 

whose surface was modulated using nanofluids. It has been reported that using the 
nanofluid of CuO/water reduces the equipment’s size and the pump’s operation. Ghe-
rasim et al. [261] studied the heat transfer and flow properties of plate-like HEX using a 
homogeneous model with CuO and aluminum oxide nanofluids. They found that the heat 
transfer rate increased at higher pressure drops using nanofluids. The performance of var-
ious nanofluids (1.0 vol.%) in a small plate heat exchanger was examined [262]. They 
found the need for an increase in the convective heat transfer coefficient, as well as de-
creases in the volumetric flow rate and pumping power. A single-phase numerical model 
obtained promising results with various nanofluids [263]. Stogiannis et al. [264] numeri-
cally observed decreases in coolant consumption and pumping power with SiO2 
nanofluid coolant in a PFC. In the course of numerical studies conducted by Jokar and 
O’Halloran [265], a clear conclusion was drawn regarding augmented thermal conductiv-
ity and a drop in heat transfer with increasing volumetric concentration. Goodarzi et al. 
[266] and Bhattad et al. [267] numerically studied MWCNT hybrid nanofluids on HEX 
plates in the turbulent regime. They noted that the heat transfer rate and pump work both 
increased. 

Ding et al. [268] performed a numerical study of TiO2/water nanofluids in a two-tube 
heat exchanger. The results showed that the nanofluid’s heat transfer capacity was higher 
than that of deionized water. Bhattad and Babu [269] performed thermal evaluations of 
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shell-and-tube heat exchangers using various alumina/water hybrid nanofluids. They 
found a 16.5% heat transfer rate gain using MWCNT/alumina hybrid nanofluid. Jafarma-
dar et al. [270] investigated PHP’s entropy generation and thermal analysis using Al2O3, 
CuO, and Ag nanofluids. An optimal concentration of 0.5–1% of the nanoparticle volume 
was determined on the basis of mathematical modeling. Yan et al. [271] and Khetib et al. 
[272] performed a numerical study to determine the effect of different types of nanofluids 
on MCHS. Kalteh et al. [273] conducted a numerical study of forced convection heat ex-
change between alumina and copper nanofluids at MCHS. At a volume fraction of 0.03, 
the average Nusselt number of copper nanofluids increased by 29.41%. 

Some of the relevant studies with significant results are listed in Table 7. The litera-
ture survey in the present section showed that the Nusselt number plays a very significant 
role in convective studies of fluid flow problems. Hence, the quantitative data for the 
Nusselt number are presented in Table 8.  

Table 7. Summary of studies on HEX with mono and hybrid nanofluids. 

Author(s) Operating Variables Nanofluid  
Characteristics Findings 

Pantzali et al. [274] 
Nanofluid as coolant, PHE, Tci 
= 30, Thi = 50 °C, Ωh = 40–56 
mL/s, Ωc = 10–100 mL/s 

Al2O3, CNT, TiO2, 
CuO/water (0.5–4.0 
vol.%), surfactant: CTAB 

The use of nanofluids was 
advantageous in laminar flow. 

Zamzamian et al. 
[275]  

Hot side: nanofluid, PHE, 
cold side: water, Ωh: 3 lpm, 
Ωc: 2.5 lpm, Thi = 45–75 °C 

Al2O3, CuO/EG (0.1–1.0 
wt.%), surfactant: SDS, 
SDBS, and CTAB 

HTC increased with increasing 
concentration and temperature by 3% 
to 49%. 

Kabeel et al. [276]  
Hot side: nanofluid, PHE, 
cold side: water, laminar flow, 
Thi = 40 °C, Ωc = 3 m3/h 

Al2O3/water (1–4 vol.%) 
HTC and pump work increased with 
φ . For 4.0 vol.%, HTC increased by 
13%. 

Tiwari et al. [277]  
Nanofluid as coolant, PHE, 
Ωh = 3 lpm, Ωc = 1.0–4.0 lpm, 
Tci = (25–50 °C), Thi = 70 °C 

CeO2/water (0.5- 3.0 
vol.%) 
 

HTC increased by 39% at 0.75 vol.% 
with almost no pressure drop. 

Khairul et al. [278] 
PHE, nanofluid as coolant, Ωc 
= 2–5 lpm, Ωh = 2 lpm,Tci = 300 
K 

CuO/water (0.5–1.5 
vol.%) 

HTC increased by 27.20%, while exergy 
loss was reduced by 24% at 1.5 vol.%. 

Huang et al. [279] 

Hot side: nanofluid, PHE, 
cold side: water, counter flow, 
Re = 58–624, Ω = 0–0.16 lps, Thi 
= 33 °C, Tci = 22 °C 

Al2O3/water (0.56–2.84 
vol.%) and 
MWCNT/water (0.0111–
0.0555 vol.%) 

HTC and the pressure drop increased 
with concentration.  

Tabari and Heris [280] 
PHE, hot side: nanofluid, cold 
side: milk, counter flow, Pe = 
300–1100, Thi = 68–72 °C 

MWCNT/water (0.25–
0.55 wt.%) 

HTC and heat transfer rates increased 
upon adding MWCNTs to the base 
fluid. 

Abed et al. [281]  

PHE, height = 2.5–5 mm, pitch 
= 6–12 mm, constant heat flux: 
6 kW/m2, Ti = 300K, turbulent 
flow 

Al2O3, CuO, SiO2, and 
ZnO/water (0–4 vol.%) 

The most desirable channel parameters 
were a trapezoid height of 5 mm and a 
vertical pitch of 6 mm. 

Behrangzade and 
Heyhat [282] 

PHE, hot side: nanofluid, cold 
side: water, Ωc = 2–4 lpm, Ωh = 
4–8 lpm, Thi = 30–55 °C 

Ag/water (100 ppm) Overall, HTC increased by 16.79% for 
100 ppm nanofluid. 

Sarafraz and Hormozi 
[283] 

PHE, Reh = 700–25000, Thi = 
50–70 °C 

MWCNT/water 
nanofluid (0.5–1.5 vol.%) 

HTC increased with flow rate and 
volume concentration.  

Sun et al. [284] PHE, Re = 1000–2800 
(Cu, Fe2O3, and Al2O3)/DI 
water (0.1–0.5%) 

Overall, HTC increased with mass 
fraction of particles. 
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Kumar et al. [285] 
PHE, Tci = 20 °C, Thi = 50 °C, 
Ωc = 0.5–2 lpm, Ωh = 3 lpm, β = 
30°/30°, 30°/60°, 60°/60° 

ZnO/water (0–2 vol.%), 
surfactant: CTAB 

The optimum increase in HTRR and 
HTCR, as well as reduction in exergy 
loss, was observed at 1.0 vol.% for β-
60°/60°. 

Kumar et al. [286] 
PHE, Nanofluid as coolant, Tci 
= 20 °C, Thi = 50 °C, Ω c = Ωh = 
3 lpm, b = 2.5–10.0 mm 

TiO2, Al2O3, ZnO, CeO2, 
GNP, MWCNT 
nanofluids, Cu + Al2O3 
hybrid nanofluid/DI 
water (0.5–2.0 vol.%), 
surfactant: CTAB 

Exergy destruction was lowest and 
exergetic efficiency was maximum for 5 
mm spacing at 0.75 vol.%. 

Ahmed et al. [287] Microchannel, Re = 50–300, 
laminar flow 

Al2O3 and SiO2/water 
(0.3–0.9 vol.%) 

Al2O3 had the lowest thermal 
resistance. SiO2 was preferred due to 
lower pressure drop. 

Ardeh et al. [288] Microchannel, Re = 50–400, 
laminar flow 

Al2O3–SiO2, Al2O3–
Cu/water (0–5 vol.%) 

Al2O3–SiO2 hybrid nanofluid had a 
lower thermal resistance and better 
thermal performance. 

Wang et al. [289] 
Microchannel, Re = 340–640, 
laminar flow  

Al2O3/water (1–4 vol.%), 
D = 20–40 nm 

Nanoparticles with small diameters 
and high concentrations provided 
higher heat transfer performance. 

Adio et al. [290] Microchannel, Re = 100–700, 
laminar flow 

Al2O3/water (0.5–4 vol.%) A 43.6% enhancement in heat transfer 
coefficient was observed. 

Adio et al. [291] Microchannel, Re = 100–400, 
laminar flow 

CuO/Water (0.5–4 vol.%) A 6.5% enhancement in heat transfer 
was observed. 

Ali et al. [292] Microchannel, Re = 100–350, 
laminar flow 

Al2O3/water (0–3 vol.%) The Nusselt number at 3 vol.% and Re 
= 350 showed a 0.67% enhancement. 

Kumar et al. [293] Microchannel, Re = 200–600, 
laminar flow 

Al2O3/water (0.25–0.75 
vol.%) 

A 40% heat transfer coefficient 
enhancement was obserbed at 0.75 
vol.% fraction. 

Elbadawy and Fayed 
[294] 

Microchannel, Re = 200–1500, 
laminar flow 

Al2O3/water (0.01–0.05 
vol.%) 

Cooling performance was enhanced. 

Kahani [295] Microchannel, Re = 100–300, 
laminar flow 

Al2O3/water (0–1 vol.%) The average Nusselt number 
increased to 1.36 at a 1 vol.% fraction. 

Pourfattah et al. [296] Microchannel, Re = 25–100, 
laminar flow 

CuO/water (0.02–0.04 
vol.%) 

The heat transfer coefficient was 
highest at a 0.04 vol.% fraction. 

Kumar et al. [297] Microchannel, Re = 100–500, 
laminar flow 

Al2O3/water (2–7 vol.%), 
D = 10–40 nm 

Nu increased and thermal 
resistance decreased when the 
nanoparticles diameter was  
reduced. 

Arjun and Rakesh 
[298] Microchannel, turbulent flow Al2O3/water (0–5 vol.%) 

The heat transfer coefficient improved 
by about 12% to 5% particle volume 
fraction. 

Reddy et al. [299] 
Microchannel, Re = 100–700, 
laminar flow CuO/water (0–4 vol.%) 

The heat transfer coefficient and 
viscosity increased, while the specific 
heat capacity decreased. 

Darzi et al. [300] Straight-tube HEX Al2O3/water The heat transfer increased with the 
concentration. 

Maddah et al. [301] 
Straight, twisted 
tape Al2O3/water 

The heat transfer was enhanced by 12% 
to 52% compared to the tube with 
twisted tapes. 
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Sarafraz and Hormozi 
[302] 

Straight Silver/EG–water (0.1–1 
vol.%) 

The 0.1–1 vol.% fraction increased the 
heat transfer coefficient by 22–67%.  

Jafarimoghaddam et 
al. [303] Straight Cu/oil 

The heat transfer coefficient increased 
by 17.32%. 

Shirvan et al. [304] Straight Al2O3/water, φ = 0.03 
The Nusselt number was enhanced by 
57.7% with Re = 150 and φ = 0.03. 

Akyurek et al. [305] Wire coil turbulator Al2O3/water 
The addition of a wire coil increased 
the Nusselt number and the heat 
transfer coefficient. 

Albadr et al. [306] Shell-and-tube HEX Al2O3/water, φ = 2 v% 
The overall heat transfer coefficient 
increased by 57%. 

Godson et al. [307] Shell-and-tube HEX 
Ag/water, φ = 0.01–0.04 
vol.% 

There was a 12.4% rise in heat transfer 
coefficient. 

Dharmalingam et al. 
[308] Shell-and-tube HEX Al2O3/water 

There was a 17% rise in overall heat 
transfer coefficient.  

Aghabozorg et al. 
[309] Shell-and-tube HEX Fe2O3–CNT/water (0.2 

wt.%) 

There were 34.02% and 37.50% 
increases in the heat transfer coefficient 
for laminar and turbulent flow. 

Tan et al. [310] Shell-and-tube HEX 
MWCNT/DI water, φ = 
0.2–1 wt.% 

There was a 24.3% increase in the heat 
transfer coefficient. 

Naik and Vinod [311] Shell-and-tube HEX Fe2O3, CuO, 
Al2O3/(CMC), φ = 1 wt.% 

There were 26% and 29% increases in 
the overall heat transfer coefficient for 
Al2O3 and CuO nanofluids. 

Said et al. [312] Shell-and-tube HEX CuO/water 
A 7% increase in overall heat transfer 
and a 11.39% increase in convective 
heat transfer were observed. 

The survey revealed that many empirical relations are available for calculating the 
Nusselt number on the basis of nondimensional numbers, i.e., Reynolds and Prandtl num-
bers. However, the Nusselt number, by definition, depends on the thermal conductivity, 
geometric parameters, and heat transfer coefficient. Therefore, it is suggested to validate 
the results in two ways. For this purpose, conducting experiments and obtaining the re-
quired parameters are recommended. The table depicts the Nusselt number for base fluid, 
titania nanofluid, and alumina nanofluid at different temperatures. It can be observed that 
the Nusselt number increases with the addition of nanoparticles and the increase in work-
ing temperature. Hybrid nanofluid plays an extraordinary role in heat transmission in the 
presence of a magnetic field. The temperature transfer rate increases as the Prandtl num-
ber increases. When the surface stretching rate increases, the velocity profile decays while 
the temperature profile increases [313]. 

Table 8. Quantitative data of Nusselt number for different fluids. 

T (°C) Water TiO2 (0.1 vol.%) Al2O3 (0.1 vol.%) 
10 10.11 10.19 10.48 
15 11.05 11.35 12.21 
20 12.27 12.68 13.89 
25 14.35 14.97 16.71 

6. Exergy Analysis of Mono/Hybrid Nanofluids 
When the conversion of heat energy into valuable work is incomplete, this indicates 

the presence of unavailable power. The amount of available energy is termed exergy. The 
exergy increases as the operating condition moves far from the ambient temperature. 
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Hence, for every thermal system where heat and work transfer are essential, one must 
estimate the exergy, irreversibility, exergetic efficiency, etc. Bhattad et al. [48] performed 
exergy destruction analysis in their research using different nanoparticle combinations for 
coolant purposes. Bhattad et al. [101] analyzed exergy destruction with alumina and mul-
tiwalled carbon nanotubes. They observed that the irreversibility increased with flow rate 
and decreased with inlet temperature, as it was directly proportional to flow rate and in-
versely proportional to inlet temperature. Exergetic efficiency showed the opposite trend. 
Bhattad et al. [314,315] performed exergy destruction analysis with different brine solu-
tion-based fluids and nanoparticle combinations for low-temperature applications. They 
used working fluid as a secondary refrigerant in plate evaporators. The irreversibility and 
nondimensional exergy destruction (NDE) were reduced while using brine-based hybrid 
nanofluids as a secondary refrigerant compared with the corresponding base fluid for all 
low-temperature applications. Hybrid nanofluids enhanced the exergetic efficiency and 
irreversibility distribution ratio (IDR). The irreversibility/exergy destruction of the system 
can be calculated as follows: 

e genI T S= , (5)

where Te is the ambient temperature in Kelvin. 
Sgen is the entropy generation rate, which can be calculated as follows: 

ln o
gen p

i av

T pS m c
T Tρ

   Δ= +  
  

 , (6)

where Tav is the average temperature of the inlet and outlet temperature. 
The second law of efficiency or exergy efficiency (ηII) is the ratio of exergy gain to 

exergy loss, which is given by 

g
II

l

E
E

η = . (7)

The scaling of exergetic parameters has become essential from the design point of 
view for thermal systems. Hence, different parameters such as non-dimensional exergy 
destruction, irreversibility distribution ratio, and Bejan number are discussed in the pre-
sent investigation. Non-dimensional exergy destruction (NDE) is the ratio of irreversibil-
ity to maximum heat transfer rate, which signifies the effect of design parameters on the 
exergy destruction for a given operating condition. A non-dimensional parameter, en-
tropy generation number, was introduced by Mishra et al. [316] to study the influence of 
heat capacity on entropy generation. The sustainability of the device was evaluated in 
terms of the exergy ratio to understand the utilization of resources [317]. Bejan [318] in-
troduced the irreversibility distribution ratio (IDR) concept to show the relative influence 
of heat transfer and pressure drop on irreversibility. The irreversibility distribution ratio 
was defined as the ratio of entropy generation due to heat transfer to that due to pressure 
drop. 

Bhattad et al. [211] performed exergetic analyses of the plate heat exchanger using 
Al2O3–TiO2 hybrid nanofluid as a coolant for sub-ambient temperature application. They 
observed a 4.01% reduction in the exergetic efficiency for TiO2 nanofluid. The study 
showed that the exergetic performance decreased continuously with the increase in TiO2 
ratio in the hybrid solution. Bhattad et al. [212] observed that the irreversibility was en-
hanced with the flow rate and nanoparticle suspension for MgO–alumina hybrid 
nanofluid. Bhattad et al. [213] observed an augmentation of the coolant exergy rate, irre-
versibility rate, and non-dimensional exergy by 4.8%, 7.5%, and 3.5%, respectively. At the 
same time, the second law of efficiency is reduced when using nanoparticles and increas-
ing flow rate, and it decreases with the coolant inlet temperature. The authors of [319] 
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investigated a novel nanofluid ternary hybrid nanofluid (THdNF) obtained from a mix-
ture of three different nanoparticles, resulting in better overall performance even at low 
concentrations. Bahiraei et al. [320] examined twisted turbulator inserts in the concurrent 
pipe and found lower entropy generation when arranged counter-currently. Bahiraei and 
Heshmatian [321] investigated the effect of nanofluid on the cooling devices on the en-
tropy generation and revealed a net reduction in the temperature. In the interim, various 
research studies focusing on entropy and exergy investigation are available in the open 
literature using different nanofluids [322–324]. Kumar and Sahoo [325,326] investigated 
combined exergo-economic and environmental impact analysis of THdNF as the working 
fluid with various turbulator inserts used for automobile applications. They found the 
highest 24.7% exergy change and 6.4% exergy efficiency at the lowest Reynolds number 
without inserts. Rai and Sahoo [327] performed exergy analysis for a 5% water in diesel 
emulsion (WiDE) fuel, with 50 ppm carbon nanotube (CNT) and 50 ppm aluminum oxide 
(Al2O3) nano-additive fuels, on a diesel engine with changeable engine speed and load. 
The exergy-based sustainability was highest for 5% WiDE–CNT fuel at 2000 engine rpm 
with full engine load. The exergy destruction and entropy generation rates with the 5% 
WiDE–Al2O3 and 5% WiDE–CNT nano additive fuels had 2.07% and 4.15% higher values, 
respectively, compared to the diesel fuel. 

7. Applications of Mono/Hybrid Nanofluids 
Due to their improved thermophysical characteristics, nanofluids and hybrid 

nanofluids can be used in radiators (as coolant), biodiesel blends, fuel additives, refriger-
ators, heat pumps, and air conditioning applications as primary fluids (nano refrigerants) 
and secondary fluids (secondary refrigerants on the evaporator side and nano lubricants 
as refrigerants on the condenser side). The thermophysical characteristics, pressure drop, 
and heat transfer characteristics of nano lubricants and nano refrigerants in refrigeration 
systems were reviewed by Saidur et al. [328] and Bhattad et al. [329]. Alawi et al. [330] 
discovered that the thermal conductivity of nano refrigerants during pool boiling is highly 
influenced by the temperature at low concentrations. The properties, flow characteristics, 
and uses of nano refrigerants at sub-ambient temperatures were evaluated by Celen et al. 
[331]. The use of nano lubricants and nano refrigerants has been considered in refrigera-
tion, air conditioning, and heat pump systems [332]. The effects of employing nano cool-
ants on cooling devices in terms of energy consumption and heat transfer efficiency were 
reviewed by Alawi et al. [333]. A review was conducted on the thermophysical character-
istics and effectiveness of nano refrigerants in refrigeration systems [334]. Nano refriger-
ants were thoroughly evaluated by Nair et al. [335], who covered their manufacture, char-
acteristics, heat transfer abilities, and effects on the performance of refrigeration systems. 
Hybrid nano lubricants were utilized by Zawawi et al. [336] to enhance the performance 
of refrigeration systems. ZnO/water (0.5 vol.%) nanofluid was described by Fard et al. 
[337] as the hot fluid in a plate heat exchanger. They demonstrated that the heat transfer 
behavior of the nanofluid was superior to that of the basic fluid. Javadi et al. [338] looked 
into how utilizing Al2O3, TiO2, and SiO2 nanofluids affected the heat transfer of a plate 
heat exchanger. The SiO2 nanofluid exhibited a lower pressure drop, while the Al2O3 

nanofluid had the highest heat transfer coefficient. The thermal characteristics of the two 
nanofluids were contrasted in a plate heat exchanger operating at low temperatures [339]. 
Carbon nanotubes and aluminum oxide outperformed water in terms of increased heat 
transfer and reduced pump power loss. 

Nanofluids can be utilized in auxiliary circuits as additional fluids (evaporators and 
condensers) to cool the primary working fluid or refrigerant [340]. When employing 
nanofluids, Liu et al. [341] noticed a rise in cooling capacity and COP, as well as a fall in 
compressor performance. The enhanced HTC enhanced the cooling capacity [342]. 
Nanofluids were explored numerically by Loaiza et al. [343] for application as secondary 
coolants in cooling systems. It was discovered that when the concentration of nanoparti-
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cles increased and the size of the nanoparticles decreased, the evaporator area and pres-
sure drop of the refrigerant decreased for a specific cooling capacity. Nanofluids had a 
minimal effect on pump power and increased chiller efficiency, cooling capacity, and ef-
ficiency. The use of Cu–H2O nanofluids as condenser coolant in a vapor compression heat 
pump was modeled by Parise and Tiecher [344]. A nanoparticle percentage of 2.0% re-
sulted in a 5.4% increase in the efficiency factor. Askari et al. [345] conducted an experi-
mental investigation on the effectiveness of counter flow wet coolers. Nanoporous gra-
phene nanofluids and MWCNTs are employed. They noticed increases in cooling dis-
tance, coolant flow, and cooling tower efficiency. When Kolhapure and Patil [346] em-
ployed nanofluids as refrigerants, they found that compressor operation and condenser 
heat transfer decreased as efficiency increased. Condensers and cooling tower sizes were 
reduced. 

Thermal simulations of vapor compression refrigeration systems were detailed by 
Jaiswal and Mishra [347] utilizing Al2O3-, TiO2-, CuO-, and Cu-based nanofluids in the 
secondary circuit and R134a refrigerant in the primary circuit. Using aqueous nanofluids 
in the secondary circuit boosted system performance with the same geometrical parame-
ters from 17% to 20%. Increased cold chain efficiency employing nanofluids as secondary 
refrigerants was reported by Ndoye et al. [348]. To investigate the energy characteristics 
of secondary circuits in refrigeration systems, Soliman et al. [349] employed a variety of 
nanofluids. It was noted that, when concentration increased, the pump power increased, 
whereas the performance coefficient decreased. Excellent cooling capacity and COP for 
SWCNT/water suspensions were reported by Vasconcelos et al. [350]. In air conditioning 
systems, nanofluids can be employed as phase change refrigeration reservoirs on the 
evaporator side [351]. Nanotechnology is widely used in the food, food packaging, and 
milk pasteurization industries [352]. Zhang et al. [353] examined the ice formation pro-
cess’ nucleation phenomenon using nanofluids. With nanofluids, the nucleation mecha-
nism could be improved. A raw milk dispenser based on nanofluidic technology was cre-
ated by Longo et al. [354]. Hybrid nanofluids were employed as secondary coolants for 
low-temperature applications by Bhattad et al. [314,315,355]. Table 9 provides an over-
view of the uses of nanofluids as primary and secondary coolants. 

Table 9. Summary of the application of nanofluids as coolant and secondary refrigerant. 

Author(s) Operating Variables Nanofluid Characteristics Findings 

Liu et al. [341] MWCNT/water, Water chiller Efficiency improved by 5.15%, while cool-
ing capacity increased by 4.2%. 

Loaiza et al. [343] 
Al2O3, TiO2, CuO, and 
Cu/water 

Vapor compression 
refrigeration system 

The evaporator area and pressure drop 
decreased for fixed cooling capacity as 
particle size and concentration increased. 

Zhang et al. [353] Al2O3, SiO2/water Ice making With the use of nanoparticles, supercool-
ing was reduced to a lesser extent. 

Kumaresan et al. 
[342] 

MWCNT/(EG + water) 
 - 

Higher temperatures and velocities in-
creased heat transmission efficiency, pref-
erably with 0.15% MWCNTs by volume. 

Parise and Tiecher 
[344] 

Cu/water Vapor compression heat 
pumps 

When the volume fraction of nanoparti-
cles reached 2%, COP increased by 5.4%. 

Sarkar [356,357] Al2O3, TiO2, CuO, SiO2, 
and Cu/water 

CO2 refrigerant system The shell-and-tube gas cooler’s cooling ef-
fectiveness and capacity were enhanced. 

Jaiswal and Mishra 
[347] 

Al2O3, TiO2, CuO, and 
Cu/water 

Domestic refrigeration 
system 

The performance of the cooling system in-
creased by 17–20%. 

Longo et al. [354] Al2O3/(EG + water) Milk dispenser Energy consumption was reduced by 63–
70%. 
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Ndoye et al. [348] 
Co, CuO, Fe, SiO2, Al2O3, 
and TiO2/water 

Cold chain refrigeration 
plants 

The cold chain became more efficient by 
consuming less energy and producing 
fewer emissions. 

Askari et al. [345] MWCNT and 
graphene/water 

Cooling tower 

Efficiency, cooling range, and cooling 
tower performance were all improved 
with lower water use, as were the tower’s 
attributes. 

Kolhapure and Patil 
[346] 

Al2O3/water 
 

Air conditioning and 
refrigeration system 

The capacitor thermal cutoff, which low-
ered compressor operation and used less 
energy, boosted COP. 

Soliman et al. [349] 
Al2O3, Ag, TiO2, Co, Cu, 
Au, Fe, CuO, diamond, 
and graphite/water 

Refrigeration system When the mass fraction was 0.1%, produc-
tivity increased by 10.5%. 

Vasconcelos et al. 
[350] SWCNT/water 

Vapor compression 
refrigeration system Excellent COP and cooling capacity. 

Arshad et al. [358] investigated the 3D flow of an engine oil-based nanofluid under 
the impact of rotation and partial slip phenomenon over a stretchable surface. The study’s 
outcomes were related to already available studies and were in good agreement. Kumar 
and Sahoo [359] investigated the performance characteristics of a car radiator by using a 
ternary hybrid nanofluid of 0.12 vol.% fraction (Al2O3–CuO–TiO2/water) and water as 
coolant and validated results with simulation. Ternary hybrid nanofluids (THNF) showed 
a 14% higher heat transfer coefficient at 8 lpm, and the mixture model predicted a 5% 
better result than the single-phase approach. A 12.54% enhancement in BTE was observed 
with a fuel-saving rate of 14.28%. Kumar and Sahoo [360] investigated the thermo-hy-
draulic performance of a car radiator using Al2O3, CuO, and TiO2 nanoparticles dissemi-
nated in an equal fraction in the range of 0.06–0.12% THNF. Coolant was operated with a 
flow rate of 3–8 lpm. Results revealed a 14.2% enhancement in heat transfer with a coolant 
flow rate of 6 lpm using a 0.12% vol. fraction of THNF. A maximum fuel saving rate of 
14.28% was observed at 50% load on the engine. Preheating of fuel through radiator waste 
heat recovery decreased the BSFC. Rai and Sahoo [361] investigated the engine perfor-
mance parameters for 5% water-emulsified fuel, 50 ppm CNT, and 50 ppm Al2O3–CNT 
(25 ppm each) hybrid nano-additive fuels, with different speeds and loads on a DICI en-
gine. The CNT catalyst had a higher effect on the BSFC than the Al2O3–CNT catalyst. The 
BTE with 5% WiDE, 5% WiDE–Al2O3–CNT, and 5% WiDE–CNT nano-additive was 1.49%, 
2.86%, and 3.07% higher than with diesel. Overall, compared to all fuel blends, the optimal 
performance was found for 5% WiDE–CNT. Najafi [362] observed the impact of adding 
Ag and CNT nano-additive on engine performance and combustion parameters. The re-
sults showed that adding a nanocatalyst shortened the time needed for the engine to ignite 
and increased the cylinder’s peak pressure and rate of heat release. The best outcome was 
obtained when 120 ppm of CNT nano-additive is used. Jiaqiang et al. [363] evaluated the 
effects of adding water and a nanocatalyst on a CI engine’s performance and emission 
characteristics when using diesel/biodiesel mixes. The blend of biodiesel and diesel with 
90 ppm CeO2 nano-additive was emulsified with 2%, 4%, and 6% (v/v) ratios. The investi-
gation results showed that water emulsification up to 4% was favorable, and the addition 
of nanocatalyst enhanced performance and lowered emissions levels. Kumar and 
Raheman [364] investigated water-emulsified biodiesel blends with nano-oxide incorpo-
ration. According to the characterization analysis, the ideal fuel stability characteristics 
were 1% surfactant, 10% water, 2500 rpm stirrer speed, and 69.7 ppm nano-oxide. 

Wro’blewski [365,366] performed energy analysis on IC engines for hydrophobic and 
hydrophilic multilayer nanocoatings surrounded by soot. The multilayer coating reduced 
the friction coefficient and, hence, improved tribological performance. Rai and Sahoo [367] 
carried out energy, exergy, and sustainability analyses of a diesel engine with hybrid 
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nanofluids incorporated with various shaped (25 ppm CNT and 25 ppm spherical Al2O3 

nano-additives). The 5% WiDE based Al2O3–CNT hybrid nano fuel improved BTE by 
2.86% with an exergy efficiency of 4.16%. Rao and Anand [368] investigated an analysis 
of the energy and emissions produced by a DICI engine running on fuel containing 
AlO(OH) nano-additive and water in a diesel emulsion. The results of the experimental 
study demonstrated that adding water as an AlO(OH) nano-additive to diesel emulsion 
fuel considerably enhanced the engine’s energy parameters and emission characteristics. 
El-Seesy et al. [369] examined the optimal Al2O3 nano-additive concentration in diesel and 
Jojoba biodiesel blends to achieve higher performance. The analysis showed that all per-
formance indicators significantly increased at a concentration of 30 mg/L Al2O3. Ozcan 
[370] studied the impact of Al2O3 nano-additive (50 and 100 ppm) on the energy and per-
formance parameters of diesel engines charged with diesel/biodiesel blends through ex-
periments. According to experimental data, the engine’s performance was improved, en-
tropy generation decreased, and unexplained losses decreased. Hasannuddin et al. [371] 
evaluated the fuel qualities, emission characteristics, and performance metrics of diesel 
engines running on fuel containing various nano-additives and 10% water (Al2O3, CuO, 
MgO, MnO, and ZnO). According to the study, of all the nano fuels discussed, the water-
in-diesel emulsion with Al2O3 addition had the smallest droplet size, improved torque, 
and decreased BSFC, BSCO, and BSNOx. Aghbashlo et al. [372] performed an energetic 
performance investigation of the diesel engine using four concentrations of hybrid nano-
catalyst and two types of biodiesel/diesel blends (CeO2 and MWCNT). The results showed 
that all fuel mixes had the same energy efficiency and sustainability index except for the 
nano-catalyst. 

8. Conclusions 
Investigations were made on different mono and hybrid nanofluids from nanocom-

posites, mixing other nanoparticles comprising oxides, metals, and phase change materi-
als of different shapes such as spherical, cylindrical, and flake in a base fluid using one-
step and two-step methods. Nanofluids were characterized and thermo-physical proper-
ties were measured to develop empirical relations for CFD simulations. Experimental and 
theoretical investigations were conducted on the heat exchangers with mono and hybrid 
nanofluids, and an enhancement in performance was observed. A study on different hy-
brid nanofluids (SiC, Al2O3–AlN, Al2O3–MgO, Al2O3–CuO, and Al2O3–MWCNT) con-
ducted by Bhattad et al. [210] showed the ranking of different nanofluids according to 
different thermophysical properties. These nanofluids can serve as a coolant, secondary 
refrigerant, nano refrigerant, and nano lubricant for low-temperature applications such as 
refrigeration systems, air conditioning, and food processing, or as fuels for ICEs. From the 
present literature survey, the research gaps identified are as follows: 
• There are limited studies on the heat transfer properties of hybrid nanofluid heat 

exchangers. 
• The influence of individual particle proportions of hybrid nanofluids on the perfor-

mance of heat exchangers is unknown. 
• There is little experimental work and validation by CFD modeling of heat exchangers 

using hybrid nanofluids operating for low-temperature applications. 
• Hybrid nanofluids can be used in biodiesel blends and as fuel additives to enhance 

the performance of IC engines. 
• A single correlation containing the effect of temperature and particle size is needed 

to predict accurate thermal conductivity and viscosity of mono/hybrid nanofluids. 
• Nanofluids with more thermal conductivity show better heat transfer characteristics, 

and nanofluids with more viscosity provide higher pressure drop and pump work. 
An increment in heat transfer is desirable, while an increment in pump work is un-
desirable; thus, another performance indicator must be determined, such as a perfor-
mance index (ratio of heat transfer rate and pump work), to obtain a better nanofluid. 
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• Many empirical relations are available for calculating the Nusselt number on the ba-
sis of non-dimensional numbers, i.e., Reynolds and Prandtl numbers. However, the 
Nusselt number, by definition, depends on the thermal conductivity, geometric pa-
rameters, and heat transfer coefficient. Hence, it is suggested to validate the results 
in two ways. For this purpose, conducting the experiments and obtaining the re-
quired parameters are recommended. 

• It can be observed that the thermal conductivity, density, and viscosity increase with 
the addition of nanoparticles in the base fluid. The fluid’s thermal conductivity in-
creases with the temperature increase, whereas density and viscosity decrease. No 
change can be observed for the specific heat as the studied temperature range is 
small. 

• Hybrid nanofluids can be used as a coolant in automobile radiators and ICEs. 
• Few investigations are available for ternary hybrid nanofluids to analyze irreversi-

bility, exergy, economic, and the second law of efficiency in air heat exchangers uti-
lizing various turbulators. 

• Studies were conducted primarily with water and EG/water brine as base fluids. Us-
ing different brines as primary and secondary cooling water should be explored. 
Most (95%) investigators adopted a two-step method while preparing nanofluids. 

However, nanofluids synthesized using the one-step process (which is expensive and in-
volved) improved the stability of the nanoparticles in the base fluid due to the high sedi-
mentation rate with low sonification time. Ultrasonication reduces the sedimentation is-
sue, and adding surfactants further improves nanofluid stability. FESEM/EDS, DLS, and 
zeta potential measurements help understand nanoparticle morphology, shape, and size. 
The mechanism of nanofluids at the atomic level should be understood to address particle 
migration, aggregation, and stability with minimal experimentation. Future research 
should focus on industrial applications to minimize pressure losses, specifiy the optimal 
concentration of nanoparticles, and ensure the long-term stability of hybrid nanofluids. 
Very few studies are available on ternary hybrid nanofluid to analyze irreversibility, ex-
ergy, economic, and the second law of efficiency in air heat exchangers utilizing various 
turbulators. Thus, this area needs to be explored more to improve automobile perfor-
mance. 
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Nomenclature 
b Plate spacing, mm 
C Specific heat, J/kg.K 
K Thermal conductivity, W/m.K ṁ Mass flow rate, kg/s 
N Shape factor 
Pe Pecklet number 
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Re Reynolds number 
T Temperature, °C 
V Volume, m3 
Abbreviation 
COP Coefficient of performance 
CTAB Cetyl trimethyl ammonium bromide 
DI Deionized water 
DLS Dynamic light scattering 
EG Ethylene glycol 
F-CNF Functionalized carbon nanofiber 
FESEM Field-emission scanning electron microscopy 
GA Gum Arabic 
HCFC Hydrochlorofluorocarbons 
HEG Hydrogen-induced exfoliated graphene 
HEX Heat exchanger 
HTC Heat transfer coefficient 
HVAC Heating, ventilation, and air conditioning 
HyNf Hybrid nanofluid 
MCHS Microchannel heat sink 
MWCNT Multiwalled carbon nanotube 
PCM Phase change material 
PHE Plate heat exchanger 
PHP Pulsating heat pipe 
PVP Polyvinyl pyrrolidone 
PVA Polyvinyl alcohol 
rGO Reduced graphene oxide 
SDS Sodium dodecyl sulfate 
SDBS Sodium dodecyl benzene sulfonate 
SEM Scanning electron microscopy 
TEM Transmission electron microscopy 
VSM Vibrating sample magnetometry 
v% Percentage volume concentration 
XRD X-ray diffraction 
Greek symbols 
β Chevron angle, ° 
Ω Discharge, lpm 
µ Dynamic viscosity, Pa·S 
ρ Density, kg/m3 
Φ Volume concentration 
Ψ Coefficient 
Subscript 
1 First 
2 Second 
bf Base fluid 
nf Nanofluid 
p Nanoparticle 
eff Effective 
h Hot 
c Cold 
i Inlet 
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