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Abstract: Determining the operation scenarios of renewable energies is important for power system 
dispatching. This paper proposes a renewable scenario generation method based on the hybrid ge-
netic algorithm with variable chromosome length (HGAVCL). The discrete wavelet transform 
(DWT) is used to divide the original data into linear and fluctuant parts according to the length of 
time scales. The HGAVCL is designed to optimally divide the linear part into different time sections. 
Additionally, each time section is described by the autoregressive integrated moving average 
(ARIMA) model. With the consideration of temporal correlation, the Copula joint probability den-
sity function is established to model the fluctuant part. Based on the attained ARIMA model and 
joint probability density function, a number of data are generated by the Monte Carlo method, and 
the time autocorrelation, average offset rate, and climbing similarity indexes are established to as-
sess the data quality of generated scenarios. A case study is conducted to verify the effectiveness of 
the proposed approach. The calculated time autocorrelation, average offset rate, and climbing sim-
ilarity are 0.0515, 0.0396, and 0.9035, respectively, which shows the superior performance of the 
proposed approach. 

Keywords: ARIMA model; copula function; genetic algorithm; renewable energy; scenario  
generation 
 

1. Introduction 
Renewable energy sources are fluctuant, stochastic, and uncontrollable [1,2]. The im-

pact of large-scale renewable energy integration on the power system is becoming more 
and more obvious, and the risks of system operation are increasing [3–5]. The accurate 
scenarios of wind, solar, and load can provide the basis for power system dispatch and 
reduce the curtailment of renewable energies, which is significant for grid flexibility im-
provement [6,7]. The scenario generation methods can be classified into short-term, me-
dium-term, and long-term methods, according to the length of time scale [8]. A probabil-
istic model of the dataset based on the Copula function is used to generate experimental 
scenarios that guarantee the autocorrelation of the data [9]. The literature [10] extracts key 
features of weather factors and uses the gated recurrent unit (GRU)-convolutional neural 
network (CNN) method to generate scenarios. The literature [11] utilizes the generative 
moment matching network (GMMN) and the optimization strategy to extract the typical 
wind power generation scenario. The wind and solar output probability densities are con-
structed based on the non-parametric kernel density estimation and Frank-Copula 
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functions, and the wind and solar scenarios are generated by using the spline interpola-
tion method [12]. 

When modeling based on the time series analysis, the autocorrelation can provide 
enough information, and a high-accuracy model can be built based on the limited sample 
number of time series without the need to make predictions based on other conditions. 
The main methods for the analysis of time series are the wavelet analysis method [13], 
Kalman filter method [14,15], and autoregressive integrated moving average (ARIMA) 
model [16]. In [17], the ARIMA model and the identification of the model parameters are 
explained. The ARIMA model needs to be improved to adopt characteristics of wind, so-
lar, and other renewable energies. The literature [18] combines the modified ensemble 
empirical mode decomposition (MEEMD) with the ARIMA model, and uses the MEEMD 
to process the data to improve accuracy. The literature [19] introduces frequency decom-
position method to decompose the wind speed data and constructs the ARIMA model for 
the decomposed data. The non-smoothness factors of time series are eliminated by con-
structing seasonal-ARIMA based on stochastic probability analysis methods [20,21]. The 
literature [22] proposed a hybrid model of the ARIMA and triple exponential smoothing 
to achieve a real-time prediction of linear and nonlinear data. The literature [23] uses the 
combined method of wavelet transform and the ARIMA model to improve the accuracy 
of the ARIMA model. The data feature extraction method proposed in the literature [24] 
can capture data characteristics by using the correlation feature selection (CFS). The char-
acteristics of the above methods are summarized in Table 1. 

Table 1. Characteristics of methods. 

Literature Model Method of Data Analysis Characteristic 
[17] ARIMA None Traditional Model 

[18] ARIMA MEEMD 
Expanding single-dimensional data to 

multidimensional 

[19] ARIMA Frequency Decomposition Determined cutoff frequency from experiments 
(complex processing) 

[20,21] ARIMA None Eliminate non-smoothness factors of time series 

[22] 
ARIMA and triple 

exponential smoothing None 
Improved ARIMA parameter determination 

method(small time overhead) 

[23] ARIMA Wavelet Transform 
Expanding single-dimensional data to 

multidimensional 
[24] Random Forest CFS Identify redundant data features 

The accuracy of the scenario generation method is closely related to the dataset, and 
the analysis process of datasets is a nondeterministic polynomial (NP) problem. The NP 
problem can be solved using optimization algorithms, with the genetic algorithm (GA) 
being one of the key methods to solving the optimal problem. The traditional GA has 
defects, such as falling into local optimal solution and early convergence [25]. Many re-
searches have been conducted to eliminate these defects. The search condition constraints 
are set up to improve the search speed of using GA to search for gene fragments [26]. The 
mixed-integer nonlinear programming (MINLP) is transformed into a linear program-
ming problem by using the Chu–Beasley GA (CBGA) [27]. The literature [28] uses a prun-
ing operator to improve the GA and increase the convergence of the algorithm. The liter-
ature [29,30] solve stochastic programming problems using GA. The former uses the bi-
ased random key genetic algorithm (BKAGA) and the latter uses the grid-oriented genetic 
algorithm (GOGA). 

The above scenario generation methods also have defects, such as heavy calculation 
burden and complex calculation process. The complexity of the time series has an im-
portant impact on the scenario generation results. Therefore, this paper proposes a renew-
able scenario generation method that decomposes the original time series to decrease the 
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complexity. The proposed approach can generate scenario results with a high amount of 
accuracy and has a superior performance in reflecting the characteristics of original data. 
The contributions can be listed as: (1) according to the time scales, the original data are 
divided into linear and fluctuant parts by the discrete wavelet transform (DWT); (2) a hy-
brid genetic algorithm with variable chromosome length (HGAVCL) is presented to opti-
mally divide the linear part into different time sections; (3) the ARIMA model and Copula 
joint probability density function are, respectively, adopted to depict the linear and fluc-
tuant parts. 

The rest of this paper is organized as follows: Section 2 presents the decomposition 
of original time series. Additionally, the HGCVCL and renewable energy scenario gener-
ation method are presented in Section 3. Section 4 gives the steps of renewable energy 
scenario generation method and the assessment indexes. The case study is carried out in 
Section 5. Finally, conclusions are drawn in Section 6. 

2. Decomposition of Time Series 
2.1. Net Load Calculation 

The power system with a high percentage of renewable energies have fluctuating 
characteristics, including the fluctuations of load and renewable generation. Therefore, 
the net load is used as the original time series and defined as, 

N L RESP P P= −  (1)

where PN is the power of net load; PL is the power of load; and PRES is the power of renew-
able generation. 

2.2. Permutation Entropy of Time Series 
Permutation entropy (PE) is used to measure the kinetic mutations and time series 

randomness, which can reflect the mutation of signals in a time series. PE has good ro-
bustness and is calculated quickly. 

The time series {xi, I = 1, 2, …, N} is reconstructed in phase space according to the PE 
and the reconstructed matrix is obtained as, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 ... 1 ... 1 1
... ... ... ... ...

... ... 1
... ... ... ... ...

... ... 1

x x i x m

x j x j i x j m

x k x k i x k m

τ τ

τ τ

τ τ

 + + −   
 
 + + −   
 
 

+ + −    

 (2)

where j = 1, 2, ..., k; m is the embedding dimension; and τ is the delay time. 
Each row of the reconstruction matrix arranged in ascending numerical order has a 

total of m! combinations and the PE is calculated as, 

( ) ( )p
1

ln
k

i i
i

H m P P
=

= −  (3)

where Pi is the probability of occurrence of the i-th combination. 
Hp(m) can quantitatively describe the complexity of the time series. The complex time 

series corresponds to large Hp(m) and simple time series corresponds to small Hp(m). 

2.3. Time Series Decomposition Method 
The original time series is decomposed into the low-frequency and the high-fre-

quency parts using the discrete wavelet transform (DWT). The low-frequency series cor-
responds to the linear part and the high-frequency series corresponds to the fluctuant part. 
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The linear series reflects the trend of the net load power in the scenario, and the fluctuating 
time series reflects the degree of variation in net load in the scenario. 

The DWT can be expressed as, 

( ) ( ) ( ) ( ) ( )*
, ,, ,f p r p rW p r f t t f t t d tψ ψ

+ ∞

− ∞
=   =   (4)

where f(t) is the original data function. 
Linear series can be divided to reduce the complexity. Considering that PE can reflect 

the complexity of the time series, this paper transforms the linear time series partitioning 
problem into an optimization problem, where the objective function of the problem is to 
minimize the Hp(m). The control variables are the number of time sections and the length 
of each time section. The optimization problem is expressed as, 

min pH  (5)

( )p p
1

1 n

z
z

H H m
n =

=   (6)

where n is the number of individual divided time sections; pH is the average Hp(m) of 
individual. 

3. Principle of Scenario Generation Method 
3.1. Hybrid Genetic Algorithm with Variable Chromosome Length 
3.1.1. Framework of Proposed HGAVCL 

For the problem of net load time series division, this paper proposes HGAVCL to 
improve the computational speed and accuracy, which has three parts: 
(1) Introduce hybridization operators, specify that the better individual perform hybrid-

ization with higher probability, and constrain the locations where chromosome seg-
ments can be hybridized. 

(2) Non-reproductive offspring produced is possible after the hybridization of organ-
isms, and for this phenomenon, the survival factor ξ is proposed, which defines the 
survival probability of individuals after hybridization. The survival factor is calcu-
lated as, 

,
,

1, ,min

b a
b a

b a

η
ξ

η −

=  (7)

where ξb,a is the survival factor of the a-th individual in the b-th generation; ηb,a is the fitness 
of the a-th individual in the b-th generation; and ηb-1,a,min is the minimum fitness of the a-th 
individual in the b−1-th generation. 

Individuals with a survival factor greater than one are determined to be unable to 
reproduce offspring and unable to hybridize during the iterative calculation. 
(3) Considering the problem of time series division, the phenomenon of chromosome 

splicing and deletion exists in the process of biological inheritance. The chromosome 
splicing and deletion algorithms are proposed to realize the autonomous search for 
the number of the divided time sections. 

3.1.2. Procedure of Proposed HGAVCL 
The fitness of population individual i is expressed as, 

pi Hη =  (8)

The optimization problem is shown in (5), and the specific calculation procedure can 
be listed as:  
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(1) The initial population I and II are set up based on the chromosome length. Based on 
a priori knowledge, the initial population I and II of individuals are selected. The 
length of population I chromosome is L1 and the length of population II chromosome 
is L2. The chromosome length represents the number of the divided time sections and 
the chromosomes are coded using binary. The sizes of population I and II are pop1 
and pop2, respectively. 

(2) The new individuals are generated by the crossover operation with the crossover 
probability pc. 

(3) The new individuals are generated by the mutation operation with the mutation 
probability pv. 

(4) The hybridization operations are performed between populations according to the 
hybridization probability ph, and if individuals are heritable based on growth factors, 
the new populations are generated. 

(5) The chromosome splicing is performed with splicing probability ps. If the fitness of 
the spliced individual is greater than the lowest fitness individual in the previous 
generation, the individual is extinguished. 

(6) The chromosome deletion operation is performed with the deletion probability pd. If 
the individual fitness is greater than that of the lowest fitness individual in the pre-
vious generation, the individual is extinguished. 

(7) The individual fitness of the population is calculated. The individuals of the popula-
tion are selected via the Russian roulette method. 

(8) To ensure iterative convergence, the population extinction probability pe is set. After 
each round of iterations, the population with the largest fitness among the best indi-
viduals of each population dies out with pe. 

(9) Repeat the above steps (2)–(8) until the required number of iterations is satisfied. 
(10) The calculation process is shown in Figure 1. 

Start

Input linear time series

Generate two initial populations with population 
size pop1, pop2 and  length L1, L2

 Crossover operation

Mutation operation

Hybridization operation

 Splicing operation

 Deletion operation

Generate new 
populations？

Obtain new population 
characteristics

Meet maximum iteration?

Get optimal division of 
time sections

End

N

Y

N

Y

 
Figure 1. Calculation process of proposed HGAVCL. 
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3.2. Model of Linear Time Series 
3.2.1. ARIMA Model 

For ARIMA (p, d, q), the AR is the autoregressive and p is the number of autoregres-
sive terms. The MA is the moving average and q is the number of moving average terms. 
The optimal number of differences to make it a smooth series is d [31]. The ARIMA model 
can be expressed as, 

( )
1 1

1 1 1
p q

di i
i t i t

i i
B B X Bϕ θ ε

= =

   
− − = +   

   
   (9)

p
t t pB X X −=  (10)

( )1 dd
t tX B X∇ = −  (11)

where {Xt} is the time series; {εt} is normal white noise with mean 0 and variance 1; B is 
the backward shift operand; φi is the autoregressive coefficient; and θi is the moving av-
erage coefficient. 

3.2.2. Parameter Calculation 
The autoregressive parameter φi in the model can be determined by the autocorrela-

tion coefficient ρ, i.e., the Yule–Walker equation, which can be expressed as, 
1

1 1 1 1

2 1 2 2

1 2

1
1

1

p

p

p p p p

ϕ ρ ρ ρ
ϕ ρ ρ ρ

ϕ ρ ρ ρ

−
−

−

− −

     
     
     =
     
     
          




     


 (12)

The moving average parameter θi in the model can be determined by the self-covar-
iance γk, which can be expressed as, 

2 2 2 2
1 2

2 2 2 2 2 2 2
1 1 2

(1 )                          0
( )        1

0                                                               

q

k k k q q k

k
k q

k q

ε

ε

σ θ θ θ
γ σ θ θ θ θ θ θ+ −

 + + + + =
= − + + + + ≤ ≤
 >


  (13)

3.2.3. Augmented Dickey–Fuller  
Augmented Dickey–Fuller (ADF) is used to determine the smoothness of time series. 

ADF is calculated as, 
Model 1: 

1
1

m

t t i t i t
i

X t X Xα β δ β ε− −
=

Δ = + + + Δ +  (14)

Model 2: 

1
1

m

t t i t i t
i

X X Xα δ β ε− −
=

Δ = + + Δ +  (15)

Model 3: 

1
1

m

t t i t i t
i

X X Xδ β ε− −
=

Δ = + Δ +  (16)

where ΔXt is the residual at moment t; Xt−1 is the residual at moment t–−1; βt is the coeffi-
cient of trend term; α is the constant; εt is the noise of residual. 
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The original hypotheses is H0: δ = 0. The steps of calculation are in the order of model 
1, model 2, and model 3. If the ADF rejects H0: δ = 0 in any step of the ADF calculation, the 
original time series does not exist unit root, so it is a smooth time series, and the calculation 
is stopped. If the ADF satisfies H0: δ = 0, the calculated ADF is finished with model 1, 2, 
and 3. 

d is determined by ADF calculation. If the original time series is non-smooth, the cal-
culation of difference needs to be continued. Otherwise, it is smooth and the calculation 
of difference is stopped. 

3.2.4. Akaike’s Information Criterion  
The autocorrelation coefficients and partial autocorrelation coefficients of the smooth 

series obtained after differencing do not have the characteristics of truncation. The p and 
q orders are determined by the Akaike’s information criterion (AIC). 

AIC is calculated as, 
2ˆAIC( , )=ln ( , ) 2( ) /xp q p q p q Tσ + +  (17)

The 2ˆ xσ  is variance of model residuals, and expressed as 

2 1
( )

ˆ ( , )
( )

T

t
x

X t
p q

T p q
σ ==

− +




 
(18)

where T is number of samples. 
The ARIMA models are set up separately by different values of p and q taken from 

low-to-high order and the parameters are estimated. The results of each model AIC are 
compared. p0 and q0 are determined, which make the AIC extremely small. The p and q of 
the ARIMA model are p0 and q0, respectively. 

The ARIMA models are constructed for the divided time sections to obtain the linear 
time series of the scenario. 

3.3. Model of Fluctuant Time Series 
3.3.1. Copula Function 

The joint probability density model is developed by Copula function. Assuming the 
variables are [x1, x2, …, xn], the joint distribution function is H(x1, x2, …, xn), and the mar-
ginal distributions are [F1, F2, …, Fn], respectively, the Copula function is expressed as, 

1 2 1 1 2 2( , ,..., ) ( ( ), ( ),..., ( ))n n nH x x x C F x F x F x=  (19)

If F1, F2, …, Fn are continuous, C(F1, F2, …, Fn) is uniquely determined and the joint 
probability density function of the random vectors can be obtained by taking partial de-
rivatives of both sides of (13). 

1 2 1 1 2 2
1

( , ,... ) ( ( ), ( ),..., ( )) ( )
n

n n n i i
i

h x x x c F x F x F x f x
=

= ∏  (20)

3.3.2. Copula Model Selection 
This paper uses the Kendall coefficient and Spearman rank correlation coefficient as 

correlation evaluation pointers and calculates the Kendall coefficient and Spearman rank 
correlation coefficient of the simulated data generated by sampling based on the Copula 
function and the original data, respectively. If the correlation coefficients of the two are 
closer, the better the Copula function is fitted. 

The Kendall coefficient ρτ is calculated as, 
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( )( ) ( )( )τ 1 2 1 2 1 2 1 20 0P V V U U P V V U Uρ = − − > − − − <        (21)

The Spearman rank correlation coefficient ρs is calculated as, 

( )( ) ( )( ){ }s 1 2 1 3 1 2 1 33 0 0P V V U U V V U Uρ  = − − > − − − <   (22)

where (V1, V2) and (U1, U2) are random vectors having the same distribution that are inde-
pendent of each other; P(·) is its probability density function. 

3.3.3. Fluctuant Series Model Construction 
The net load fluctuation ratio xnl,t is defined as, 

nL,
nl,

L,

t
t

t

x
x

x
=  (23)

The joint probability density function of net load fluctuating ratio to adjacent moment 
t and t–− 1 is solved based on Copula theory. 

n l , n l , 1 1 n l , 1 n l , 1( , ) ( , ) ( ) ( )t t t t k t k th x x c F F f x f x− − + −= × ×  (24)

f(xnl,t|xnl,t−1) is solved based on the Bayesian formula and the probability model of the 
fluctuant part of scenario generation is obtained. The fluctuant time series is generated by 
sampling based on f(xnl,t|xnl,t−1). The results of our analysis show that the normal Copula 
function has superior performance. 

4. Scenario Generation and Assessment 
4.1. Scenario Generation Method 

The computational process of the scenario generation method proposed in this paper 
is shown in Figure 2, and listed as follows: 
(1) Input the original linear time series and fluctuating time series. 
(2) Generate the linear time series scenario: 

(1) Divide zones based on HGAVGL. 
(2) Construct ARIMA model of each zone. 
(3) ARIMA model is selected based on PE to generate linear partial scenarios. 

(3) Generate fluctuating time series scenario: 
(1) Calculate f(xnl,t|xnl,t−1) based on Copula function. 
(2) Sample based on f(xnl,t|xnl,t−1) to generate fluctuating time series scenarios. 

(4) Combine linear and fluctuating time series to generate time series scenario. 
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Input original 
fluctuating time 

series

Input original 
linear time series

Start

Construct ARIMA 
models

Calculate f(xnl,t\xnl,t-1)

Sample to generate 
fluctuation Time seriesSelect ARIMA model 

based on PE

HGVACL

Generate linear time 
series

Generate time series

End
 

Figure 2. Procedure of proposed scenario generation approach. 

4.2. Assessment Index 
The generated scenarios characterize the uncertainty of the net load output and are 

time-dependent and consistent with the actual scenarios. 
The time autocorrelation index σ, average offset rate index µ, climbing similarity in-

dex Pe, and mean absolute percentage error (MAPE) are adopted to assess the data quality 
of generated scenarios. The σ reflects the time correlation between the generated scenarios 
and the original scenarios. The µ reflects the offset degree between the generated scenarios 
and the actual running scenarios. The Pe reflects the climbing similarity between the gen-
erated scenarios and the original scenarios. Additionally, the MAPE reflects the accuracy 
of the ARIMA model. 
(1) Time autocorrelation σ 

time history gen|C -C |=A  (25)

ijA
L

σ =   (26)

where A is the time autocorrelation approximation index matrix; Chistory is the historical 
data time autocorrelation matrix; Cgen is the generated scenarios time autocorrelation ma-
trix; i and j are adjacent moments, i.e., |i-j| = 1; and L is the scenarios length. 
(2) Average offset rate µ 

, history,

1 1 history,

1 T N
j t t

t j t

x x
NT x

μ
= =

−
=   (27)
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where xj,t is the net load value of the generated scenario at time t under the i-th generated 
scenario; xhistory,t is the historical net load value at time t of the historical data; T is the gen-
erated scenario time stamp; and N is the number of simulations. 
(3) Climbing similarity Pe. 

( )
history, 1, , 1,

1 1 history,

| |11
1

T N
t t j t t

e
t j t

c c
P

T N x
+ +

= =

Δ − Δ
= −

−   (28)

where Δchistory,t+1,t is the historical climbing value from moment t to moment t + 1; Δcj,t+1,t is 
the generated scenario climbing value from moment t to moment t + 1. 
(4) MAPE 

1

ˆ| |1MAPE
l

c c

c c

x x
l x=

−
=   (29)

where ˆcx  is the predicted result at test set; xc is the actual result at test set; l is the test set 
length. 

5. Case Study 
The minimum value of chromosome fragment length is 128. The value is determined 

by the experiment, which shows that 128 is the minimum to ensure the performance of 
solution algorithm. Additionally, the chromosome individual constraints are set up to en-
sure the accuracy of ARIMA model building. Two initial populations are set up. The pop-
ulation I with chromosome length is 5 and population II is 10. The number of iterations is 
200, and the pop1 and pop2 are 40. 

The PE of original linear time series is 3.46. Additionally, the PE is normalized and 
the value is 0.76. The fitness curve during the iterative process is shown in Figure 3. 

 
Figure 3. Iteration curve of fitness. 

The results converge after 172 times and the chromosome length of optimal solution 
is 6. The original linear time series is divided into six zones. The ARIMA model is con-
structed for dividing the linear series. According to the existing research, the p and q or-
ders of the ARIMA model are usually small, and this paper sets the maximum p and q 
order to 5. The fourth zone is analyzed as an example, and the construction series results 
of the ARIMA model are shown in Figure 4. The ADF results are shown in Table 2, and 
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the AIC results are shown in Table 3. The ARIMA model parameters are shown in Table 
4. 

Table 2. Results of ADF. 

ADF 0 1 
d 0 1 

Table 3. Results of ADC. 

AIC p = 1 p = 2 p = 3 p = 4 p = 5 
q = 1 −7049 −7075 −6850 −6809 −6807 
q = 2 −6813 −6868 −7290 −6807 −6805 
q = 3 −6811 −6866 −6807 −6805 −6803 
q = 4 −7316 −6864 −6805 −6803 −6801 
q = 5 −7241 −7253 −6746 −7132 −6902 

Table 4. Parameter of ARIMA model. 

Zone p1 p2 p3 q1 q2 q3 d 
Zone 1 0.23 0.13 0 −0.47 0 0 0 
Zone 2 0.96 0 0 −0.34 −0.42 0 1 
Zone 3 −0.14 0.35 0.51 −0.31 −0.08 −0.21 0 
Zone 4 −0.47 −0.64 0 1.07 1.01 0.93 1 
Zone 5 −0.07 0.18 0.29 −0.09 −0.91 0 1 
Zone 6 −0.46 0.13 0.36 1.46 0.48 0 2 

 
Figure 4. Results of ARIMA model. 

Additionally, the values of length, PE and MAPE of each time section, are shown in 
Table 5. The results verify that the length of time sections affects the accuracy of the 
ARIMA model and the correlation between the distribution of PE and MAPE is positive. 
The smaller MAPE indicate that the constructed ARIMA is more accurate. 
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Table 5. MAPE values and PE of each zone. 

Zone length MAPE PE 
Zone 1 751 0.1024 1.38 
Zone 2 1832 0.0145 1.32 
Zone 3 385 0.0514 1.28 
Zone 4 629 0.0283 1.31 
Zone 5 128 0.0283 0.29 
Zone 6 5035 0.2229 1.42 

The value of net load ratio output at moment 1 and 2 is taken as an example, and the 
marginal distribution of net load ratio at moment 1 is shown in Figure 5. The marginal 
distribution is consistent with the Weibull distribution. 

 
Figure 5. Results of marginal distribution. 

The Kendall correlation coefficient and Spearman rank correlation coefficient are 
used to compare the fitting effect of various types of Copula functions. The normal Copula 
function fitted well. Hence, it was used. The results are shown in Figure 6. 

 
Figure 6. Results of Copula function. 
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According to Figure 6, the shape of the fitted joint probability density is the same as 
the frequency histogram. The solutions of other adjacent moments joint probability den-
sities are the same as in moment 1 and 2. The h(x,y) is solved according to the Bayesian 
formula to obtain the probability model of the fluctuant time series. The net load fluctuant 
time series is obtained based on the probability model. A set of scenarios are generated 
and shown in Figure 7. 

 
Figure 7. Results of scenario generation. 

The Monte Carlo method, based on historical data, Copula function generation sce-
nario method, and the proposed approach are compared. The number of generated sce-
narios is 1000. The k-means algorithm is used for scenario reduction and the results are 
shown in Figures 8–10. 

 
Figure 8. Results of Monte Carlo method. 
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Figure 9. Results of Copula function generation scenario method. 

 
Figure 10. Results of proposed approach. 

In order to illustrate the advantages of the proposed approach, the Monte Carlo sam-
pling (MCS) method is carried out. The time autocorrelation σ, average offset rate µ, and 
climbing similarity Pe of the two methods are calculated, as shown in Table 6. 

Table 6. Results of evaluation indexes. 

Method Time Autocorrelation σ Average Offset Rate μ Climbing Similarity Pe 
MCS method 0.0110 0.4673 0.8273 

Proposed approach 0.0515 0.0396 0.9035 

As for the time autocorrelation σ, the MCS method with the smaller value has little 
similarity to that of the generated and original data. In contrast, the proposed approach 
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can better track the characteristics of original data. Additionally, Table 6 shows that the 
average offset rate µ of the proposed approach is smaller than the MCS method, which 
verifies the higher accuracy of the proposed approach. Furthermore, the proposed ap-
proach has better performance in climbing similarity Pe when compared to the MCS 
method. The scenarios generation method of Copula function satisfies the requirement of 
temporal correlation of adjacent moments and the requirement of climbing similarity, but 
the resultant offset of its generated scene is still not very satisfactory. Therefore, the pro-
posed approach can generate scenario results with the highest amount of accuracy and 
the corresponding climbing similarity, which shows superior performance in reflecting 
the real situation of the net load scenario. 

6. Conclusions 
This paper proposes a renewable scenario generation approach based on the 

HGAVCL. With the use of the DWT, the original data are divided into the linear and fluc-
tuant parts. For the linear part, the HGAVCL is used to minimize the PE and divide the 
time series into different time sections. This is modeled by the ARIMA. Additionally, the 
Copula joint probability density function is used to model the fluctuant part. The scenar-
ios are generated by the Monte Carlo method, and the quantitative indices are established. 
The comparative analysis is conducted to demonstrate the advantages of the proposed 
approach. The proposed approach can improve the time autocorrelation σ and climbing 
similarity Pe, and reduce the average offset rate µ. The results show that the proposed 
approach better reflects the real situation of original data. 

In future research, the optimal dispatching scheme for renewable energy sources, 
based on the proposed scenario generation approach, will be presented. 
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