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Abstract: Contemporary megawatt-scale data centers have emerged to meet the increasing demand 

for online cloud services and big data analytics. However, in such large-scale data centers, servers 

of different generations are installed gradually year by year, making the data center heterogeneous 

in computing capability and energy efficiency. Furthermore, due to different processor architec-

tures, complex and diverse load dynamic changing, business coupling, and other reasons, operators 

pay great attention to processor hardware power consumption and server aggregation energy effi-

ciency. Therefore, the simulation and analysis of the energy efficiency characteristics of data center 

servers under different processor architectures can help operators understand the energy efficiency 

characteristics of data centers and make the optimal task scheduling strategy. This is very beneficial 

for improving the energy efficiency of the production system and the entire data center. The Escope 

simulator designed in this study can simulate the online quantity (placement strategy) of different 

types of servers in the data center and the optimal operating range of the servers. The purpose of 

this is to analyze the energy efficiency characteristics of all servers in the data center and provide 

data center operators with the energy efficiency and energy proportionality characteristics of differ-

ent servers, improve server utilization, and perform reasonable scheduling. Through the simulation 

experiment of Escope, it can be proved that running the server at the highest energy efficiency point 

or running the server under full load cannot improve the energy efficiency of the entire data center. 

The simulation algorithm provided by Escope can select the optimal set of servers and their corre-

sponding utilization. Escope can set up a variety of simulation strategies, and data center operators 

can simulate data center energy efficiency according to their own needs. Escope can also calculate 

the power cost savings of introducing new servers in the data center, which provides an essential 

reference for operators to purchase servers and design data centers. 
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1. Introduction 

1.1. Energy Efficiency Indicators for Data Centers 

With increasing demand for cloud computing from large-scale internet applications, 

enterprise-level essential services, and the construction of the digital economy, the scale 

and number of data centers have achieved unprecedented development. At the same 

time, the rapid growth in size and quantity has brought about many problems for data 

center operators, such as high energy consumption, huge cost, and severe pollution [1,2]. 

In sharp contrast to the sizable energy consumption of data centers, the resource utiliza-

tion of most data centers is much lower [3–5], and the utilization of the majority of servers 

is generally less than 30%. Increasing server utilization can improve a data center’s energy 
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efficiency. Placing online services and batch jobs on the same cluster is an effective way to 

enhance the utilization of modern data center clusters [6,7]. However, it is not easy to 

deploy different types of applications to increase server utilization without affecting ap-

plication performance. Their coexistence is a dilemma because it attempts to improve re-

source utilization while the performance of online services declines as resource utilization 

increases. Moreover, oversupply of peak power usage, fluctuating data traffic, and multi-

level power transmission infrastructure in large data centers can lead to serious power 

budget fragmentation and inefficient power utilization [8]. 

Therefore, improving the energy efficiency of data centers has become one of the 

main goals of data center construction and operation. Servers are the most essential infra-

structure of data centers, and their energy efficiency (EE) and energy proportionality (EP) 

have become hot research topics in academia and industry. If the energy efficiency of data 

center servers can be improved, the overall data center energy efficiency will also be ef-

fectively improved. 

Data center energy efficiency indicators play a very important role in data center con-

struction and operation management. Nowadays, there are a variety of evaluation indica-

tors for data center energy efficiency in the industry. Power efficiency (power usage effec-

tiveness, PUE) is one of the most important indicators to evaluate data center energy effi-

ciency. PUE represents the ratio of total data center energy consumption to IT equipment 

energy consumption. The total energy consumption of a data center includes IT equip-

ment energy consumption, cooling energy consumption, and lighting energy consump-

tion, among other things. The energy consumption of IT equipment includes server en-

ergy consumption, network equipment energy consumption, and storage equipment en-

ergy consumption. 

This study is mainly based on the energy efficiency characteristics of the servers in 

the data center. Improving the energy efficiency of all servers in the data center is also the 

top priority for maintaining the high energy efficiency of the data center. The energy effi-

ciency of the data center is defined as Formula (1), where Ttotal represents the total number 

of tasks that the data center can handle, and Ptotal represents the total power consumption 

of all running servers in the data center: 

Date Center Energy Efficiency = Ttotal/Ptotal. (1) 

The energy efficiency of this data center is expressed as the number of load tasks per 

watt and increasing the size of this metric means that when the number of tasks in the 

data center is fixed, the data center PUE is reduced by reducing the power consumption 

of IT devices. 

1.2. Energy Efficiency and Energy Proportionality of Servers 

The energy efficiency of data centers has become one of the main issues to be consid-

ered in the construction and management of data centers [9–14]. The most important com-

ponent of a data center is servers, as shown in Formula (2). The efficiency of a server is 

defined as the ratio of server performance to power: 

Server Energy Efficiency = Performance/Power. (2) 

The higher the energy efficiency of a data center or server, the more tasks that can be 

completed per watt of electricity. The energy efficiency indicator on a single server is often 

used to describe the ratio of server performance to power consumption under a certain 

utilization rate. Jiang [15] et al. found that the current peak energy efficiency of servers 

has shifted from 100% utilization level to 70–80% utilization level, which shows that it is 

more energy-saving to keep each server running within its energy efficiency peak range 

than at 100% utilization level. Figure 1 shows the energy efficiency of a server released in 

2019 under different utilization rates. It can be seen that under different utilization rates, 

servers exhibit different energy efficiency characteristics. 
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Figure 1. The relationship between a server utilization rate and energy efficiency released in 2019. 

In a data center, the utilization rate of the servers is dynamic. Simply comparing the 

energy efficiency value of a server under a certain utilization does not necessarily mean 

that the server is energy saving in all cases. For example, if a server has high energy effi-

ciency at 70% utilization, it does not necessarily mean that this server has high energy 

efficiency even under low utilization. In a data center with low utilization, many servers 

are idle. The use of such servers does not automatically improve the energy efficiency of 

the data center. In these cases, another indicator is needed to determine the overall energy 

efficiency of the servers. This indicator is called energy proportionality (EP). Energy pro-

portionality refers to the change in server energy consumption with utilization rate. It was 

proposed by Rysckbosch in 2007 [16], and its Formula (3) is as follows: 

EP = 1 − (𝐴𝑟𝑒𝑎𝑟𝑒𝑎𝑙 − 𝐴𝑟𝑒𝑎𝑖𝑑𝑒𝑎𝑙)/𝐴𝑟𝑒𝑎𝑖𝑑𝑒𝑎𝑙 . (3) 

The server with the most ideal energy consumption curve has the following charac-

teristics: Assuming that the power consumption of the ideal server is 100 W under full 

load (100% utilization), the power consumption should be reduced equally with the re-

duction in the load, and the power consumption at 80% load should be 80 W. When it is 

completely idle, it should be 0 W. At this time, the energy proportional property of this 

server is one, which is the ideal energy proportional characteristic. However, in actual 

scenarios, the server still needs power consumption when it is completely idle, so the en-

ergy consumption of the real server is not proportional to the utilization rate. As shown 

in Figure 2, the Areareal in Formula (3) represents the area between the real energy propor-

tional curve of the server and the abscissa; ideally, Areaideal represents the area between the 

energy proportional curve and the abscissa. The value of EP ranges from 0 to 2. 

 

Figure 2. Energy efficiency curve of the server with an EP value of 0.98. 

Wong explained the meaning of EP on paper [17]: the EP value represents the change 

in power consumption of a server with utilization; the energy proportionality of data cen-

ter servers has significantly improved in the past decade. Energy proportionality has a 

great impact on the power consumption of servers. In their experiments, Barroso et al. [18] 
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found that servers with energy proportionality closer to one can save more power, so they 

recommend that optimizing energy proportionality should be the primary goal of server 

design. Ryckbosch et al. [16] studied the situation in which servers with higher EP values 

can save power consumption. Under 10−50% utilization, servers with higher EP values 

can ideally save 34% of energy consumption. Therefore, energy proportionality is of great 

significance to server research and design. Improving the energy proportionality of the 

server can greatly reduce the power consumption of the server. As the server energy pro-

portionality (EP) increases, data centers have an increasing demand for peak energy effi-

ciency-aware scheduling. 

1.3. Data Center Simulation Tool 

When designing a new data center, energy efficiency is one of the most concerning 

issues for data center operators. In large-scale data centers, servers of different generations 

are gradually installed year by year, which makes the data center heterogeneous in terms 

of computing power and energy efficiency. Additionally, in existing data centers, internal 

server distribution and infrastructure layouts that have been in operation for some time 

may undergo significant changes, as will their original energy efficiency. Therefore, the 

extensive energy efficiency of the data center depends to a large extent on the working 

range and utilization level of each server. Although the current PUE (power usage effi-

ciency) of large data centers is already very low, if the server is not operating at full load 

working within the maximum energy efficiency range, then the low value of PUE is mean-

ingless. Therefore, according to the workload characteristics, it is more energy-efficient to 

let different servers operate within their most energy-efficient working ranges than to let 

all servers operate at the same utilization level. This will greatly improve the energy effi-

ciency of the data center. 

In order to design a green data center with ideal PUE, many researchers have de-

signed various data center simulation tools. The simulated objects include data center 

servers, network traffic, task placement, and heat maps, among others. The focus is on the 

power consumption, communication, and application response time within the data cen-

ter The main problem of these simulation tools is poor stability and scalability. 

Since workloads may change dynamically throughout the day, it is a challenge to 

adaptively select a specific subset of servers to perform tasks while powering off the 

power of the remaining servers so that the data center can operate with higher energy 

efficiency as much as possible. Due to the paucity of energy efficiency simulators and in-

complete understanding of the overall energy efficiency of the data center, it is difficult 

for data center operators to model the energy efficiency of the entire data center. There-

fore, we designed and implemented a data center energy efficiency simulator, namely 

Escope, which can simulate and evaluate the energy efficiency of a data center. 

The difference between the data center energy efficiency simulator designed in this 

study and the above data center simulation is that it can simulate data center energy effi-

ciency. According to the different workload conditions and server configuration of the 

data center, Escope explicitly models and visualizes the energy usage of the data center 

and uses the energy efficiency characteristics of the servers in the data center to formulate 

work server placement strategies to keep the servers at their most energy-efficient scope 

of work. Through the simulation of data center energy efficiency, data center throughput, 

server power consumption, power distribution, and other contents, the optimization al-

gorithm is used to simulate and evaluate the data center energy efficiency as a means to 

help data center operators grasp the energy efficiency characteristics of each server and 

better perform task scheduling. 

Inspired by this, we have designed a new data center energy efficiency simulator 

called Escope. We make the following contributions: 

(1) Escope: This paper proposes the idea of simulating data center energy efficiency, 

which is different from other simulators. Escope can clarify the energy usage of data 
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centers according to different workload conditions and server configurations and 

model and visualize them; 

(2) Flexibility: Escope allows for a variety of simulation strategies, and data center oper-

ators can simulate energy efficiency according to their own needs; 

(3) Depth: Through Escope’s simulation experiments, it has been shown that improving 

energy efficiency in data centers is not simply a matter of running servers at their 

highest energy efficiency point or running servers at full load. Escope’s simulation 

algorithm can select the optimal set of servers and their corresponding utilization 

levels to achieve optimal energy efficiency. 

The organizational structure of this paper mainly consists of the following parts: Sec-

tion 1 explains the concepts related to data center energy efficiency. Section 2 introduces 

the current relevant research content, while Section 3 expands on the key designs and 

algorithms of Escope. Section 4 experiments with the Escope simulator and evaluates its 

role. Finally, the discussion and summary are presented. 

2. Related Studies 

In order to design a green data center with ideal PUE, many researchers have de-

signed various data center simulation tools. Table 1 shows a comparative analysis of the 

different simulation tools. Before 2009, distributed system simulators were less frequently 

used in cloud computing environments, so Buyya et al. [19] and Calheiros et al. [20,21] 

proposed CloudSim. This simulation software can produce seamless modeling and simu-

lation of cloud computing and their upper-layer application characteristics. CloudSim 

supports simulation of cloud computing infrastructure and management services, so us-

ers can use CloudSim to study specific system problems. CloudSim also introduced the 

simulation of virtualized data centers and used NetworkCloudSim to expand the func-

tions to better support the simulation of internal communication in the data center [22]. 

However, the scalability of CloudSim is poor, and experiments prove that the CloudSim 

simulator will encounter various failures during the submission of the job. 

Table 1. Comparison of different simulation tools. 

 Characteristics Advantages Disadvantages 

CloudSim Cloud computing environment simulation Open source, user-friendly Poor scalability 

CloudAnalyst Performance evaluation, cost-benefit analysis Visualization 
Not integrated with the latest version of 

CloudSim functionality 

DartCSim+ Resource allocation, load balancing 
Simulates large-scale cloud envi-

ronments 
Steep learning curve 

DVFStoCloudSim Energy-aware simulation Integrated with DVFS technology Considers only CPU power consumption 

WorkflowSim Simulates workflow processes 
Supports multiple workflow 

models 
No dynamic resource scheduling algorithm 

In order to reduce or even eliminate the shortcomings and faults in CloudSim, many 

researchers [23–30] improved the CloudSim simulator. For example, Li et al. [25] designed 

the simulator DartCSim+, which supported power-aware network simulation. In order to 

solve transmission failures caused by migration or network failures, DartCSim+ uses a 

resubmission mechanism based on packet transmission. Bux et al. [26] solved the inho-

mogeneity problem of CloudSim. On the basis of CloudSim, they added a process of mod-

eling instability in the cloud environment. It could simulate dynamic changes in runtime 

performance and sudden changes during task execution issued by the failure. In addition, 

Guérout and Monteil et al. [27] and others added a new patch of DVFS to CloudSim, so 

that CloudSim could use DVFS to perform energy-aware simulation experiments. Chen 

and Deelman et al. [28] et al. pointed out that ignoring the system failure and overhead in 

the simulation workflow would have a significant impact on the simulation experiment 

results, so they proposed WorkflowSim, which can be used to simulate the workflow in a 

distributed environment. Wickremasinghe [29,30], also from the Buyya team, proposed 
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the visualization simulator CloudAnalyst, based on CloudSim. The main purpose of the 

simulator was to achieve optimal scheduling of the data center under the current config-

uration conditions. CloudAnalyst was designed directly based on CloudSim and ex-

panded some of CloudSim’s functions. It could be used to learn the behavior of large-scale 

internet applications in the cloud computing environment and quickly conduct simula-

tion experiments. Kecskemeti [31] introduced a unified model of resource sharing and a 

hierarchical energy monitoring framework, thus solving the scalability problem of 

CloudSim. 

Based on CloudSim, Tian et al. [32] developed the lightweight visual cloud compu-

ting simulator CloudSched, which could support simulation modeling of large-scale 

cloud computing applications. Using this simulator, users can customize their infor-

mation, data center information (number and location, etc.), resources, and other infor-

mation and simulate basic indicators such as data center response time and processing 

requests. However, the simulator cannot simulate the amount of power consumption of 

the data center. The MDCSim simulator [33] simulates the power consumption of the data 

center and can model the characteristics of various devices (servers, switches, etc.) in the 

data center. MDCSim can avoid building and processing similar simulation objects one 

by one, so the required simulation time is significantly shortened, and the scalability is 

significantly improved. CloudSim and MDCSim are event-based simulators. Their simu-

lation accuracy is insufficient. The MDCSim simulator is a commercial product, and its 

working principle cannot be understood due to the lack of public source code. In order to 

improve the simulation accuracy, Kliazovich [34] proposed a new simulator, GreenCloud, 

which is a packet-level cloud data center simulator designed to evaluate the energy con-

sumption cost of data center operation. This simulator is an extension of the network sim-

ulator NS2 [35]. It mainly focuses on evaluating the power consumption of cloud commu-

nications and provides a fine-grained power modeling and simulation tool for cloud data 

centers. Its key advantage is that it fully supports the TCP/IP protocol model. For fine-

grained simulation of data center power consumption, DCWorms [36] provides simula-

tions of data center energy consumption, including energy consumption of cooling and 

ventilation systems and energy consumption modeling of CPU, memory, and network in 

servers. 

In order to support elastic cloud infrastructure simulation, Sriram [37] proposed the 

SPECI simulation tool. It allows simulation of the performance and behavior of data cen-

ters and simulates the functions and code of large data centers according to input size and 

the middleware design strategy. SPECI consists of two packages: one for building data 

center layouts and topologies and the other for executing experimental components, so it 

has good scalability. Unlike the simulators introduced above, which are software-based 

simulators, OpenCirrus [38,39] is an open cloud computing simulator based on software 

and hardware, designed to support server design and management research in data cen-

ters. The simulator has three main goals: to promote system-level research on cloud com-

puting; to encourage new cloud computing applications and application-level research; 

and to provide experimental data sets to supply open API for cloud computing develop-

ment. 

The difference between the energy efficiency simulator designed in this research and 

the above data center simulation is that Escope mainly simulates the energy efficiency of 

the data center. By simulating data center energy efficiency, data center throughput, 

server power consumption, and power distribution, optimized algorithms are used to 

simulate and evaluate data center energy efficiency. It can also help data center operators 

master the energy efficiency characteristics of each server, as a means to better perform 

task scheduling. 

3. Data Center Energy Efficiency Simulator—Escope Design 

Experiments have shown that running servers in the best working range can improve 

the energy efficiency of servers. Still, hundreds of thousands of servers are deployed in 
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large data centers, hundreds of which have different configurations and models. Due to 

different hardware configurations, the energy efficiency characteristics of servers are also 

different [40,41]. Therefore, data center operators need to understand the energy efficiency 

and energy ratio of each server in order to effectively improve server utilization and rea-

sonable task scheduling with the objective of improving the energy efficiency of the data 

center as much as possible. In order to enable data center operators to better understand 

the energy efficiency characteristics of servers in the data center, we have developed the 

data center energy efficiency simulator Escope. We use Escope to simulate the online num-

ber of servers of different models in the data center and the optimal working range of the 

servers to analyze the energy efficiency characteristics of the data center servers and pro-

vide data support for data center operators. By modeling data center energy efficiency, 

task throughput, and power quota, optimization algorithms simulate and evaluate data 

center energy efficiency to help data center operators understand the energy efficiency 

characteristics of each server, thus improving task scheduling and data center energy ef-

ficiency. 

3.1. System Function Design 

The architecture of Escope is shown in Figure 3. It includes components such as 

crawler, simulator, database, selector, and web interface. 

EE SimulatorSelector

Mysql

VM Power Model

Server

The Physical Layer

Monitor Benchmark Model

Data Interface

Redis

Storage Interface

Visual Interface

Web Interface (Web Interface) 

Load Simulator

Calculation Interface

Outside 

Calls

External 

Data

The 

crawler 

interface

Server Server
 

Figure 3. Escope architecture. 

Escope provides the following functions: 

(1) Escope integrates the monitoring solution for large-scale distributed clusters in the 

open-source framework Zabbix, which can collect runtime data of all servers in the 

cluster, including temperature, CPU utilization, memory utilization, server power 

consumption, memory power consumption, and power management unit (PMU) in-

formation. Monitoring items can be added at any time according to the needs of us-

ers; 

(2) Escope provides a load model, which integrates a variety of commonly used loads in 

the industry. Users only need to enter information such as memory utilization, disk 

I/O, and network I/O, and Escope will automatically complete the test on the desig-

nated physical machine to obtain data information. The generated data will support 

the data center energy efficiency simulation; 

(3) For cloud computing operators, Escope provides a VM power consumption model, 

which can automatically estimate the VM power consumption based on the system 

information collected on the server; 

(4) In addition to automatically testing the energy efficiency of the server according to 

the load model, Escope can also automatically obtain the server configuration and 

energy efficiency information (such as SPECpower) disclosed by each website to es-

tablish a server energy efficiency information database; 



Energies 2023, 16, 3187 8 of 21 
 

 

(5) Users can make simulation policies and scenarios, such as setting the utilization rate 

of all servers to no more than 30% or setting the utilization range for servers to sim-

ulate the load of different business scenarios; 

(6) Users can add new servers and server prices to the constructed data center. After 

adding new machines, Escope can simulate the energy efficiency operation of the 

newly constructed data center and calculate the cost–benefit based on the electricity 

savings; 

(7) Escope provides a web visual interface, so users can input various parameters and 

display the simulation results. For example, it will classify and display the simulation 

results according to server parameters (CPU model, memory size, release year, etc.) 

to deeply analyze the energy efficiency distribution of data center servers. 

3.2. Interface Design 

The functions of each interface in Escope are as follows: 

(1) Data interface: This interface is mainly used to test and collect energy efficiency in-

formation of data center servers, including three components: monitoring, energy ef-

ficiency testing, and VM power consumption model. The monitoring component is 

used to collect information about the server. The energy efficiency testing component 

integrates a variety of loads to perform energy efficiency testing on the server. The 

VM power consumption model is used to estimate the power consumption of the VM 

based on the monitoring information of the server; 

(2) External data acquisition interface: This interface is responsible for acquiring server 

energy efficiency information from the website that publishes server energy effi-

ciency information, sorting the data and storing it in the Escope database; hence, even 

without real servers, Escope can still simulate data center energy efficiency; 

(3) Storage interface: The function of the storage interface is to store and classify server 

information obtained from various methods. Escope uses MySQL for persistent stor-

age and Redis for data caching, thus speeding up simulation efficiency while ensur-

ing data integrity; 

(4) Calculation interface: This interface includes three components, namely, the selector, 

the energy efficiency simulator, and the load generator. The selector can select qual-

ified server information and quantity from the database according to the parameters 

provided by the user to construct the data center to be simulated. The load generator 

can estimate the total throughput of the data center based on the typical load situa-

tion of the data center and then input it into the simulator for simulation. The simu-

lator contains an energy efficiency simulation algorithm, which executes the simula-

tion algorithm according to the simulation strategy parameters input by the user. 

Then, it generates a report after the simulation ends and displays the simulation re-

sult on the Web interface; 

(5) Visual interface: The visual interface has two functions. The first is to receive simula-

tion parameters provided by users, such as simulation strategies and server combi-

nation strategies. The second is to display Escope simulation results for users to ana-

lyze; 

(6) External call: Escope provides an external call interface, and other systems in the data 

center can call the simulation results generated by Escope through RPC (remote pro-

cedure call). 

The detailed execution process of Escope is shown in Figure 4. (The server energy 

efficiency test process is omitted.) 
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Figure 4. Escope Simulation Process. 

(1) First, users collect information about the server’s energy efficiency, either by crawl-

ing from some web sites (SPECpower, for example) or by entering custom server in-

formation through a web interface; 

(2) Then, users enter the selection parameters, the selector selects the server according 

to the parameters and builds the data center to be simulated. The parameters can be 

server type, server release year, server quantity, and CPU type; 

(3) Next, the user inputs a simulation strategy, which can be to limit the total power 

consumption of the data center or the throughput that the data center needs to 

achieve. The goal of the simulator is always to select the server and its utilization rate 

under the existing simulation strategy to maximize the energy efficiency of the data 

center, thereby maximizing the throughput and energy efficiency of the data center; 

(4) Finally, when the simulation is completed, the simulator will send the results to the 

Web server in JSON format and generate a corresponding result report. The web in-

terface will display different types of simulation result data and charts according to 

the simulation result, which is convenient for users to view and analyze the data. 

3.3. Energy Efficiency Simulation Algorithm for the Data Center 

The Escope energy efficiency simulation algorithm needs to solve a combinatorial 

optimization problem. Assuming that the data center has x servers with different config-

urations, the number of servers in each configuration is n, and there are N servers in total. 

Each server can run underutilization j (j = 1, 2, 3...10, representing 10% to 100% utilization). 

max ∑ ∑ 𝑞𝑖𝑗𝑛𝑖
𝑗=10
𝑗=1

𝑖=𝑥
𝑖=1 𝑐𝑖, 

s. t. ∑ ∑ 𝑝𝑖𝑗𝑛𝑖
𝑗=10
𝑗=1

𝑖=𝑥
𝑖=1 𝑐𝑖 ≤ 𝑃, 

s. t.  ∑ 𝑛𝑖 ≤
𝑗=10
𝑗=1  𝑛. 

(4) 

The power consumption of server i under the utilization rate of j is pij; the throughput 

is qij, and the value of cj is either 0 or 1, which represents whether to turn on the server. 

Formula (4) expresses the maximum throughput of the data center under the power limit, 

and Algorithm 1 shows the throughput maximization algorithm under the power limit. 
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Algorithm 1: Maximizing throughput simulation algorithm 

Input: Data center server set N, Total power P 

Output: Optimal solution bestvalue 

1： 𝒇𝒐𝒓 𝑘 𝑖𝑛 [1 , 𝑃] ∶ 

2：   𝒇𝒐𝒓 𝑖 𝑓𝑟𝑜𝑚 [1, 𝑁 + 1] ∶    

3：      𝒊𝒇 𝑛𝑖  𝑖𝑠 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ∶   

4：          𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑗]  =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑗] 

5：      𝒆𝒏𝒅 𝒊𝒇 

6：      𝒇𝒐𝒓 𝑗 𝑓𝑟𝑜𝑚 1 𝑡𝑜 10 ∶    

7：         𝒊𝒇 𝑘 < 𝑝𝑖𝑗 : 

8：            𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑘]  =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘] 

9：         𝒆𝒍𝒔𝒆 𝒊𝒇 𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘]  ≥  𝑞𝑖𝑗  𝑎𝑛𝑑 𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘]  >

𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑘]:       

10：             𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑗]  =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘] 

11：          𝒆𝒍𝒔𝒆 ∶ 

12：              𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑘]  =  𝑞𝑖𝑗 +  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘 − 𝑝𝑖𝑗] 

13：         𝒆𝒏𝒅 𝒊𝒇 

14：      𝒆𝒏𝒅 𝒇𝒐𝒓 

15：   𝒆𝒏𝒅 𝒇𝒐𝒓 

16： 𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑁 + 1, 𝑘 + 1] 

Algorithm 1 is similar to the multiple knapsack algorithm. The two-dimensional ar-

ray bestvalue [i, j] represents the maximum throughput of the first i server under power 

consumption j, and bestValue represents the maximum throughput of the data center un-

der power consumption limit P. In this study, the power consumption limit P of the data 

center is regarded as the backpack capacity, the power consumption of the server under 

the utilization rate j as the weight, and the number of tasks that the server can handle 

under the utilization rate j as the value. The function of the algorithm is to aggregate the 

appropriate server and utilization and maximize the target value under restricted condi-

tions. As shown in Formula (5), Escope can also minimize the energy consumption of the 

data center while limiting the total number of tasks in the data center. 

min ∑ 𝑝𝑖𝑗𝑛𝑖
𝑖=𝑥,𝑗=10
𝑖=1,𝑗=1 𝑐𝑖, 

𝑠. 𝑡. ∑ 𝑞𝑖𝑗𝑛𝑖𝑐𝑖 ≥ 𝑇
𝑖=𝑥,𝑗=10
𝑖=1,𝑗=1 , 

𝑠. 𝑡.  ∑ 𝑛𝑖 ≤
𝑗=10
𝑗=1  𝑛. 

(5) 

The data center power minimization algorithm is shown in Algorithm 2. The best-

Value in the algorithm represents the minimum power consumption required by the data 

center when the data center throughput is T. 
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Algorithm 2: Minimizing total power consumption simulation algorithm 

Input: Data center server set 𝑁,Total throughput 𝑇 

Output: Optimal solution 𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 

1： 𝑃 =  0 

2： 𝒇𝒐𝒓 𝑖 𝑖𝑛 (1, 𝑁 + 1) ∶ 

3：    𝑃 =  𝑃 + 𝑝𝑖,10     // maximum power consumption of data center servers 

4： 𝒇𝒐𝒓 𝑘 𝑖𝑛 (1, 𝑃): 

5：   𝒇𝒐𝒓 𝑖 𝑖𝑛 (1, 𝑁) ∶ 

6：     𝒊𝒇 𝑛𝑖  𝑖𝑠 𝑓𝑎𝑖𝑙𝑢𝑟𝑒: 

7：          𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑗]  =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑗] 

8：        𝒇𝒐𝒓 𝑗 𝑓𝑟𝑜𝑚 1 𝑡𝑜 10: 

9：            𝒊𝒇 𝑘 < 𝑝𝑖𝑗 : 

10：              𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖，𝑘]  =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1. 𝑘] 

11：           𝒆𝒍𝒔𝒆 𝒊𝒇 𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘]  ≥  𝑞𝑖𝑗  𝑎𝑛𝑑  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘]  >

𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑘]:       

12：             𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑗]  =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒𝑠[𝑖 − 1, 𝑘] 

13：           𝒆𝒍𝒔𝒆: 

14：             𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑘]  =  𝑞𝑖𝑗 +  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖 − 1, 𝑘 − 𝑝𝑖𝑗] 

15：           𝒆𝒏𝒅 𝒊𝒇 

16：       𝒆𝒏𝒅 𝒇𝒐𝒓 

17：    𝒆𝒏𝒅 𝒇𝒐𝒓 

18：  𝒘𝒉𝒊𝒍𝒆(𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒[𝑖, 𝑘]  >  𝑇) ∶ 

19：       𝑘— 

20：  𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

21：  𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 =  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒𝑠[𝑁 + 1, 𝑘 + 1] 

Based on Algorithms 1 and 2, users can calculate the optimal value under the data 

center’s total power consumption or throughput limit. Assuming that the set of servers 

selected by Algorithm 1 and Algorithm 2 is S, Algorithm 3 can output the optimal server 

combination and the specific utilization rate of these servers according to bestvalue [i, j]. 

The two-dimensional array utl [i, j] represents the utilization rate selected by the server ni 

under the limit j, and the utilization rate ranges from 10% to 100%. When bestvalue [i, L] 

is greater than bestValue [I − 1, L], server ni will join the server set S, and the utilization 

rate of server ni will be recorded at this time. When the simulated data center is too large, 

the two-dimensional array bestvalue [i, j] may cause memory overflow. When j exceeds 

the threshold (the size of the threshold is related to the size of the JVM), Escope will divide 

a large knapsack problem into multiple small knapsack problems for simulation calcula-

tion, and the segmentation accuracy will be lost (less than 1%). Although the accuracy is 

reduced, it ensures that Escope can simulate data centers of any size. Users can freely 

adjust the threshold according to the configuration of the computer running Escope, thus 

ensuring the scalability of Escope. 
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Algorithm 3: Server Selection Result output 

Input: 𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒𝑠[][] 

L =  Total throughput 𝑇 || Total power 𝑃  

Data center server set 𝑁 

Output: Selected server set 𝑆 

1： 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑟𝑟𝑎𝑦 𝑢𝑡𝑙[𝑛 + 1] [𝐿 + 1] 

2： 𝒇𝒐𝒓 𝑖 𝑖𝑛 (𝑛 + 1,1) ∶ 

3：     𝒊𝒇 𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒𝑠[𝑖][𝐿]  >  𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒𝑠[𝑖 − 1][𝐿]: 

4：          𝑆. 𝑎𝑑𝑑(𝑛𝑖−1) 

5：      𝒆𝒏𝒅 𝒊𝒇  

6：      𝒊𝒇 𝐿 𝑖𝑠 𝑃𝑜𝑤𝑒𝑟 ∶ 

7：         𝐿 =  𝐿 −  𝑝𝑖,𝑢𝑡𝑙[𝑖−1][𝐿] 

8：      𝒆𝒏𝒅 𝒊𝒇  

9：      𝒊𝒇 𝐿 𝑖𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡: 

10：         𝐿 =  𝐿 −  𝑞𝑖,𝑢𝑡𝑙[𝑖−1][𝐿] 

11：      𝒆𝒏𝒅 𝒊𝒇  

12：      𝒊𝒇 𝐿 ==  0 ∶ 

13：         𝐵𝑟𝑒𝑎𝑘 

14：     e𝒏𝒅 𝒊𝒇 

15： 𝒆𝒏𝒅 𝒇𝒐𝒓  

Although the above algorithm can obtain the optimal solution of the combinatorial 

optimization problem, its time complexity reaches O(n3), which requires more time to sim-

ulate a large data center with a large number of servers. Therefore, this research also inte-

grates a simulated annealing algorithm (simulated annealing, SA) in Escope. The simu-

lated annealing algorithm is a method of seeking approximate solution optimization prob-

lems based on a Monte Carlo design. The simulated annealing algorithm is essentially a 

greedy algorithm. Because it adds random factors in searching for the optimal solution, it 

has a certain probability to accept the sub-optimal solution, which may jump out of the 

local optimal solution and reach the global optimal solution. 

As shown in Figure 5, assuming that the minimum point C is the optimal solution, 

the simulated annealing algorithm will continue to move to the right with a certain prob-

ability after searching for the local optimal solution B. By moving to the right, there is a 

certain probability that B and C can be skipped. Therefore, the local minimum B is jumped 

out, and the optimal value C is reached. The probability of accepting the sub-optimal so-

lution adopts the metropolis criterion. As shown in Equation (6), the probability that the 

particle tends to balance at temperature T is exp⁡(−∆E/(kT)), where E is the internal value 

at temperature T, ∆E is the variable, and K is the Boltzmann constant. 

{

                     1                                   𝐸(𝑥𝑛𝑒𝑤 < 𝐸𝑜𝑙𝑑)

exp (−
𝐸(𝑥𝑛𝑒𝑤) < 𝐸(𝑥𝑜𝑙𝑑)

𝑇
)           𝐸(𝑥𝑛𝑒𝑤 ≥ 𝐸(𝑥𝑜𝑙𝑑))

 (6) 

The simulated annealing algorithm is shown in Algorithm 4. When it is used to solve 

the combinatorial optimization problem in this section, the internal energy E can be as-

sumed as the data center throughput, and the temperature T can be simulated as the con-

trol parameter t to perform the simulated annealing algorithm. First, starting from the 

initial i and the initial value of the control parameter t, the current solution is repeated to 

generate a new solution (delete or add a new server); calculate the objective function dif-

ference (compared with the previous data center throughput); accept or discard iteration 
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of the solution (whether the restriction condition exceeds the threshold); and gradually 

attenuate t (recalculate the probability of accepting the sub-optimal solution). Finally, the 

server combination generated at the end of the algorithm is the approximate optimal so-

lution. 

 

Figure 5. Simulated annealing algorithm to find the optimal value (the lowest point). 

Algorithm 4. Simulated Annealing algorithm. 

Input: Data center server set 𝑁, Total throughput 𝑇, 

Initial temperature 𝐼𝑡 , Annealing rate 𝑎𝑓,  number of balances 𝑏 

Number of iterations 𝑖𝑡𝑒𝑟 

Output: Selected server set 𝑆 

1： 𝒇𝒐𝒓 𝑖 𝑖𝑛 (0, 𝑖𝑡𝑒𝑟) ∶ 

2：   𝒇𝒐𝒓 𝑗 𝑖𝑛 (0, 𝑏) ∶ 

3：      𝑛𝑜𝑤𝑉𝑎𝑙𝑢𝑒 =  𝑐𝑎𝑙𝑐𝑢𝑉𝑎𝑙𝑢𝑒() 

4：      𝑠𝑒𝑟𝑣𝑒𝑟 =  𝑟𝑎𝑛𝑑𝑜𝑚() 

5：      𝑆 =  𝑝𝑢𝑡(𝑠𝑒𝑟𝑣𝑒𝑟)  

6：    𝒊𝒇 𝑐𝑎𝑙𝑐𝑢𝑊𝑒𝑖𝑔ℎ𝑡()  >  𝑃: 

7：      𝑑𝑒𝑙𝑒𝑡𝑒(𝑠𝑒𝑟𝑣𝑒𝑟) 

8：      𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

9：    e𝒏𝒅 𝒊𝒇 

10：    𝒊𝒇 𝑐𝑎𝑙𝑐𝑢𝑉𝑎𝑙𝑢𝑒()  >=  𝑛𝑜𝑤𝑉𝑎𝑙𝑢𝑒: 

11：      𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

12：    𝒆𝒍𝒔𝒆: 

13：      𝑀𝑎𝑡ℎ. 𝑟𝑎𝑛𝑑𝑜𝑚()  <  𝑀𝑎𝑡ℎ. 𝑒𝑥𝑝(
𝑐𝑎𝑐𝑙𝑢𝑉𝑎𝑙𝑢𝑒−𝑛𝑜𝑤𝑉𝑎𝑙𝑢𝑒

𝐼𝑡
)  

14：    𝒆𝒏𝒅 𝒊𝒇 

15：   𝒆𝒏𝒅 𝒇𝒐𝒓 

16：  𝐼𝑡 =  𝐼𝑡 ∗  𝑎𝑓    

17： 𝒆𝒏𝒅 𝒇𝒐𝒓  

The annealing rate in the simulated annealing algorithm has an undeniable impact 

on the efficiency of the algorithm. Although the temperature drops too fast to reach sta-

bility quickly, it will reduce the probability of obtaining the optimal solution. If the tem-

perature drops too slowly, the algorithm will take too much time. In this study, the 
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experimental annealing rate is 0.95. The more you set the number of balances, the fewer 

iterations you need, but the time for a single iteration becomes longer. The setting of the 

initial temperature will affect the search range of the solution. The higher the temperature, 

the higher the quality of the final solution, but the algorithm will take longer. Compared 

with the knapsack algorithm, the simulated annealing algorithm can obtain sub-optimal 

solutions, but the time complexity is reduced to O (2x(log (n))2). We use two different 

simulation algorithms in Escope to minimize power consumption for 10,000, 100,000, and 

1 million servers. The input is the number of tasks that need to be processed. Algorithm 2 

is labeled as Algorithm 1, and Algorithm 4 Labeled as Algorithm 2. The experimental re-

sults are shown in Table 2. 

Table 2. Simulation time comparison of different algorithms. 

 
Number of Servers 

(104) 

Number of Servers 

(105) 

Number of Servers 

(105) 

Algorithm #1 com-

pletion time 
54 s 228 s 1498 s 

Algorithm #1 accu-

racy 
100% 100% 99.4% 

Algorithm #2 com-

pletion time 
8 s 19 s 488 s 

Algorithm #2 accu-

racy 
99.1% 97.6% 94.1% 

Algorithm #1 has a smaller accuracy in the case of one million units. The reason is 

that there are too many servers to be simulated, which requires decomposition and pro-

cessing, resulting in a decrease in simulation accuracy. On the other hand, Algorithm #2 

has a faster calculation time. In the case of a million scale, the speed is 68% higher than 

Algorithm #1, but it also loses 6% accuracy. 

Data center operators can choose different simulation algorithms according to their 

needs. If a fast simulation is required and the optimal value is not required, then the sim-

ulated annealing algorithm can be selected. If the optimal solution is needed, the multiple 

knapsack algorithm can be used for simulation. 

4. Experiment and Analysis 

In order to verify the effectiveness of energy efficiency simulator Escope, four kinds 

of simulation data centers were established in this section. The data center server was 

constructed with the server energy efficiency information released by SPECpower in 

2017–2019; 135 types of servers were selected, each type of the server was set to 50, and 

the total number of servers in a data center was 6750. We set two different simulation 

goals. One goal was to calculate the number of servers online when the data center 

throughput was maximized and the utilization group located under the power consump-

tion limit of the data center. The second goal was to calculate the online number of servers 

that minimize the power consumption of the data center and the utilization rate when the 

task load of the data center was determined. Escope would simulate the optimal solution 

for the highest energy efficiency in the data center by simulating which servers were 

turned on and at which utilization rate among the 6750 servers. The overview of the four 

different types of data centers is as follows: 

(1) Data center #1: the server can choose to run at any utilization; 

(2) Data center #2: the server is always running at the highest energy efficiency; 

(3) Data center #3: server utilization is less than 30%; 

(4) Data center #4: the server runs at 100% utilization. 
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In the simulation of this article, data center #1 has no restrictions on server utilization, 

and all servers can choose to operate at any utilization. Intuitively, as long as each server 

runs on the highest EE, the data center can achieve the highest energy efficiency, so we set 

up data center #2 to verify whether this idea is correct. The server portfolio simulated by 

data center #2 will all run at its highest EE utilization. Data center #3 simulates a typical 

data center situation where the server usage rate is less than 30%. This situation wastes a 

lot of resources but is not completely useless. The servers selected in data center #4 will 

run at 100% utilization, and the purpose of the setting is to verify whether running the 

server at 100% utilization is an optimal policy. No matter which simulation strategy is 

used, Escope will select the best combination of servers under the current situation to 

maximize the energy efficiency of the data center while satisfying the current strategy. 

4.1. Simulation of Maximum Throughput in Data Center with Limited Power Consumption 

Constrained by data center power infrastructure and cooling conditions, data center 

servers must operate under strict power restrictions. When the power of all the servers on 

the rack exceeds the rated upper limit, the servers will power out, which will affect the 

stable operation of the data center. Therefore, the limited power consumption poses prob-

lems for data center operators: When the total power of the data center is limited, which 

types of servers should data center operators choose, and how many servers should run 

in each model? Furthermore, at what utilization range should these servers keep maxim-

izing the throughput of the data center? 

In this section, several simulation experiments will be conducted on the four afore-

mentioned data centers to explore the energy efficiency operating range of different types 

of servers in data centers under power constraints. The upper limit of the total power of 

each data center in the experiment is 100 KW to 1000 KW, and the increased step length is 

10 KW. The experimental results are shown in Figures 6 and 7. 

 

Figure 6. Number of servers online for different data centers. 

 

Figure 7. Throughput of different data centers. 
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The simulation results of data center #1 and data center #2 are similar, but the 

throughput of data center #1 is always greater than that of data center #2. The reason for 

this result is that although the simulation strategy of data center #2 always selects the 

server utilization at the peak EE, in some cases, this choice does not maximize the total 

throughput. For example, when the available power consumption is 200 W, the selected 

server running at 100% utilization needs 200 W, and the server running at EE peak (as-

suming 80%) needs 180 W. Therefore, #1 will select 100% utilization, while # 2 will choose 

80% utilization, so the remaining 20 W will be wasted. Obviously, since data center #1 can 

choose any utilization rate and the simulated optimal combination of servers can maxim-

ize throughput, the throughput of data center #1 is always the largest. 

The throughput of data center # 3 is much lower than that of other data centers, indi-

cating that traditional data centers waste resources when server utilization is less than 

30%, thus reducing the throughput and energy efficiency of the entire data center. For 

data center # 4, the number of servers online is always the lowest, because server power 

consumption is always the highest at 100% utilization, so it is easy to reach the power 

limit. This also verifies that the strategy of unplanned running servers at the highest uti-

lization does not improve the energy efficiency of the data center. 

By analyzing the experimental results, the following conclusions can be drawn: 

(1) Under the same power consumption limit, the number of online servers at peak en-

ergy efficiency (data center #2) is about 29.86% higher than servers at 100% utilization 

(data center #4), and the total number of tasks in the entire data center (ssj_ops) in-

creased by 7.17%; 

(2) The number of servers in data center #1 is slightly lower than that in data center #2, 

but the throughput is 2% higher than that of servers running at peak energy efficiency 

utilization (data center #2). 

(3) The server utilization rate of the traditional data center is lower than 30% (data center 

#3), and the average throughput is 33% lower than that of data center #1. However, 

the number of online servers has increased by 25% when compared to #1. The largest 

number of online servers means that data center #3 has better redundancy, which can 

ensure that the data center provides stable services. 

Judging from the energy efficiency distribution of Escope’s selection of server collec-

tions, the energy efficiency of servers released in recent years has been significantly im-

proved when compared to many years ago, and the average EE and EP have been greatly 

improved. Table 3 shows the average EE and EP of different data centers when the power 

consumption is limited to 1000 KW. Comparing the average EE values of data center #1 

and data center #2, it can be seen that it is a better strategy to choose a server with a high 

EE value, but this is not always optimal. The largest EP is chosen in data center #2, because 

EP represents the variation in server power consumption with utilization. Therefore, serv-

ers with large EE may not have the largest EP, but servers with larger EPs tend to have a 

higher EE value when working at low utilization (10−30%). 

Table 3. The average EE and EP of the four data centers with a power limit of 1000 KW. 

Data Center Average EE Average EP Average utilization 

#1 15,331 0.86 79.75% 

#2 15,148 0.87 77.95% 

#3 10,571 0.92 30% 

#4 14,327 0.83 100% 

4.2. Simulation of Power Minimization with Data Center throughput Preserved 

When the size and business of the data center are stable, the throughput of the data 

center remains stable. Minimizing the power consumption of the data center when the 

throughput is fixed is also a key issue for improving the energy efficiency of the data 
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center. In this section, the simulation goal of all four data centers is to minimize data center 

power consumption while maximizing data center throughput. In the simulation, the total 

throughput of each data center is set from 1 × 108 to 1 × 1010, with a step size of 1 × 108. 

The simulation results are shown in Figures 8 and 9. For data center #4, the number 

of online servers is always the lowest. This is because running at 100% utilization on the 

server means that the server needs to consume the most power and can handle the most 

tasks. However, maximum peak processing capacity does not imply highest energy effi-

ciency. Therefore, data center #4 has an average power consumption increase of 1.7% 

(about 30 KW) when compared to data center #2, with the highest energy efficiency utili-

zation. The average energy consumption of data center #1 is reduced by 0.85% when com-

pared to data center #2. For the traditional data center #3, due to the low resource utiliza-

tion rate, the average power consumption increased by 36% (about 200 KW) when com-

pared to the other three high utilization data centers. However, the number of online serv-

ers in data center #3 has increased by an average of 45% when compared to other data 

centers, which can better guarantee the quality of service. 

 

Figure 8. Number of servers online in different data centers. 

 

Figure 9. Total server power consumption of different data centers. 

Table 4 shows the release year of the server selected by data center #1 in the simula-

tion. It can be seen from the table that in order to achieve maximum energy efficiency, the 

choice of the simulator is related to the server energy efficiency characteristics but not the 

release year, which shows that Escope can choose the best server combination according 

to different strategies. 

Table 4. Release year and number of servers under 1 × 1010 throughput in data center #4. 

Server Name Price (USD) EE Number(U) 

Fusion 2288 H V5 7768 13,478 10 

Fujitsu RX2540 M4 11,172 12,842 10 

Fujitsu RX4770 M4 9270 12,828 10 

ThinkSystem SR950 10,025 12,377 10 

Sugon I820-G30 9487 12,306 10 
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Escope will use load generators to generate tasks that the data center needs to com-

plete. The load generation result is shown in Figure 10, which shows the throughput of 

the data center in a day. The maximum task volume of the data center is 6.0 × 108, and the 

hourly load in the day is set to a step shape based on SPECpower modeling. 

 

Figure 10. Throughput of the data center per day. 

The simulation results are shown in Tables 5 and 6. The energy efficiency of data 

center #5 is 7297, and the energy efficiency of data center #6 is 13758. Based on the average 

electricity price of 1 CNY/kWh in China in 2019, small data center #6 compares with data 

center #5 by saving about CNY 1000 per day. Using the Escope simulation, it takes 3418 

days to recover the cost of purchasing a new server by saving power. 

Table 5. Simulation results of data center #5. 

Throughput Average Consumption (W) Number of Severs Online Time (hour) 

𝟏𝐄𝟖 11,660 36 2 

𝟐𝐄𝟖 23,645 47 2 

𝟑𝐄𝟖 36,967 71 2 

𝟒𝐄𝟖 52,873 140 2 

𝟓𝐄𝟖 70,823 162 2 

𝟔𝐄𝟖 91,594 210 14 

Table 6. Simulation results of data center #6. 

Throughput Average Consumption (W) Number of Severs Online Time (hour) 

𝟏𝐄𝟖 6458 22 2 

𝟐𝐄𝟖 13,082 37 2 

𝟑𝐄𝟖 19,946 41 2 

𝟒𝐄𝟖 26,930 50 2 

𝟓𝐄𝟖 37,193 67 2 

𝟔𝐄𝟖 49,052 38 14 

The larger the size of the data center, the greater the electricity consumption, the 

higher the electricity price, and the faster the cost recovery will be. However, this number 

is only a reference value for data center operators. Data center operators can simulate data 

center energy efficiency by configuring different server combinations so as to choose the 

most suitable server for their data center and reduce procurement costs. 

5. Discussion 

In practice, on the one hand, data center servers must run under strict power re-

strictions, and operators need to consider which types of servers should be selected and 

how many servers should be run in each model; they also need to understand what 
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utilization range must be maintained to maximize the throughput of the data center. On 

the other hand, when the size of the data center and the business is stable, the throughput 

of the data center will remain stable. Minimizing power consumption in the data center 

when throughput is fixed must also be considered. Escope can simulate the energy effi-

ciency of the data center. By entering the power consumption limit of the data center, we 

can simulate the maximum throughput of the data center under this power limit. Simula-

tions can also be run to determine which servers should be started and what utilization 

range the servers should be run in as a means to achieve the maximum throughput. At 

the same time, by entering the number of tasks that the data center needs to handle, 

Escope can calculate the minimum power consumption required by the data center server 

to handle these tasks. In terms of specific algorithm selection, data center operators can 

choose different simulation algorithms according to their needs. If a fast simulation is re-

quired and the optimal value is not necessary, then the simulated annealing algorithm can 

be selected. If the optimal solution is needed, multiple simulation algorithms can be se-

lected. The backpack algorithm is simulated. 

6. Conclusions 

This study starts with the reduction in data center power consumption; then, related 

research on data center energy efficiency and energy proportionality are introduced. Sub-

sequently, we develop the design and experimental analysis of the energy efficiency sim-

ulator Escope, and now we can draw the following conclusions: 

(1) The energy efficiency of the data center cannot be improved by running the server at 

the highest energy efficiency point or by running the server under full load. The sim-

ulation algorithm provided by Escope can select the optimal server set and their cor-

responding utilization rate; 

(2) Escope can set a variety of simulation strategies, and data center operators can sim-

ulate data center energy efficiency according to their own needs; 

(3) When limiting the server utilization rate to less than 30%, almost all simulation re-

sults of the server run at 30% utilization rate. This is because under the existing ar-

chitecture, the energy efficiency of the server at 30% utilization rate must be higher 

than a utilization rate of less than 30%, so most of the selected servers run at 30% 

utilization rate; 

(4) Escope can calculate the electricity cost saved by introducing new servers in the data 

center. This function provides an important reference for operators to purchase serv-

ers and design data centers. 

In addition to the data centers constructed in the study, operators can also build data 

centers that conform to the actual situation. According to different management purposes, 

the data center may have different operation strategies. Escope can simulate the energy 

efficiency of the data center according to different strategies, help data center operators 

understand the energy efficiency characteristics of the data center, and require the data 

center task scheduler to make the best decision. 

In future work, we plan to set up server performance data for more benchmark types 

such as hybrid web server benchmarks and memory intensive benchmarks. Further, we 

hope to allow users to customize the benchmark. We will add a monitoring system to 

Escope, allowing Escope to automatically monitor server performance. Administrators 

can test more benchmarks (rather than SPECpower only), and Escope can automatically 

generate server performance data to bring the simulation closer to reality. 

In addition, due to the fact that new applications of artificial intelligence require a 

large amount of computing and storage resources to support their algorithms and models, 

these resources need to be supported and maintained in data centers, resulting in signifi-

cant energy consumption. In the future, we can further use CPU and GPU to accelerate 

simulation calculations in data centers and improve simulation speed and accuracy. 

Quantum computing, on the other hand, can better handle complex problems such as 
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optimization and derivation of artificial intelligence algorithms, thereby improving the 

level of intelligence in data centers. By combining these tools, different data center scenar-

ios can be simulated, and future performance and energy costs can be predicted. 
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