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Abstract: Critical heat flux (CHF) is an essential parameter that plays a significant role in ensuring 

the safety and economic efficiency of nuclear power facilities. It imposes design and operational 

restrictions on nuclear power plants due to safety concerns. Therefore, accurate prediction of CHF 

using a hybrid framework can assist researchers in optimizing system performance, mitigating risk 

of equipment failure, and enhancing safety measures. Despite the existence of numerous prediction 

methods, there remains a lack of agreement regarding the underlying mechanism that gives rise to 

CHF. Hence, developing a precise and reliable CHF model is a crucial and challenging task. In this 

study, we proposed a hybrid model based on an artificial neural network (ANN) to improve the 

prediction accuracy of CHF. Our model leverages the available knowledge from a lookup table 

(LUT) and then employs ANN to further reduce the gap between actual and predicted outcomes. 

To develop and assess the accuracy of our model, we compiled a dataset of around 5877 data points 

from various sources in the literature. This dataset encompasses a diverse range of operating pa-

rameters for two-phase flow in vertical tubes. The results of this study demonstrate that the pro-

posed hybrid model performs better than standalone machine learning models such as ANN, ran-

dom forest, support vector machine, and data-driven lookup tables, with a relative root-mean-

square error (rRMSE) of only 9.3%. We also evaluated the performance of the proposed hybrid 

model using holdout and cross-validation techniques, which demonstrated its robustness. Moreo-

ver, the proposed approach offers valuable insights into the significance of various input parameters 

in predicting CHF. Our proposed system can be utilized as a real-time monitoring tool for predict-

ing extreme conditions in nuclear reactors, ensuring their safe and efficient operation. 

Keywords: critical heat flux; flow boiling; multiphase flows; machine learning; lookup table 

 

1. Introduction 

The profitability and reliability of heat generating systems, especially nuclear power 

plants, strongly depend on their safety and regulatory restrictions. Extremely cautious 

approaches are undertaken to establish such safety and regulatory limits since they are 

associated with considerable margins to account for design inaccuracies and other possi-

ble uncertainties [1]. Departure from nucleate boiling (DNB) is one of the safety limita-

tions encountered when analyzing the safety of two-phase flow boiling systems, includ-

ing heat exchangers, high-power electronic devices, refrigeration systems, and especially 

nuclear reactor cores [2]. In a water-cooled reactor, DNB is one of the most significant 

parameters to the integrity of the reactor core, but is among the least understood in 
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thermal-hydraulic instability [3]. The nucleate boiling heat flux cannot be increased be-

yond a certain value known as critical heat flux (CHF). The heating system eventually fails 

as a result of a sharp decrease in the heat-transfer coefficient [4]. 

In a pressurized water reactor (PWR), overheating occurs when the heating surface 

temperature suddenly rises and reaches the CHF limit. Therefore, operation of the boiling 

system must be interrupted and allowed to cool down, resulting in a loss of production. 

In an extreme scenario, it may lead to a reactor core meltdown [5]. Consequently, an ac-

curate prediction of CHF is essential for the safety of the heat generating system as well 

as in the nuclear heat transfer process and must be considered when analyzing the safety 

of power reactors. Furthermore, CHF is a critical safety parameter in nuclear reactor de-

sign that should be kept to an acceptable limit [6]. The DNBR (Departure from Nucleate 

Boiling Ratio) is the minimum CHF ratio that ensures the safe operation of reactors be-

tween the expected CHF and actual operational heat flux. The DNBR value varies both 

axially and radially across the fuel length. In order to maintain safety, the MDNBR (Min-

imum DNBR) value must be greater than one at all points in the core. Specifically for com-

mercial pressurized water reactors (PWR), the MDNBR value should be at least 1.3 during 

full power transients to provide an adequate safety margin [7]. This phenomenon is also 

related to variation in heat transfer coefficient. Hence, predicting CHF is critical for the 

device’s safety. Extensive experimental and theoretical research has been conducted over 

the last few decades to explore CHF. Despite extensive research, the exact mechanism re-

sponsible for the development of CHF has not been universally agreed upon, making it 

challenging to establish a reliable means of predicting CHF with certainty [8]. There is no 

consensus on its trigging mechanism because of the extremely complicated nature of heat 

transport in boiling [9]. 

There are several prediction tools available to thermal-hydraulic researchers, ranging 

from the best-fit empirical correlations, data-driven look-up tables (LUT), to physics-

driven analytical models [10]. However, each of these approaches have their own con-

straints and applicability limits. On the one hand, these best-fit empirical correlations are 

simple to apply but can only be used in a limited number of situations for specific dimen-

sions and operating requirements. Among the commonly used CHF models in flow boil-

ing include: Biasi correlation [11], Bowring correlation [12], Westinghouse (W-3) correla-

tion[13], Katto correlation [14], Groeneveld 2006 LUT [15], Tong correlation [13], and Elec-

tric Power Research Institute (EPRI) correlation [16]. These models are highly dependent 

upon assumptions, i.e., limited knowledge of the mechanism’s underlying physics, which 

varies according to the flow regime [17]. Typically, these empirical models are divided 

into six types, depending on their mechanism: superheat limit bubbly liquid layer mech-

anism, near-wall bubble crowding and the limit of vapor removal mechanism, dry-off the 

mechanism’s sublayer of liquid, the process of interfacial lift-off, liquid flow blockage 

mechanism and separation boundary-layer mechanism [2]. Among these models, the su-

perheat limit bubbly liquid layer mechanism has drawn much interest since it is supported 

by experimental data. On the other hand, data-driven LUTs demand the use of an estima-

tor to avoid irrelevant irregularities due to data distribution, such as point selection and 

flattening. 

Recent computing advances and optimization methodologies have assisted artificial 

intelligence (AI)-based techniques to emerge as an alternate strategy to investigate and 

analyze complex systems using state-of-the-art, data-driven techniques. Artificial neural 

network (ANN) is among the most popular choices in this area due to its performance for 

highly nonlinear functions [18]. Numerous variants of ANNs have been developed and 

implemented in diverse domains, including nuclear power engineering. These ANNs 

have been used for tasks such as estimating core parameters related to safety, optimizing 

nuclear fuel management systems, predicting radioactive dose rates in accident scenarios, 

diagnosing faults, controlling and monitoring nuclear power plants, studying nuclear re-

actor nonlinear dynamics, and anticipating accidental scenarios. Saleem et al. utilized a 

feed-forward type deep neural network (DNN) to predict core neutronic parameters of 
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the Ringhals-1 boiling water reactor (BWR) unit [19]. Similarly, Hedayat et al. used cas-

cade feed-forward neural networks to forecast core safety parameters [20] and optimize 

core configuration design using a hybrid ANN for a research reactor [21]. Zubair et al. 

employed various machine learning techniques to analyze the safety of a reactor [22], 

while Faria et al. optimized fuel patterns in nuclear reactors using ANNs [23]. Kim et al. 

employed an ANN and a fuzzy rule-based system to determine the optimal fuel loading 

pattern in a nuclear power plant [24]. Desterro et al. utilized a 5-layer deep ANN to predict 

accidental radioactive releases in nuclear reactors [25], and Yong et al. used deep auto-

encoders for real-time anomaly detection in nuclear reactors to enhance safety [26]. Saeed 

et al. used a DNN for fault diagnosis in nuclear reactors [27], while Guo et al. used a DNN 

for fault detection in nuclear fuel assemblies [28]. Yiru et al. utilized neural networks for 

the safety analysis of nuclear power plant control and monitoring systems [29]. Bae et al. 

employed a two-step ANN to detect the severity and type of faults using an alarm and 

monitoring system [30], while Adail et al. utilized recurrent neural networks for modeling 

reactor core dynamics in nuclear power plants (NPPs) [31]. Finally, Koo et al. used a DNN 

to detect water levels in a reactor core during an accidental scenario [32]. Overall, these 

studies highlight the versatility of ANNs in nuclear power engineering and their potential 

to improve safety, optimize reactor performance, and predict critical scenarios. Bildirici 

and colleagues employed a multi-layer perceptron (MLP)-based neural network approach 

to investigate the nonlinear relationship between chaotic precious metal and oil prices and 

volatilities. Their study yielded valuable insights into the nonlinear tail dependence [33]. 

Furthermore, they integrated the MLP with Markov-switching vector autoregressive anal-

ysis to perform regime-dependent sensitivity analysis, which allowed for the assessment 

of the intricate and nonlinear connections between CO2 emissions, economic develop-

ment, and petrol prices [34]. 

In this regard, few researchers used ANN for CHF prediction. Yapo et al. (1992) first 

used a hybrid Kohonen-BP neural network to predict CHF. İn this study, 440 experimental 

samples were used as reference data to train and test the network [35]. Moon et al. (1996) 

developed a backpropagation neural network (BPN) for parametric analysis of CHF using 

three assumptions including fixed inlet, outlet, and local conditions [36]. Mazzola (1997) 

used two layers BPN to predict water subcooled CHF based on 1888 experimental data 

points [37]. The effect of heating length on DNB was investigated by Lee et al. (2000) using 

a BPN [38]. Kim et al. (2000) studied 130 experiment data to detect CHF using spatiotem-

poral neural network and wavelet transform [39]. Su et al. (2002) used the 1995 look-up 

table to predict CHF using BPN with three different conditions: inlet, outlet, and local 

conditions [40]. Su et al. (2003) used BPN to analyze the CHF in circular vertical pipes 

under low pressure and flow oscillation conditions. Their study was based on 136 exper-

imental data points [41]. Zaferanlouei et al. (2010) used an FNN and HONN to predict 

CHF near critical pressure using 111 CHF experimental data [42]. In 2011, Cong et al. used 

dimensionless groups as input parameters using 1079 CHF experimental data from the 

literature. İn this study, the genetic neural network was trained to anticipate CHF on the 

heating surface with impinging jets in saturated forced convective boiling [43]. Jiang et al. 

(2013) used SVM to predict critical heat flux for fixed inlet, outlet, and local conditions 

[44]. But in all these publications, very limited experimental data is used to train and eval-

uate the model, and none of those employed cross-validation. Random forest is a fre-

quently utilized tree-based ensemble algorithm for regression; however, its application in 

engineering is somewhat restricted compared to other fields. While random forest has 

proven to be a powerful tool in data analysis and machine learning applications, its per-

formance in certain engineering contexts can be limited due to various factors such as the 

complexity and size of the data, as well as the underlying mathematical models and as-

sumptions involved. Despite these limitations, there are still instances where random for-

est can provide valuable insights and predictive capabilities in engineering applications 

[45]. 
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It is evident from the above summary that predicting CHF is a complex process that 

cannot be achieved through a deterministic theory, as it relies on multiple variables. This 

complication can be addressed by using ANN. The aim of this study is to present a new 

method for predicting CHF that employs a hybrid framework by combining machine 

learning algorithms with an LUT. The proposed approach enhances prediction accuracy 

by utilizing a larger dataset and k-fold cross-validation, thereby improving the generali-

zation capacity of proposed model. Unlike many recent studies that rely solely on 

standalone ML techniques and limited data, the proposed approach utilizes a more com-

prehensive dataset and more rigorous testing methodology. This study introduces a novel 

method that has the potential to significantly improve the accuracy of CHF predictions. 

Section 2 describes the materials and methods, including the dataset description and 

study methodology. Section 3 explains the experimental setup and implementation details 

of standalone models and novel hybrid frameworks developed. Section 4 describes the 

performance details of standalone models and their comparison with the proposed hybrid 

framework for the prediction of CHF. In conclusion, Section 5 summarizes the findings of 

the study and offers recommendations for future research. 

2. Materials and Methods 

2.1. Dataset Generation 

To construct the proposed framework, an extensive selection of non-proprietary ex-

perimental data on CHF available in the literature was utilized. The resulting dataset com-

prises 5877 samples, encompassing a wide range of system parameters, as demonstrated 

by the asymmetric distribution shown in Figure 1. The dataset encompasses both geomet-

ric and hydraulic features, with input variables obtained from the raw data including 

pressure (P), mass flux (G), tube equivalent diameter (D), local equilibrium/exit quality 

(x), and heated length (L). The output to be predicted is CHF, under the assumption that 

the distribution of heat flux along the axial direction is consistent or uniform. Table 1 pro-

vides a summary of the experimental ranges for the dataset. In order to improve predic-

tion accuracy, input variables are standardized (i.e., normalized to have a mean of 0 and 

a variance of 1). 

Table 1. Experimental ranges of CHF Dataset. 

Author 
Mass-Flux (G) 

[kg/m2s] 

Pressure 

(P)[MPa] 

Equilibrium 

Quality (x) [-] 

Heated Length 

(L) [mm] 

Heated Diam-

eter (D) [mm] 

CHF 

[MW/m2] 

No. of 

Samples 

Inasaka [46] 4300–6700 0.31–0.64 −0.11 to −0.05 100 3 7.3–12.8 6 

Williams [47] 325–4683 2.7–15.2 −0.02 to 0.92 1840 9.5 0.39–4.1 129 

Kim [48] 20–277 0.11–0.95 0.32 to 1.2 300–1770 6–12 0.12–1.6 512 

Becker [49] 100–5450 0.22–9.9 0 to 0.99 400–3750 3.9–25 0.28–7.5 3473 

Lowdermilk [50] 60–597 3.4 0.71 to 0.94 152 3 0.47–3.3 21 

Clark [51] 28–102 3.4–13.8 0.66 to 0.99 239 4.6 0.23–1.2 67 

Reynold [52] 1166–2889 3.6–10.7 0 to 0.47 229 4.6 3.6–9 67 

Peskov [53] 750–5361 10–20 −0.23 to 0.13 400–1650 10 0.9–4.3 17 

Thompson [54] 542–7975 0.1–20.7 −0.86 to 0.21 25–3048 1–37.5 1–19.3 1585 

Total 20–7975 0.1–20.7 −0.86 to 1.2 25–3750 1–37.5 0.12–19.3 5877 
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Figure 1. Distribution of CHF dataset as function of two variables. 

2.2. Methodology 

2.2.1. Look-Up Table (LUT) Method 

The nuclear thermal-hydraulics industry commonly utilizes LUTs to predict CHF. 

The LUT is a well-established and highly trusted method utilized in nuclear facility safety 

evaluations. Specifically, LUT is a standardized database created for an 8 mm water-

cooled vertical round channel, which encompasses a vast range of over 30,000 data points. 

These data points cover a wide spectrum of mass fluxes (ranging from 0 to 8000 kg/m2s), 

pressures (ranging from 0 to 21 MPa), and local qualities (ranging from −0.50 to 0.90). This 

comprehensive and standardized database is specifically designed to support safe and 

reliable decision-making processes in a variety of contexts. The CHF LUT approach offers 

several benefits, including the ability to cater to a wide range of practical applications, 

ease of use, and the absence of iterative calculations required to predict CHF [15]. 

Groeneveld et al. [55] presented a general equation aimed at addressing the diameter cor-

rection of the tube. The equation is formulated as follows: 
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𝐶𝐻𝐹𝑑

𝐶𝐻𝐹𝑑=8
=  (

8

𝑑
)

0.5

 (1) 

2.2.2. Artificial Neural Network (ANN) 

ANN is a machine learning (ML) technique that is inspired by the functioning of the 

human brain. It comprises numerous processing units called neurons. The feed-forward 

neural network is the most widely used type of ANN in engineering today [56,57]. Typi-

cally, a neural network consists of three layers: the input layer, one or more hidden layers, 

and the output layer. A neural network is a type of machine learning model that is capable 

of learning both linear and non-linear patterns between the data [58]. It achieves this by 

incorporating several hidden layers and non-linear activation functions. During the train-

ing phase, the network’s accuracy is improved by adjusting the weights and biases of the 

neurons. This iterative process is known as learning, which involves minimizing the dif-

ference between expected and actual outputs. The weights and biases are randomly ini-

tialized, and the backpropagation learning technique is commonly used to adjust them. 

Neurons in each layer are connected to neurons in the next layer through weights, creating 

a complex network that can learn and make predictions. Each neuron has a threshold 

value, also called “bias”, employed to provide an extra degree of freedom. Inputs are mul-

tiplied by their corresponding weights in ANN. These weighted values and the neurons’ 

bias are added together as follows: 

𝑍k = (∑ wkj

q

j=1

𝐱𝐣) + 𝐛𝐤 (2) 

ak = f(𝑍k) (3) 

Where q represents the number of neurons in each layer and wkj are their cross-ponding 

weights of the input vector xj. Z and b reflect the total weighted inputs and the bias of 

node k, respectively. Then this information is passed through activation function f [59]. 

Figure 2 illustrates the architecture of the ANN. 

 

Figure 2. Architecture of ANN. 



Energies 2023, 16, 3182 7 of 22 
 

 

2.2.3. Support Vector Regression (SVR) 

SVR is a powerful supervised learning method that aims to find an optimal hyper-

plane in a higher-dimensional space. By transforming the input space into a higher-di-

mensional space, SVR can effectively separate the input variables into two distinct regions. 

This hyperplane, which is equivalent to a line in two dimensions, serves as the prediction 

space for regression tasks. When performing regression with SVR, the algorithm seeks to 

find the hyperplane that best fits the data. This hyperplane is determined by selecting the 

support vectors, which are the data points closest to the hyperplane. The point that reflects 

the prediction is the hyperplane point closest to the data point being predicted [60]. 

By selecting the support vectors closest to the hyperplane, SVR is able to make accu-

rate predictions for new data points. The mathematical representation of SVR is shown in 

Equations (4) and (5). Additionally, SVR improves data representation using kernel func-

tions such as polynomial, RBF, and sigmoid functions. Kernel is a function that is used to 

map the input data from the original feature space into a higher-dimensional space, where 

the data is more separable. The kernel function operates on the input data and returns a 

measure of similarity between two points in the transformed space. 

w
T

x + b = 0 (4) 

+
n1 2

(w, ) = w minC
i2

               

ξ
i

ξ   (5) 

In Equation (4), an input instance is represented by x, where w
𝑇
is weight vector 

orthogonal to the decision-plane and b is a bias. C is a hyperparameter that regulates 

model generalization and i   is a slack variable that represents misclassifications [61]. 

Thus, SVR uses hyper-parameter C to draw an optimal decision plane by establishing 

trade-off between class separating distance and misclassification rate. 

2.2.4. Random Forest (RF) 

RF is a commonly employed ML technique for tackling regression problems. This 

technique is one of the most popular ensembles that employ a “bagging” method to en-

hance its resilience. The RF method employs ensemble learning, which involves combin-

ing multiple tree predictors to address complex problems. During training, RF modifies 

both the distribution of the input data and the features. Various subsets of data are used 

to train the number of tree predictors, and each internal tree predictor randomly chooses 

the subset of features used for data splitting. RF determines the outcome by taking the 

average of all predictions produced by the tree predictors [62]. The following equation 

represents the mathematical formula of RF used for regression. 

ŷN(𝑥) =
1

N 
 ∑ yi (𝑥)   

N

i=1

 (6) 

Where N represents total number of decision trees, yi (𝑥) represents the ith decision tree 

on sample x from the dataset and �̂�𝑁(𝑥) represents the average prediction of all decision 

trees. RF is considered to be the most prominent ensemble learning approach for produc-

ing reliable results with minimal hyperparameter tuning required. After generating indi-

vidual predictions, the RF method utilizes the bagging technique, which aggregates re-

sults to increase accuracy, prevent overfitting, and minimize variance. Figure 3 demon-

strates this process. 
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Figure 3. Architecture of RF. 

2.2.5. Data-Driven Hybrid Model 

For the development of the proposed hybrid framework, the LUT is chosen as the 

prior model. In contrast to best-estimate standalone models, this hybrid framework uti-

lizes a data-driven model as the foundation and offers a basic solution, while ML tech-

niques are used to extract new knowledge from the discrepancy between the actual and 

anticipated result. For the prediction of CHF, input vector X consists of five variables, i.e., 

heated length (L), pressure (P), exit quality (x), mass flux (G), and equivalent diameter (D). 

Figure 4 depicts the flow of its training, validation, and testing methodology. The antici-

pated output (yL) of the data-driven model is fundamentally a non-linear function of the 

input variables. During the learning process, as depicted in Figure 4, the error (σ) is cal-

culated by subtracting yL from the experimental output (y). The error (σ) obtained from 

the predicted values is utilized to train the ANN, SVR and RF. The predicted errors (σm) 

from ANN, SVR, and RF are compared with the error (σ) using an error/cost function. 

Typically, the loss function is presented in the form of mean absolute error (MAE) or mean 

squared error (MSE). The loss function is generally presented by MAE or MSE. The error 

function is optimized (minimized) during the learning/training process. The final predic-

tion of the hybrid model yh is the sum of yL and σm. Relative root-mean-square error 

(rRMSE) is used to measure how well the hybrid model performs when evaluated against 

experimental results. The rRMSE is described as 

𝑟𝑅𝑀𝑆𝐸 = √1/𝑚 ∑ (
𝑦𝑖 − 𝑦ℎ𝑖

𝑦𝑖
)

2
𝑚

𝑖=1

 (7) 

where m represents datapoints. Similar to this, during the test phase, data-driven model 

and ML techniques (i.e., ANN, SVM and RF) are merged to obtain the expected output. 
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Figure 4. Flow diagram of hybrid framework. 

ML-based techniques have demonstrated clear advantages over LUT methods in a 

number of ways. One major advantage is that ML techniques require less prior knowledge 

and assumptions about the data being modeled. This is because ML algorithms are able 

to learn patterns and relationships directly from the data, rather than relying on precon-

ceived notions about the underlying phenomena. One of the key benefits of these methods 

is their ability to extend the applicability domain online, which allows for continuous ad-

aptation and improvement of the model. However, it is important to note that ML-based 

methods are purely data-driven, and their opaque properties can make it difficult to in-

terpret the generated solutions. In addition, the models created by these methods can po-

tentially produce widely dispersed and physically undesired solutions, especially when 

there is limited or noisy data available. 

In this hybrid approach that relies on data, we go beyond relying solely on ML tech-

niques and instead integrate prior knowledge to create more robust and reliable models 

that are suitable for diverse applications. By incorporating physical laws or constraints 

into the model, we can guide the learning process and reduce the likelihood of generating 

unrealistic solutions. This data-driven approach recognizes the value of prior knowledge 

and its potential to complement ML-based models. Combining these two approaches en-

ables us to take advantage of the strengths of each and create more accurate and effective 

models. Moreover, incorporating prior knowledge can enhance the interpretability and 

transparency of the model, making it easier to understand and explain the results. 

Ultimately, the integration of prior knowledge with ML techniques provides a com-

prehensive and effective solution to many real-world problems. By leveraging both data-

driven and knowledge-driven approaches, we can improve the accuracy, reliability, and 

usefulness of our models. 

3. Simulation Settings 

ML algorithms are powerful tools for training and testing data in a variety of appli-

cations. ANN, SVR, and RF are some popular algorithms that can be used to accomplish 

this. To implement these algorithms, we can utilize the Keras application interface pro-

gramming (API) backend provided by Tensorflow in conjunction with the sci-kit-learn 

library in Python 3.9. Before training and testing the data, it is essential to split the dataset 
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into training and evaluation sets. Typically, we use 80% of the data for training and 20% 

for evaluating model performance. Moreover, we split the training dataset further into 

train and validation sets at an 80:20 ratio to select hyperparameters. The random distribu-

tion of the data ensures that the model performance can be assessed on unseen data. Hy-

perparameters play a crucial role in controlling the convergence and optimization of the 

ML models. When designing an ANN, the architecture is a critical aspect to consider. The 

design of a neural network’s architecture is critical for its ability to solve complex prob-

lems. This involves making several key decisions, such as selecting the appropriate num-

ber of hidden layers and neurons within each layer, choosing the activation functions used 

in each layer, setting the learning rate, and establishing the connections between the lay-

ers. To achieve accurate predictions and enable the network to generalize to new data, it 

is crucial to optimize the ANN’s architecture. This process involves selecting the optimal 

values for the architectural parameters and tuning them to maximize performance. By 

optimizing the ANN’s architecture, we can ensure that the network is capable of learning 

complex patterns and producing accurate predictions on both training and testing data. 

The physical parameters of the problem determine the number of neurons in the input 

and output layers. Hence, it is essential to select the appropriate number of neurons in the 

hidden layers, the activation function used in each layer, and the connections between the 

layers to achieve optimal performance. By carefully selecting hyperparameters and opti-

mizing the ANN’s architecture, we can improve the accuracy of predictions and general-

ize well to new data. 

Selecting the optimal topology for a neural network is a complex task and often re-

quires a trial-and-error approach [63]. However, through experimentation, it has been 

found that a hybrid network architecture with three hidden layers yields optimal results. 

The three hidden layers contain 5/50/50/50/1 neurons as depicted in Figure 5, while a 

standalone ANN architecture has 5/100/100/100/50/1 neurons. The input layer comprises 

five neurons, corresponding to the input variables, while the output layer consists of one 

neuron. 

 

Figure 5. Architecture of ANN with 5/50/50/50/1 nodes used in optimal hybrid model. 

To update the synaptic weights and biases, the Adam optimization algorithm with a 

learning rate of 0.001 is utilized. The Adam optimizer is particularly well-suited to deep 

learning problems and requires minimal tuning. It is a stochastic gradient descent optimi-

zation algorithm that is derived from an adaptive approximation of the first and second-

order variables. The addition of non-linearity enhances the predictive capabilities of the 
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model. Choosing the optimal topology for a neural network is a challenging task that in-

volves many variables. However, through experimentation and optimization, it is possible 

to achieve a hybrid network architecture with three hidden layers that yields optimal re-

sults. By utilizing the Adam optimization algorithm with an appropriate learning rate, we 

can update the synaptic weights and biases of the model and enhance its predictive capa-

bilities. Overall, these strategies can help to improve the accuracy and generalization of 

the neural network model. 

The Rectified Linear Unit (ReLU) transfer function has gained popularity and is 

widely used in the hidden layers of the proposed model due to its excellent performance. 

ReLU is a universal approximator, meaning that it can estimate any function. In this study, 

ReLU outperformed sigmoid activation functions, making it the preferred choice for deep 

learning models. Compared to sigmoid, ReLU has several advantages that make it an at-

tractive option. First, ReLU has a simpler computation process, which makes it faster to 

train ML-based neural networks. Additionally, ReLU allows for sparse activation, mean-

ing that only a subset of neurons in a layer are activated, reducing the chances of overfit-

ting. Furthermore, ReLU does not suffer from the vanishing gradient problem that can 

occur with sigmoid activation functions, which can lead to slow convergence during train-

ing. 

The success of using ReLU activation functions in the hidden layers of the proposed 

model can be attributed to its universal approximation capabilities, faster training, sparse 

activation, and avoidance of the vanishing gradient problem. These advantages have re-

sulted in improved performance compared to sigmoid activation functions in this study 

[64]. Therefore, ReLU is a promising activation function for deep learning models that can 

enhance their accuracy and efficiency. 

When using SVR and RF algorithms, exploring hyperparameters is also necessary to 

achieve optimal performance. This involves carefully selecting values for various param-

eters to obtain the best possible results from these models. By fine-tuning hyperparame-

ters, we can enhance the accuracy and efficiency of these algorithms in training and testing 

data, ultimately improving the overall performance of the models. For SVR, the optimal 

parameters are Kernel: Rbf, C: 100, and Nu: 0.9 (Kernel: Rbf, C: 100, Nu: 1 if using 

standalone SVR). On the other hand, the best RF model is determined to have 300 estima-

tors/number of tree predictors (100 if using standalone RF). Table 2 provides a summary 

of the CHF model configurations that were found to result in the highest accuracy during 

the learning process. It is significant to note that careful selection of hyperparameters is 

crucial for achieving optimal model performance for both SVR and RF algorithms. 

Table 2. Configuration of CHF models. 

Data-Driven Model LUT 

ML Approach ANN, SVR, RF 

Best-estimate ANN approach 

▪ Network architecture 

 

▪ Weight optimization algorithm 

▪ Hidden layers activation function 

▪ Learning rate 

 

5/50/50/50/1  

(5/100/100/100/50/1 if standalone ANN) 

Adam 

ReLU (Rectified Linear unit) 

 

0.001 

 

Best-estimate SVR approach 

▪ Parameters 

 

 

Kernel: Rbf, C: 100, Nu: 0.9 (Kernel: Rbf, C: 100, 

Nu: 1 if standalone SVR) 

Best-estimate RF approach 

▪ Number of estimators 

 

100 (300 if standalone RF) 
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4. Performance Evaluations 

4.1. Standalone ML Models (ANN vs. SVM vs. RF vs. LUT) 

This study employed four distinct methods to estimate CHF in nuclear reactors for 

safety assessment purposes. The first approach is the LUT method, which is widely used 

in the thermal-hydraulic community for predicting CHF during both reactor design and 

operation. The remaining three techniques are all ML-based, consisting of ANN, SVR, and 

RF. These ML approaches have gained popularity due to their ability to accurately model 

complex patterns and provide accurate predictions for a wide range of applications. By 

utilizing multiple approaches, this study aims to provide a comprehensive evaluation of 

the different techniques and their suitability for predicting CHF in nuclear reactors. 

In Figure 6a,b, the performance of each of these four techniques is compared in terms 

of rRMSE. This analysis provides a comprehensive evaluation of the effectiveness of each 

approach and can be used to determine the optimal method for CHF prediction in nuclear 

reactor safety analysis. 

 
(a) 

 
(b) 

Figure 6. (a,b). Experimental vs predicated CHF for standalone best-estimate models (LUT vs. SVM 

vs. RF vs. ANN). 
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In terms of adaptability and modeling simplicity, the standalone ML-based tech-

niques outperform the traditional data-driven approach. Their continuous extension of 

the applicable domain is a fundamental advantage. However, these ML-based approaches 

are black-box in nature and could result in widely dispersed, physically unrealistic solu-

tions. The presence of outliers in the dataset may be the main problem, or it may be that 

the train and test data do not have the same distribution of the data, which is a necessary 

condition for any useful validation or test solutions in ML. Using prior information re-

duces scatter significantly. ML approaches are then utilized to complement domain ex-

pertise and learn from the predictive discrepancy since domain knowledge is capable of 

providing reliable basis predictions. 

4.2. Comparison of Hybrid and Standalone Approaches 

In this hybrid approach, the data-driven LUT is employed as the baseline model, and 

either ANN, SVM or RF can be used for ML. Hyperparameter tuning shows how well the 

ML structure can be optimized inside the hybrid model. For example, the ANN only needs 

three hidden layers with 50 neurons in each (5/50/50/50/1 structure) to perform at its best, 

while the RF only needs 100 tree predictors (instead of 300). The accuracy of standalone 

models (ANN, SVM and RF) vs. hybrid frameworks (ANN+LUT, SVM+LUT, RF+LUT) are 

depicted in Figure 7a–c). Compared to all standalone models, all hybrid model outper-

forms them as depicted in Figure 8. The rRMSE values of hybrid models are smaller than 

standalone models. The sharp rise in the curves between absolute-relative error and cu-

mulative data fraction in hybrid models as compared to standalone models also depicts 

the superior predictive capabilities of the hybrid framework. The presence of a data-

driven model provides the necessary setup for the hybrid “gray box”. Such a hybrid ap-

proach can use the prior model’s well-accepted physical rules and well-established em-

pirical linkages to work in conjunction with ML. Table 3 shows the performance of differ-

ent CHF models. Absolute-relative deviation vs. data fraction of hybrid models 

(ANN+LUT, SVM+LUT, RF+LUT) is depicted in Figure 9. The comparison between the 

absolute relative error vs data fraction curves of the ANN-based hybrid approach and the 

conventional LUT technique demonstrates a clear advantage for the former. The curve for 

the hybrid approach shows a marked increase in performance, whereas the curve for the 

LUT technique exhibits a less pronounced curve and inferior performance. 

Furthermore, ML techniques also perform well compared to the LUT approach. 

However, the ANN-based hybrid approach outperforms as compared to ML techniques 

and the LUT approach, emerging as the clear winner. This is evidenced by a significantly 

smaller rRMSE of 9.3% and a faster rising cumulative data fraction curve, indicating fewer 

predictions that deviate from actual data. 

Table 3. Different CHF models’ performance. 

Approach 
Test rRMSE 

(%) 

Data-Points within ±  

10% Error 

Data-Points within ± 

20% Error 

LUT 15.8 68% 85% 

SVM 15.5 72% 86% 

RF 14.7 80% 89% 

ANN 12.2 87% 95% 

Hybrid SVM +LUT 11.8 87% 97% 

Hybrid RF + LUT 10.7 89% 99% 

Hybrid ANN +LUT 9.3 91% 100% 
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Figure 7. Absolute-relative deviation vs. data fraction of hybrid ANN+LUT (a), RF+LUT (b), 

SVM+LUT (c), and standalone ML models. 

 

Figure 8. Test rRMSE of CHF models. 

 

Figure 9. Absolute-relative deviation vs. data fraction of hybrid models. 

In addition, the hybrid model (ANN+LUT) over the ranges of practical importance 

also corrects substantially distributed and biased parametric trends (CHF relative error 

vs. tube diameter, heated length, mass flowrate, pressure, exit quality) as depicted in Fig-

ure 10 using standalone LUT or ANN models. Such findings have further supported the 

hybrid approach’s improved generalization capacities. 

0
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(d) 

 
(e) 

Figure 10. CHF relative error distribution vs. tube diameter (a), heated length (b), mass flowrate (c), 

pressure (d), exit quality (e). 

4.3. Sensitivity Analysis 

To assess the effectiveness of the proposed hybrid model and to mitigate the risk of 

overfitting, k-fold cross-validation techniques are utilized. Most of the prior work for the 

prediction of CHF was based on hold-up cross-validation techniques [35–45]. The perfor-

mance of the proposed hybrid model (LUT + ANN) of hold-up splits vs. k-fold cross-val-

idation to further validate the model and to determine how well it generalizes to new data, 

as shown in Table 4. In 5-fold cross-validation, the data is divided into five subsets or folds, 

of which four subsets are used for training and one for testing. Similarly, this procedure 

is performed five times so that all data must pass through the test [65]. As the cross-vali-

dation technique produces more random splits, hence decreases the error produced due 

to bias. Although it increases the computational cost due to more random subsets are gen-

erated, but it is not our primary concern here as compared to desired accuracy due to 

critical nature of CHF prediction. 

  



Energies 2023, 16, 3182 18 of 22 
 

 

Table 4. Sensitivity analysis of the proposed hybrid model. 

Sensitivity Analysis Technique Test RMSE (%) 
Test Samples within ± 10%  

Error 

80% train + 20% test 9.30 91% 

5-fold cross-validation 9.15 89% 

10-fold cross-validation 8.90 91% 

5. Conclusions 

This study extends the prediction abilities of prior information and artificial intelli-

gence (AI)-based techniques such as ML to enhance safety and financial profitability of 

heat transfer processes which depend on precise and reliable prediction of CHF by incor-

porating a data-driven hybrid model based on an ANN. The results of the comprehensive 

assessment have demonstrated that hybrid approaches based on artificial intelligence ex-

hibit superior predictive capabilities when compared to the conventional LUT methods 

and standalone machine learning techniques that are commonly used. Furthermore, from 

this research work, we can conclude that: 

o The hybrid approach using ANN outperforms both traditional ML techniques and 

the conventional LUT technique when it comes to predicting accuracy. 

o Although standalone ML-based models performed better than the widely used con-

ventional LUTs, the hybrid model greatly outperforms standalone ML models for 

prediction of CHF in vertical tubes for diverse set of operating parameters, with 

lower dispersion and non-biased parametric patterns. 

o ML architecture can be greatly simplified in the hybrid framework as compared to 

its standalone version to reduce computing costs when working with big databases. 

o From the parametric analysis in this work, it is confirmed that standalone ANN and 

hybrid (ANN+LUT) models have more suitable regression features between input 

and output than conventional LUT. 

The results of this research offer valuable insights that can be leveraged to further 

develop and improve machine learning techniques, particularly deep learning models, for 

the prediction of CHF. The creation of a comprehensive database, as accomplished in this 

study, is critical for enhancing the accuracy and confidence of CHF predictions using ma-

chine learning approaches. With additional data, deep learning models can be trained to 

recognize more intricate patterns, leading to improved predictions and better understand-

ing of the underlying physics. The findings of this research underscore the importance of 

continuous improvement and expansion of databases for developing and advancing ma-

chine learning models, which can benefit a diverse range of uses in the area of nuclear 

engineering and beyond. Expanding the range of input characteristics to include addi-

tional channel geometries can extend the utility of the developed models to other types of 

reactors. This research establishes a sturdy foundation for future investigations into CHF 

prediction using machine learning techniques. In conclusion, this study highlights the im-

portance of exploring and including diverse input characteristics to improve the perfor-

mance of ML-based CHF prediction models. 
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Nomenclature 

AI Artificial Intelligence 

ANN  Artificial neural network 

b Bias term 

BPN Backpropagation neural network 

C Kernel function 

CHF Critical heat flux 

D Heated diameter 

DNB Departure from nucleate boiling 

DNBR Departure from nucleate boiling ratio 

DNN Deep neural networks 

DT  Decision tree 

EPRI Electric Power Research Institute 

f Unknown function 

FNN Feed-forward neural network 

G Mass flux 

HONN Higher order neural network 

L Heated length 

LUT Look-up table 

MAE  Mean absolute error 

MDNBR  Minimum value of DNBR 

MLP Multi-layer perceptron 

MSE  Mean square error 

ML  Machine learning 

m  Number of data points 

P Pressure 

PWR  Pressurized water reactor 

RBF  Radial basis function 

ReLU Rectified Linear unit 

RF  Random Forest 

rRMSE  relative Root mean squared error 

SVR Support Vector Regression 

w  Weight factor 

x Local equilibrium/exit quality 

X  Input matrix 

y Desired output 

yh Hybrid model output 

ξ  Slack in SVR 

σ Error 

σm ML predicated error 
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