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Abstract: The present study investigates the steady three-dimensional flow of a Sisko fluid over a
bidirectional stretching sheet under the influence of Lorentz force. Heat transfer effects have been
carried out for constant heat flux and Newtonian heating systems. The transformed governing
equations of the flow model are solved by using the spectral relaxation method (SRM), taking
into account similarity transformations. The effects of controlling parameters on flow and derived
quantities have been presented in the form of graphs and tables. Numerical benchmarks are used
to characterise the effects of skin friction and heat transfer rates. It is noticed that in the case of
Newtonian heating, the rate of heat transfer is higher than that in the constant heat flux case. As
the stretching parameter increases, the fluid temperature decreases in both Newtonian heating and
constant heat flux. It was discovered that successive over (under) relaxation (SOR) approaches will
considerably boost the convergence speed and stability of the SRM system. The current findings
strongly agree with earlier studies in the case of Newtonian fluid when the magnetic field is absent.

Keywords: Sisko fluid; magnetic field; Newtonian heating; heat flux; spectral relaxation method

1. Introduction

Flow and heat transfer features are particularly vital along the stretching surface in
several technical mechanisms. A large number of researchers have devoted considerable
attention to boundary layer flow analysis stimulated by stretchable thermal surface areas;
This field of research has particularly caught the interest of the researchers for the current
paper. The manufacture of paper, the process of creating glass fibres, and other processes are
some ideal freezing the paper and drying the paper, plastic film drawing, etc. Sakiadis’s [1]
groundbreaking research exhibits different heat transfer phenomena, which have been
considered for both laminar and turbulent flows. Analyses are undertaken by Ishak [2]
on boundary layer flow with uniform temperature by the effects of radiation. For this
study, fluid was taken as the incompressible micropolar fluid. Vajravelu and Cannon [3]
studied fluid flow over a non-linearly stretching sheet. A three-dimensional aspect of the
study of stretching sheets was conducted by Ariel [4]. These works focused completely
on generalized fluids. The complicated rheology of biological fluids has sparked research
into a wide range of non-Newtonian liquids. In recent years, research on non-Newtonian
liquids has become more relevant because of these liquids’ participation in mechanical
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and industrial applications. The Sisko fluid model is a blend of Newtonian and non-
Newtonian fluids. As a result of its ability to depict non-Newtonian liquids through the
most significant range of shear rates, the Sisko [5] fluid model has significant importance.
A pseudoplastic and a dilatant liquid can be represented by this model, depending on the
characteristics of their shear thinning and thickening. The fluid can be thought of as a more
generalized version of power law fluids. Khan and Shahzad [6] investigated the boundary
layer flow of a Sisko fluid in a stretching sheet. The authors noticed that the velocity and
the boundary layer structure are significantly influenced by the governing parameters.
Megahed [7] examined the heat transfer flow of a non-Newtonian Sisko fluid past a non-
linearly stretching sheet in the presence of heat generation and viscous dissipation. The
authors noticed that both the local skin friction and the local Nusselt number exhibit the
augmentation trend when the material parameters increase. Upreti et al. [8] analysed the
convective heat transfer in a Sisko fluid in the presence of suction and viscous dissipation.
The authors discovered that the existence of heat sink and shear thinning with an increase
in stretching parameters enhances the suction thermal field.

The authors of [9] recently investigated numerically the flow of a nanofluid in an
unstable boundary layer across a stretchable sheet with properties of the variable fluid.
Khan et al. [10] conducted an analysis of heat transfer and boundary layer flow of a
Sisko nanofluid over a nonlinear stretching sheet. They noticed that the thermophoresis
and Brownian parameters have a significant effect on concentration and temperature
fields. Surface heat flux and Newtonian heating are recommended for the generalization
of constant heat flux and the thermal boundary conditions of variable heat transfer. In
manufacturing products, these boundary conditions arise, where the temperature of the
surface can be an arbitrary point of time or space. Newtonian heating has been defined
as the heat transfer rate proportionate to local surface temperature. This local surface
temperature include the body surface. It is simulated in thermal convective flows at a
thermal bounded state of the wall. In the last few years, an enormous amount of research
has been undertaken on Newtonian heating; additionally Newtonian heating is being
investigated in conjunction with heat convective transport.

Munir et al. [11] experimented with a stretching surface’s movement in a boundary
layer with non-isothermal wall temperature. In this regard, the prescribed surface temper-
ature (PST), has been taken together with a prescribed heat flux (PHF). In this particular
context, there is an observation that the effect of the Sisko fluid material parameter wave
movement was prominent at values of lower Prandtl number. Uddin et al. [12] focused
on the effect of thermal variability of nanofluid mass transmission and heat transmission
via a stretchable surface inserted into a porous medium under a Newtonian heating state.
They have confirmed that the temperature is strongly influenced by the Newtonian heating
parameter. Another analysis on the nonlinear vertical stretchable surface with constant
heat flux was observed from Shen et al. [13]. In their investigation, they examined the
mixed convective boundary fluid of the MHD stagnation point flow. The research of Salleh
et al. [14] provided the analysis of two-dimensional boundary layer heat transfer flow. In
this research, flow was taken on a stretchable surface under Newtonian heating, which
is solved using a finite difference solution. Hussanan et al. [15] examined these impacts,
which are observable with heat transfer in Casson fluid. Here, they undertook an intensified
probation on the flow that passes via an infinitely oscillating vertical plate and a surface
held at Newtonian heating.

The magnetic field effect has extensive applications in various subjects such as chem-
istry, physics, and all engineering divisions. The same effects include in the drawing,
thinning, and annealing procedures of copper wire and also in the cooling performance
of continuous filaments. In electrically conducting fluids to draw such strips, the cooling
rate and stretching rate can be regulated by the magnetic field; therefore, the optimal
features of the ultimate product are enhanced. These types of some applications were
discussed by Pavlov [16], The viscous incompressible MHD flow over a linearly stretchable
sheet has applications. Sapunkov [17] has conducted research about boundary layer flow
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problems with self-similar solutions by considering MHD in non-Newtonian fluids. An
interesting investigation of Elghabaty and Rahman [18] showed an analytical solution
for power law fluid flow of MHD due to magnetic field effect, which is normal to the
wedge. Jayachandra Babu and Sandeep [19] have examined the MHD flow induced very
moderately on a stretchable surface of uniform thickness by taking into consideration
cross-diffusion effects by viewing velocity slip. A particular focus of the work of Parida
et al. [20] is the MHD nonlinear mass and heat transfer on a flat plate with partial slip. In
this research, additionally they have taken into consideration thermophoresis and nonlinear
thermal radiation effects. Using the Keller box method, the fascinating research of Prasad
et al. [21] presented about the flow caused by a non-isothermal stretchable sheet from an
impermeable wall. Similarly, Datti et al. [22], explored work was performed for the analysis
of induced visco-elastic MHD flow due to radiation. Further, on a stretchable surface,
Prasad et al. [23] investigated MHD viscoelastic fluid flow with magnetic characteristics
and variable viscosity effects. Gangadhar et al. [24] have analyzed hydromagnetic flow by
including chemical reactions with mass and heat transfer. Furthermore, Gangadhar [25]
investigated the external magnetic field effects for the Blasius MHD flow in the occur-
rence of suspended carbon nanotubes. Ma et al. [26–28] studied the MHD phenomena on
nanofluid in a different convective flow condition. Batti et al. [29] investigated the problem
of MHD flow of nanofluid with gyrotactic microorganisms. Shah et al. [30] studied thermal
behavior of MHD-free convective heat transfer flows past a moving vertical plate. Many
researchers have studied about boundary layer flow with convective conditions using
nanofluids [31–35]. Other good studies and research have also been conducted; some of
these can be found in references [36–41].

In the view of the above literature, the authors have concentrated on Sisko fluid flow
over a stretching sheet under the influence of a magnetic field. Much less attention has been
given to the bidirectional stretching sheet. Further, according to the authors’ knowledge,
no work has been conducted on three-dimensional MHD heat transfer flow of a Sisko fluid
over a stretching sheet using a spectral relaxation method. Further, the effects of Newtonian
heating and heat flux are incorporated. Hence the objective of the current research is to
study the 3D flow and heat transfer properties in a Sisko fluid across a stretching sheet
in the presence of a magnetic field, Newtonian heating, and constant heat flux conditions
using a spectral relaxation process.

2. Physical Model and Mathematical Formulation
2.1. Rheological Model

Consider the non-Newtonian fluid with time-independent and following the Sisko
rheological model; for such types of fluids, the Cauchy’s stress tensor is defined as

T = −pI + S (1)

where S is called the extra stress tensor as

S =

a1 + b1

∣∣∣∣∣
√

1
2

tr(A2
1)

∣∣∣∣∣
n−1
A1. (2)

in which, for n > 0 for various fluids, it is considered that a1 & b1 are the physical constants
difference, A1 = (gradV) + (gradV)T , V represents for the vector as velocity, T stands for
transposition, and means the first Rivlin-Erickson tensor.

2.2. Governing Equations and Boundary Conditions

The constant, incompressible, conducting, three-dimensional fluid flow, which adheres
in the Sisko model, adopts space x3 > 0. Fluid is moved through an elastic flat sheet in
the plane x3 = 0, with a constant temperature, is continuously stretched in the x1- and x2-
directions with linear velocities c1x1 and d1x2, respectively, as shown in Figure 1 (physical
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model). A uniform magnetic field of strength B0 is applied along x3-direction. It is assumed
that the applied electric field, induced magnetic field, and pressure gradient along the
stretching sheet are neglected. The uniform ambient temperature is at a distance far away
from the sheet and is considered as T∞.
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Under the boundary layer approximation, the governing equations for continuity,
momentum, and energy are as follows:

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0, (3)

ρ

(
u1

∂u1

∂x1
+ u2

∂u1

∂x2
+ u3

∂u1

∂x3

)
= a1

∂2u1

∂x32 − b1
∂

∂x3

(
−∂u1

∂x3

)n
−

σB2
0

ρ
u1, (4)

ρ

(
u1

∂u2

∂x1
+ u2

∂u2

∂x2
+ u3

∂u2

∂x3

)
= a1

∂2u2

∂x32 − b1
∂

∂x3

(
−∂u1

∂x3

)n−1 ∂u2

∂x3
−

σB2
0

ρ
u2, (5)

u1
∂T
∂x1

+ u2
∂T
∂x2

+ u3
∂T
∂x3

=
k(

ρcp
) ∂2T

∂x32 . (6)

The boundary conditions are as follows:

u1 = Uw(x1) = cx1, u2 = Vw(x2) = dx2, u3 = 0,
Case1 : ∂T

∂x3
= − qw

k (CHF), Case 2 : ∂T
∂x3

= −hsT (NH),

}
at x3 = 0, (7)

u1 → 0, u2 → 0, T → T∞, as x3 → ∞. (8)

2.3. Transformed Problem

By implementing the following transformation variables, the governing coupled
partial differential Equations (3)–(6) are converted to coupled ordinary differential equations
as below:

u1 = c1x1 f ′(η1), u2 = d1x2g′(η1),

u3 = −c1

(
c1

n−2

ρ/b1

)1/(n+1)[
2n

n+1 f (η1) +
1−n
1+n η1 f ′(η1) + g(η1)

]
x1

n− 1/n + 1,

θ(η1) =
kRen+1

b x1
n/1−n

ρ (T − T∞)(CHF), θ(η1) =
T−T∞

T∞
(NH),

η1 = x3

(
c1

2−n

b1/ρ

)1/(n+1)
x1

1− n/1 + n.

(9)
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The equations of momentum and heat transfer can be reduced as

A f ′′′ (η1) + n( f ′′ (η1))
n−1 f ′′′ (η1) +

2n
n+1 f (η1) f ′′ (η1)− ( f ′(η1))

2

+g(η1) f ′′ (η1)−M f ′(η1) = 0,
(10)

Ag′′′ (η1) + (− f ′′′ (η1))
n−1g′′′ (η1)− (n− 1)g′′ (η1) f ′′′ (η1)(− f ′′ (η1))

n−2

+ 2n
n+1 f (η1)g′′ (η1)− (g′(η1))

2 + g(η1)g′′ (η1)−Mg′(η1) = 0,
(11)

θ′′ (η1) + Pr
(

2n
n + 1

)
f (η1)θ

′(η1) + Prg(η1)θ
′(η1) = 0, (12)

The boundary conditions are reduced as

f (η1) = 0, g(η1) = 0, f ′(η1) = 1, g′(η1) = d/c = α,
Case 1 : θ′(η1) = −1 (CHF), Case 2 : θ′(η1) = −γ(1 + θ(η1)) (NH),

}
at η1 = 0, (13)

f ′(η1)→ 0, g′(η1)→ 0, θ(η1)→ 0, as η1 → ∞. (14)

where α = d
c is the stretching ratio parameter, prime denotes differentiation with respect to.

We consider the range 0 ≤ α ≤ 1, since for α > 1, the x1- and x2-axes are inter-
changed [42].

Rea =
ρx1U

a , Reb = ρx1
nU2−n

b , M =
σB2

0
ρc ,

A = Reb
2/(n+1)

Rea
, Pr = x1URb

−2/(n+1)

k/ρcp
, γ = − hs

Ren+1
b x1

n/(1−n) .
(15)

Note that when α = 1, the rate of stretching is equal in both x1- as well as x2-directions,
which is the axisymmetric-type flow. The unidirectional case is acquired at limit α→ 0
and the motion of the fluid is simply in the x1x3-plane, i.e., in Equation (9) both g and ∂g

∂η1
become zero.

2.4. Physical Quantities of Engineering Interest
2.4.1. The Coefficients of Skin Friction

One of the leading boundary layer characteristics is the skin-friction coefficient; at
x3 = 0 (near wall), the Shear pressure is dimensionless.

Therefore, the dimensionless coefficients of skin friction in the direction of x1- and x2-
respectively, are specified by [36,43]:

C f x1 =
τx1x3

1/2ρU2
w

, C f x2 =
τx2x3

1/2ρU2
w

. (16)

where τx1x3 is shear stress in the x1-direction and τx2x3 is shear stress in x2-direction. These
quantities can be described as follows, which are in the dimensionless form:

1
2

Re1/n + 1

b c f x1 =
(

A f ′′ (η1)− [− f ′′ (η1)]
n)

η1=0, (17)

1
2

Re1/n + 1

b C f x2 =
Vw

Uw

[
Ag′′ (η1) + [− f ′′ (η1)]

n−1g′′ (η1)
]

η1=0
. (18)

2.4.2. The Local Nusselt Number

The local Nusselt number is symbolized as Nux1 , which gives the heat transfer rate on
the wall defined as [13]:

Nux1 =
x1qw

k(Tw − T∞)

∣∣∣∣
x3=0

. (19)
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where qw = −k
(

∂T
∂x3

)∣∣∣
x3=0

is defined as the wall heat flux, and

Re− 1/n + 1

b Nux1 = −θ′(0)(CHF) and Re− 1/n + 1

b Nux1 = −θ′(0)(NH). (20)

3. Solution of the Problem

To describe this section succinctly, to solve the Equations (10)–(14), the spectral relax-
ation method (SRM) is used, this method can be observed in the investigation of Motsa and
Makukula [44]. SRM was suggested to address problems of the boundary layer similarity
of profiles deteriorating significantly. In this case, the algorithm of SRM for the subject of
boundary layer problems having a self-similar condition is described below briefly:

• By implementing the transformation ∂ f
∂η1

= p(η1), the momentum equation order for
f (η1) is reduced and depicts how the actual equation for p(η1) is displayed.

• Assume that f (η1) is perceived here from an earlier iteration (directed by fr), in order
to build a scheme of iteration for p(η1) in which, at the current iteration stage, assume
that only linear terms in p(η1) are to be estimated (directed by pr+1) and for all other
remaining terms that are of use, linear and nonlinear are assumed to be familiar from
previous iterations. Furthermore, at the preceding iteration, nonlinear terms in p
are assessed.

• By implementing the transformation ∂g
∂η1

= q(η1), the momentum equation order for
g(η1) is reduced and depicts how the actual equation for q(η1) is displayed.

• Assume that g(η1) is perceived here from an earlier iteration (referred to by gr), in
order to build a scheme of iteration for q(η1) in which, at the current iteration stage,
assume that only linear terms in q(η1) are to be estimated (referred by qr+1) and for all
other remaining terms that are of use, linear and nonlinear are assumed to be familiar
from previous iterations. Furthermore, at the preceding iteration, nonlinear terms in q
are assessed.

• In a similar manner to find the remaining governing dependent variables, the iteration
schemes are developed and now the variable solutions chosen in the earlier equation
are used in the updated solutions.

The concept of decoupling equations with the Gauss–Seidel idea is similar to the above-
mentioned technique. This procedure leads to variable coefficients with a sequence of linear
differential equations; here, by using traditional mathematical and numerical techniques,
linear differential equations are easily solved. In the present analysis, to discretise the
differential equations, we have used Chebyshev spectral collocation methods (see, for
example, [45,46]). By numerical technique, we determine that (η1)∞ = 20, with N = 100
grid points giving a spectral relaxation method with sufficient accuracy.

Because of their solution of a variable coefficient of linear differential equations, spec-
tral approaches are chosen in simple areas with smoothing solutions and a fast execution in
terms of discernment, including remarkably high precision. By the above discussed SRM
iterative system, Equations (10)–(14) be converted into

f ′r+1 = pr+1, fr+1(0) = 0, g′r+1 = qr+1, gr+1(0) = 0, (21)

(
A + n(−p′r)

n−1
)

p′′ r+1 +

(
2n

n + 1
fr + gr

)
p′r+1 − (M)pr+1 = p2

r+1, (22)

(
A + (−p′r)

n−1
)

p′′ r+1 +

(
2n

n + 1
fr + gr − (n− 1)p′′ r(−p′r)

n−1
)

q′r+1 − (M)qr+1 = q2
r+1, (23)

θ′′ r+1 + Pr
(

2n
n + 1

fr + gr

)
θ′r+1 = 0, (24)

For the above iteration scheme, the suitable boundary conditions are considered,
which are alluded to as follows:
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pr+1(0) = 1, qr+1(0) = α, θ′r+1(0) = −1 (CHF), θ′r+1(0) = −γ(1 + θr+1(0)) (NH), (25)

pr+1(∞) = 0, qr+1(∞) = 0, θr+1(∞) = 0, (26)

where the prime denotes differentiation with respect to η1. The Chebyshev spectral colloca-
tion method is used while solving the decoupled Equations (21)–(24). By using the spectral
procedure, the mathematical domain with the interval [0, L] is converted into [−1, 1] using
η1 = L(ξ + 1)/2, which is the application of the spectral process. At infinity, L is considered
for implementing boundary conditions. The implementation of a matrix differentiation D
used to estimate derivatives of unknown variables at the collocation points is one of the key
ideas of the spectral collocation method as the product of the vector matrix of the form.

∂ fr+1

∂η1
=

N

∑
k=0

Dlk fr((η1)k) = D fr, l = 0, 1, 2, . . . . . . . . . N. (27)

where the number of collocation points denoted by N + 1 (grid points) and at the collocation
points D = 2.D/L, f =

[
f (ξ0), f (ξ1), f (ξ2), . . . . . . . . . f (ξN)

]T is the vector function. Powers
of D denote the order of derivatives in higher order.

fr
(p) = Dp fr, (28)

where the order of the derivative is taken as p. For Equations (21)–(24) the spectral method
applied, we obtain:

A1 fr+1 = B1, fr+1(η1N) = 0, (29)

A2 pr+1 = B2, pr+1(η1N) = 1, pr+1(η10) = 0, (30)

A3gr+1 = B3, gr+1(η1N) = 0 , (31)

A4qr+1 = B4, qr+1(η1N) = α, qr+1(η10) = 0, (32)

A5θr+1 = B5,
N
∑

k=0
DNkθr+1(η1k) = −1(CHF),

N
∑

k=0
DNkθr+1(η1k) + γθr+1(η1k) = −γ(NH), θr+1(η10) = 0,

(33)

where
A1 = D, B1 = pr+1, (34)

A2 =
(

A + n(−p′r)
n−1

+
)

D2 +

(
2n

n + 1
fr + gr

)
D− (M)I, B2 = p2

r+1, (35)

A3 = D, B3 = qr+1, (36)

A4 =
(

A + (−p′r)
n−1
)

D2 +

(
2n

n + 1
fr + gr − (n− 1)p′′ r(−p′r)

n−1
)

D− (M)I, B4 = q2
r+1, (37)

A5 = D2 + Pr
(

2n
n + 1

fr + gr

)
D, B5 = 0 (38)

.
In Equations (29)–(33) there is a diagonal matrix, diag [ ], and I is an identity matrix;

these are all of size (N + 1)× (N + 1), as the number of grid points N is considered, f , p, g, q
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and θ are the function values respectively, and subscript r represents the iteration number
while evaluating at grid points.

Initial estimates of Equations (25) and (26) to enable the SRM scheme are selected as

f0(η) = 1− e−η1 , p0(η) = e−η1 , g0(η) = α− αe−η1 ,
q0(η) = αe−η1 , θ0(η) = e−η1(CHF), θ0(η) =

γ
1−γ e−η1(NH). (39)

These are the functions chosen randomly that the boundary conditions satisfy accord-
ingly. The process of iteration is continued until it reaches convergence. At the infinity
point, the convergence of the SRM is established as

Er = Max(‖ fr+1 − fr‖, ‖pr+1 − pr‖, ‖gr+1 − gr‖, ‖qr+1 − qr‖, ‖θr+1 − θr‖). (40)

If N increased, the scheme accuracy is established until achieving a point where the
consistent solutions and the value of the solutions are not changed due to further increment.

Applying the successive over-relaxation (SOR) method to Equations (29)–(33) will
considerably strengthen the convergence rate of the SRM algorithm. ω is included as a
parameter for convergence control relaxation under the SOR framework, and the SRM
scheme X was invented to obtain:

AXr+1 = (1−ω)AXr + ωB. (41)

To improve the accuracy as well as efficiency of the spectral relaxation method, here
we applied the SOR method. This shows the results in the next section for ω < 1.

4. Accelerating the Convergence of the SRM

To solve the required linear matrix equations system as in many other iterative schemes,
the SRM scheme defined in the matrix Equations (29)–(33) can be accelerated and enhanced
to improve their accuracy. In the study of linear algebra, SOR is consistently used to
overcome linear systems such as the Jacobi and Gauss–Seidel approaches in order to
speed up the iterative process convergence. Here, we introduce a convergence-controlling
relaxation parameter ω to utilize a similar approach on (35)–(39), summarized as

A1 fr+1 = (1−ω)A1 fr + ωB1, (42)

A2 pr+1 = (1−ω)A2 pr + ωB2, (43)

A3gr+1 = (1−ω)A3gr + ωB3, (44)

A4qr+1 = (1−ω)A4qr + ωB4, (45)

A5θr+1 = (1−ω)A5θr + ωB5. (46)

These are subject to the same boundary conditions as in (29)–(33). This gives the best
convergence, depends on the input parameters α, n, λ and Pr including magnitude, by
the optimal and best choice of the accelerating convergence relaxation parameter ω. In
some various cases, the value of ω accelerated the convergence in the 0.8 < ω < 1 range
for some values of α, n, λ and Pr, which was observed through numerical experimentation.
In the remaining case, it was observed that the relaxation parameter introduction was not
useful. It should be notably indicated that ω = 1 gives the basic SRM, ω < 1 is considered
as under relaxation, and ω > 1 is considered as over-relaxation.
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5. Results and Discussion

In this section, our foremost intention is to obtain the clear awareness of the physical
conduct of the axial as well as transverse velocity fields and also to consider these with
respect to temperature field profiles for some various interesting parameters, such as power
law index parameter n, magnetic parameter M, stretching ratio parameter α, material
parameter for Sisko fluid A, Prandtl number Pr, and including another constraint, which is
nothing but Newtonian heating parameter γ. We solve the system of coupled nonlinear
equations by using the well-known technique of the spectral relaxation method (SRM)
along with the successive over-relaxation (SOR) method. As part of this research, first we
have shown our values along with those of Munir et al. [43], Ariel [4], and Gorla et al. [47]
the results of which are given in detail in Table 1. We noticed that there is a good deal of
similarity between the two. There is no doubt that these results lead to a new debate and
trend in the future.

Table 1. Resemblance of skin-friction coefficient f ′′ (0) & g′′ (0) with the published values of Munir
et al. [43], Ariel [4], and Gorla et al. [47] (M = 0, A = 0, n = 1).

α Iter.

f′′(0) g′′(0)

Present
Study

Munir et al.
[43] Ariel [4] Gorla et al.

[47]
Present
Study

Munir et al.
[43] Ariel [4] Gorla et al.

[47]

0.25 45 −1.04881108 −1.048818 −1.048813 −1.048813 −0.19456383 −0.194567 −0.194565 −0.194564

5.0 35 −1.09309502 −1.093098 −1.093096 −1.093097 −0.46520485 −0.465207 −0.465206 −0.465205

0.75 40 −1.13448575 −1.134487 −1.134486 −1.134485 −0.79461826 −0.794619 −0.794619 −0.794622

1.0 40 −1.17372074 −1.173721 −1.173721 −1.173720 −1.17372074 −1.173721 −1.173721 −1.173720

Figure 2 shows the profiles of axial as well as transverse velocities for various values of
magnetic parameter M. In the same case, all these effects were simultaneously demonstrated
for both shear thinning (pseudo plastic; 0 < n < 1) as well as including shear thickening
(dilatant; 1 < n < 2) fluids. From this figure, it is certainly obvious that the momentum
layer thickness in the boundary and the magnitude of the axial as well as transverse
velocities are significantly decreased as the strength of Lorentz force increases, because
Lorentz force is a retardation force that pulls down the fluid velocity. It shows that the
layer thickness at the boundary prominently influences shear thinning fluids, and that
this layer thickness exerts greater influence when compared with shear thickening fluids.
The temperature profile with different values of M for both the cases of NH and CHF is
shown in Figure 3. The excess energy due to Lorentz force accelerates the friction in the
fluid, which enhances the fluid temperature. By this observation, the thickness of this
boundary layer is elevated highly for shear thinning fluids when compared with shear
thickening fluids.

Figures 4 and 5 represent the effects of stretching ratio parameter α on velocity compo-
nents f ′(η), g′(η) and temperature distributions with shear thinning (n = 0.75) and shear
thicknening (1.75). In Figure 4, it is observed that by increasing the values of α, velocity
in the axial direction decreases, but the opposite phonenomenon has been noticed in the
transverse direction. Figure 5 displays that temperature declines by varying α.

Figure 6 shows the impact of Sisko fluid material parameter A on axial and transverse
velocities for both shear thickening and thinning characteristics. It shows that the velocities
for both directions x1 and x2 increase significantly with every growth in A.

Figure 7 has been drawn for the temperature distribution profile for A. This figure
shows that for the growing values of A for the fluids of both shear thinning as well as
thickening, the temperature distribution decreases vividly at the surface. Further, there
is a thermal boundary layer thickness that appears to be substantially lowered for shear
thickening fluid (n = 1.75). In addition, this figure shows a resemblance between the
power law profile of fluid (A = 0) and another profile (A 6= 0), which is a Sisko fluid. This
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figure clearly demonstrates that when compared to the Sisko fluid, the power law fluid
surface temperature is greater.
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Prandtl numbers Pr = 0.71 (air) and Pr = 2 (water) are framed in Figure 8 with
the various values of Newtonian heating conjugate parameter γ with the variation of
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temperature distribution. In this temperature profile, the fluid’s temperature is clearly
shown to fall gradually due to considerable growth of Pr. In this observation, the viscosity
in the fluid escalates by the enhancement of Pr, and fluid becomes thicker. This is in line
with the physical fact of the decrement in the heat transmission. The heat transfer rate with
limited heat efficiency in Newtonian heating from the boundary region is proportionate
to local temperature, which is generally referred to as the convective conjugation flow. In
this temperature distribution, nothing takes place across the boundary layer area where
there is no Newtonian heating parameter, i.e., γ = 0. Further, in this same graph (Figure 8),
the increase in the Newtonian heating parameter has been observed by escalating the
thermal boundary layer thickness, and consequently, this suggests that it may enhance
greatly the surface temperature of the fluid. In this way, this figure shows that the growth
in temperature is faster when the conjugate parameter is improved.
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Figure 8. The temperature distribution profile for different values of γ & Pr.

Figures 9 and 10 show the skin-friction coefficients for various values of M, α, A and n
in both x- as well as y- directions correspondingly. In these figures, the skin friction in
horizontal and vertical directions becomes significantly higher when the power law index
is less than one. From these same graphs, we can discuss the relationship among the
coefficients of skin friction with the stretching ratio parameter. This discussion shows that
the coefficients of skin friction along the directions of x as well as y are enhanced due to
the stretching ratio parameter value increase. Further, the magnitude of the skin-friction
coefficients increases when the magnetic field parameter increases because the magnetic
field slows down the movement of the fluid and therefore these coefficients increase. The
variation in rate of mass transfer for various M, α and n values of NH and CHF conditions
are shown in Figures 11 and 12, respectively. Here, from a special observation of these two
figures, it can be identified that the heat transfer rate escalates for both conditions by each
increase of α. These statistics show that heat transfer rates are higher for fluids with shear
thickening properties, and thus the heat transfer factor leads higher. In addition, the heat
transfer rate hikes with the growth of M.
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Figure 9. (a): A 3D plot for C fx1 -direction for different values of M & n. (b): A 3D plot for C fx1 -
direction for different values of α & n.
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Figure 10. (a): Three-dimensional plot for 
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Figure 10. (a): Three-dimensional plot for C fx2-direction for different values of M & n. (b): Three-dimensio-
nal plot for C fx2 -direction for different values of α & n.
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Figure 11. (a): Three-dimensional plot for Nusselt number in NH case for different values of M & n.
(b): Three-dimensional plot for Nusselt number in NH case for different values of α & n.
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Table 2 provides a juxtaposition of the number of iterations and CPU time of the
fundamental SRM and the SOR-accelerated SRM (with ω), each method yielding eight-digit-
decimal-accurate results for the NH condition. It is possible to note that the higher heat
transfer is labeled for the greater value of Pr and consequently the heat transfer rate is
higher. The advantage of introducing ω in this case is that the number of repetitions needed
is significantly reduced to provide precise information. To give an example, the combination
of SRM under relaxation with ω = 0.9 improves from 12 repetitions to 9 repetitions and the
convergence of CPU time is also minimized. For the Newtonian heating case, heat transfer
rate is reduced.

Table 2. Numerical values for Re−1/2
x Nux for NH at the surface of the sheet for various values of

Pr & γ with M = 0.5, α = 0.5 & A = 0.5.

Pr Γ

Re−1/2
x Nux for NH

n = 0.75

Iter CPU Time Basic SRM ω Iter CPU Time SRM with SOR

0.1 12 18.76627 4.77995 0.9 9 12.29875 4.77995
0.71 12 20.46802 6.036175 0.9 9 10.91867 6.036175

1 12 24.63855 9.396499 0.9 9 11.36188 9.396499
2 12 22.21707 11.99444 0.9 9 11.10621 11.99444
3 12 22.47097 14.18906 0.9 9 11.82956 14.18906
4 12 22.68458 16.12413 0.9 9 11.61693 16.12413
5 0.2 12 23.24728 2.389975 0.9 9 13.33771 2.389975
2 0.3 12 21.94909 1.593317 0.9 9 13.95093 1.593317
x 0.4 14 21.53128 1.194987 0.9 9 16.56932 1.194987

0.5 17 28.74275 0.95599 0.85 10 14.70957 0.95599

n = 1.75

0.1 11 17.44803 5.716165 0.9 8 12.54738 5.716165
0.71 11 20.91306 7.272926 0.9 8 11.56558 7.272926

1 11 21.13117 11.38285 0.9 8 12.25918 11.38285
2 11 20.89956 14.51542 0.9 8 11.95635 14.51542
3 11 22.29397 17.1434 0.9 8 13.95373 17.1434
4 11 20.65066 19.45184 0.9 8 12.40026 19.45184
5 0.2 11 24.54107 2.858083 0.9 8 13.56013 2.858083
2 0.3 11 24.52556 1.905388 0.9 8 12.39242 1.905388

0.4 12 23.28151 1.42904 0.9 9 14.90034 1.42904
0.5 13 23.59943 1.143232 0.9 10 15.30949 1.143232

6. Conclusions

In this investigation, we have presented the flow and heat transfer in Sisko fluid flow
over a bidirectional stretching sheet with constant heat flux and Newtonian heating. The
following are major conclusions of the present study:

• By increasing the magnetic field strength, the momentum boundary layer thickness
decreases, whereas the thermal boundary layer thickness increases.

• The velocity distribution in x1-direction declines, and the opposite phenomenon is
observed in x2-direction, while fluid temperature decreases as the stretching ratio
parameter increases.

• With the increase of the Sisko fluid parameter, the velocity in axial and transverse
directions increases, whereas the fluid temperature reduces.

• As the Biot number increases, the fluid temperature increased.
• It was found that successive over (under) relaxation (SOR) techniques would signifi-

cantly increase the convergence speed of the SRM scheme.
• In this problem, the successful performance of the SRM can be applied in fluid me-

chanical applications to other various related boundary layer problems.
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Nomenclature

(x1, x2, x3) Space coordinates
(u1, u2, u3) Velocity components
υ Kinematic viscosity
B0 Strength of magnetic field
µ Coefficient of dynamic viscosity
T∞ Ambient temperature
ρ Fluid density
α Stretching ratio parameter
σ Electrical conductivity
Cp Specific heat at constant pressure
a1, b1 Stretching constant
c1, d1 Real numbers with respect to stretchable sheet
M Magnetic field parameter
k Thermal conductivity
A Material parameter of Sisko fluid
Rea, Reb Local Reynolds number
Pr Prandtl number
hs Heat transfer parameter
qw Heat flux
γ Biot number due to temperature
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