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Abstract: This review provides the state of the art of energy management systems (EMS) and
organizational structures of prosumers. Integration of renewable energy sources (RES) into the
household brings new challenges in optimal operation, power quality, participation in the electricity
market and power system stability. A common solution to these challenges is to develop an EMS with
different prosumer organizational structures. EMS development is a multidisciplinary process that
needs to involve several aspects of observation. This paper provides an overview of the prosumer
organizational and control structures, types and elements, prediction methods of input parameters,
optimization frameworks, optimization methods, objective functions, constraints and the market
environment. Special attention is given to the optimization framework and prediction of input
parameters, which represents room for improvement, that mitigate the impact of uncertainties
associated with RES-based generation, consumption and market prices on optimal operation.

Keywords: energy management system; prosumer; organizational structure; electricity market;
renewable energy sources; prediction method; optimization framework; optimization method;
objective function

1. Introduction

In order to generate increasing volumes of electricity to meet the needs of the econ-
omy and improve living standards, a harmful impact on the environment is increasing.
International agreements seek to solve the problem, from the 1997 Koyoto Protocol aimed
at restricting and reducing greenhouse gases to the 2015 Paris Agreement, which aims to
limit global warming to 1.5 °C compared to the pre-industrial level [1,2]. The European
Commission follows the international agreement and aims to reduce greenhouse gas emis-
sions by 40% by 2030 compared to 1990, according to [3]. To achieve its aims, the European
Commission must work on reducing greenhouse gas emissions across the sectors of elec-
tricity generation, industry, office buildings, households and traffic. Moreover, according
to [4], the European Commission aims to achieve zero greenhouse gas emissions by 2050.
Due to the above, it started to encourage investments in RES and the purchase of electric
vehicles (EV) and plug-in hybrid electric vehicles (PHEV) and a set of measures called the
“Clean energy package for all Europeans” [5]. Furthermore, several main objectives follow
from the package, namely energy efficiency in buildings [6], RES [7], energy efficiency [8],
governance regulations [9], regulations and directives on electricity [10,11], risk prepared-
ness, and a stronger role for the European Union Agency for the Cooperation of Energy
Regulators (ACER) [12,13].

Research has shown that it is optimal to place distributed generation (DG) as close
to consumption as possible [14]. Thus, electricity transmission losses are the lowest. The
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problem that arises is the voltage level at the point of common coupling with the distribution
grid, especially in the case of minimum loads in the grid. Furthermore, in the case when
electricity generation is significantly higher than electricity consumption, there is a change
in the flow of electricity upwards into the grid, which can cause multiple problems. Hence,
the losses increase significantly because power grid elements are significantly loaded. Apart
from a voltage rise and an increase in losses, DG affects other power quality parameters
such as flickers, asymmetry and harmonic voltage distortion. In addition to the above,
protection problems occur as energy changes direction. For a more detailed description, we
refer the interested reader to [15].

The generation of electricity from RES depends significantly on natural resources,
current solar irradiance and wind speed, and is therefore intermittent over the time horizon.
The variability of electricity generation from RES can be predicted with certain accuracy,
and hence new forecasting methods for the prediction of electricity generation from RES are
constantly developing [16]. By integrating RES, every passive electricity customer becomes
an active customer or prosumer that, in addition to electricity import from the grid, can
export electricity to the grid. In order to optimally manage energy, the prosumer must have
an EMS. There are several definitions of EMS in the scientific literature, and some of them
are shown in this paper. An EMS can be defined as a superior system that coordinates
and plans the operation of all DGs and elements within the prosumer and ensures optimal
and reliable operation at minimal cost [17]. On the other hand, according to IEC 61970, an
EMS is defined as: “a computer system that provides basic support services and a set of
applications required for the efficient operation of electricity generation and transmission
plants to ensure the security of supply at a minimum cost”. The limitation of this definition
refers only to the transmission system and the economic objective. EMS development is
a multidisciplinary process which involves several aspects of observation that need to
be considered. In order to find the optimal solution to the optimization problem in the
shortest possible time, which is robust or resilient to the uncertainties associated with
RES generation and consumption, new methods and approaches are constantly being
researched and developed [18,19].

A common solution to solving these problems is the development of a system for opti-
mal energy management and organizational structures of the prosumer in the distribution
grid. This review paper mainly studies EMS at the prosumer level, and it can be concluded
that it is impossible to maintain stable and efficient electricity grid operation without an
EMS owned by prosumers and without interaction with the distribution system operator
(DSO). Furthermore, the organizational structure of prosumers is also an essential factor
for optimal power grid operation. The organizational structure can be divided according to
the placement of prosumers in microgrid or prosumer communities, which is also analyzed
in this review paper. In addition, managing RES using an aggregator [20–22] and a virtual
power plant [23] approach can also be found in the scientific literature. Therefore, this
review paper will give an overview of scientific papers providing a complete overview
of EMS with several aspects of prosumers in different organizational structures. Aspects
observed in this review paper are the control structure, an EMS (which contains types and
elements, prediction of input parameters, optimization frameworks, optimization methods,
objective functions and constraints) and the market environment of the prosumer. These
aspects are important to observe and necessary to obtain an optimal solution.

In order to achieve the above objectives, it is necessary to ensure an EMS for pro-
sumers and additionally to increase their flexibility. Increasing the flexibility of prosumers
is necessary because RES are uncontrollable electricity sources. Consequently, integrating
additional elements such as energy storage systems (ESS) and EV into one controllable
unit and ensuring demand-side management (DSM) provide a high prosumer flexibility.
Combined with ESS, EV and DSM, an EMS enables energy storage when energy is avail-
able, and controls devices based on price signals to minimize cost and/or avoid congestion
(depending on the primary objective function). The importance of flexibility is presented
additionally in the section dealing with energy storage technologies. To solve the multi-
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disciplinary problem of EMS development, an increase in the number of scientific papers
tackling this topic is observed in the scientific community. Therefore, as shown in Figure 1,
three different directions from the aspect of the development of operational flexibility are
observed in:

• EMS based on ESS [24–31];
• EMS based on DSM that integrates the most common demand response programs

(DRP) [32–35];
• hybrid EMS that take into account both (mentioned above) [36–40].

Going deeper into EMS analysis, a different number and types of optimization ob-
jectives are observed in the scientific literature. Therefore, EMS can most frequently be
divided into:

• an EMS with one objective [41–44];
• an EMS with multiple objectives [24,34,45,46].

Furthermore, when observing the types of EMS, the most common objectives are to
minimize the cost of electricity and to maximize earnings in the energy market [25,30], while
an additional objective is to minimize greenhouse gases emissions into the
atmosphere [24,46,47]. In addition, the optimization methods used for EMS modeling
are as follows:

• Classical mathematical programming methods [30,48,49];
• Methods based on an intelligent solution space search (metaheuristic

methods) [24,35,50–52];
• Rule-based methods (RBA) [27,30];
• Multi-agent systems (MAS) [38,42,53–55];
• Artificial intelligence (AI) [56–58];
• Other approaches [59];
• Hybrid methods (a combination of several methods).

Based on a thorough review of the scientific literature, it can be seen that authors
mostly use mathematical methods, while other approaches have been receiving increasing
attention lately.

Figure 1. Classification of EMS in the scientific literature.

An overview of energy management in power distribution systems is presented
in [60]. Classifications in terms of objective functions, energy management approaches and

optimization approaches have been developed, and the constraints, challenges and future
work have been presented [60]. Furthermore, ref. [60] notes that energy management,
as well as a literature review, is related to microgrids, while the prosumer (as a smaller
unit) is neglected. Moreover, the authors do not provide an overview of optimization
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frameworks or show the importance of predicting input data for an optimization model.
Furthermore, as parts of the optimization framework, the time step and the scheduling
horizon of optimization play an important role in the robustness of the optimization model
output results. In [60], the authors mention very briefly the market environment and
performance of the electricity market. The market environment is particularly important
because in addition to various market mechanisms, it significantly affects the scheduling
of prosumer flexibility in operation. In [61], the authors provide an overview of the
home EMS and present the importance of integrating ESS and RES into the home EMS.
Furthermore, an overview of residential DRP and household energy management methods
is given, but optimization frameworks are neglected. Ref. [62] gives an overview of
prosumer energy management and energy sharing in smart grids. The authors show the
importance of prosumer energy management, as energy management is based on the
objective function, energy sharing and the creation of a prosumer community. Moreover,
the authors give an overview of optimization methods, but it is noted that the selected
papers mostly do not contain RES integrated into an EMS. Optimization frameworks are
also neglected that contain time steps which are very important for the optimality of the
optimization model results. In [19], the authors give a detailed overview of the optimization
methods applied to solving the microgrid EMS problem. In this review, the authors also
pay less attention to the review of optimization frameworks. In [63], the authors give
a classification of microgrids and a detailed division of microgrid EMS divided by the
authors into classical methods of EMS, EMS based on a metaheuristic approach, EMS based
on a genetic algorithm, EMS approach based on AI, and EMS based on other approaches.
It can also be noticed that the divisions with regard to the optimization frameworks are
neglected in the paper [63]. Furthermore, the authors focused predominantly on city-level
microgrids, while building-level microgrids were neglected [63]. Therefore, our work is
based more on building-level microgrids.

An optimization framework plays an important role since it directly affects the robust-
ness of the obtained optimization results because they depend on the temporal resolution
(the optimization time step) and uncertainty (predictions) of the input data such as electric-
ity consumption, electricity generation and the electricity price. The accuracy of input data
prediction is directly related to the accuracy of the results obtained from the optimization
model. From the summary of the review papers, it can be concluded that previous review
papers lack analysis of the optimization frameworks used, input data prediction methods
and participation in electricity markets.

This review paper contributes to a detailed overview of scientific papers in the field
of EMS for prosumers. In addition, this review paper gives an overview of integrated
electricity sources, electricity loads, and ESS used by the authors in their works. All this is
necessary for the development of a complete EMS model for the prosumer. Furthermore,
based on the observed gaps in the review papers, additional special attention will be given
to the following:

• Optimization frameworks;
• Methods for predicting electricity generation;
• Methods for predicting electricity consumption;
• Participation in the electricity market.

The rest of the paper is organized as follows: Section 2 shows the prosumer control
structure. Section 3 shows the prosumer EMS. The market environment of the prosumer is
shown in Section 4. The conclusion is given in Section 5.
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2. Methodology

This review paper aims to provide the state of the art of the prosumer EMS, as well as
tackle the issues of the direction of future research and where there is room for improvement.
Although there are review papers on the topic of the prosumer EMS, this paper fills the gap
concerning optimization frameworks. In addition, prediction methods and participation in
electricity markets are analyzed in detail.

It can be seen from the above that the scope of this work is an effort made to study all
aspects necessary for developing and making an accurate prosumer optimization model
that aims to minimize costs or maximize earnings by participating in the electricity market.
Therefore, the study of this paper will provide readers (especially those becoming familiar
with the area) with a clear view of the current state of EMS for prosumers.

In order to be able to deal with the topic in detail and provide the state of the art of
prosumer EMS, this research analyzed recent scientific works that deal with the aforemen-
tioned topic. However, the authors focused on searching scientific databases with some
limiting factors:

• scientific papers published in the last five years were taken into account, with the
exception of highly cited papers with a larger scope published more than five years
ago that were also taken into account;

• papers dealing with the development of EMS systems for prosumers and microgrids
were taken into account;

• papers dealing with the development of EMS based on ESS, DSM, hybrid EMS and
EV were considered;

• review papers on the topics of prosumer EMS, microgrid EMS, input data prediction
in optimization problems and the electricity market were taken into account, but also
published in the last five years, with the exception of highly cited papers;

• fundamental books of high quality with the topic of RES integration and their impact
on the grid were considered;

• other aspects, such as security and communication technologies, were not taken
into account.

Research keywords used for searching the scientific literature in the observed area are
as follows: prosumer EMS, microgrid EMS, electricity market, demand response programs,
electric vehicle, predicting data, prosumer control structure, microgrid control structure,
and their combinations.

The presented research concept determined the structure of this review paper as follows:

• a quality and comprehensive overview of the research topic, analysis of review papers
published so far, as well as identification of room for improvement and the gap
planned to be filled by the current research are presented in the introductory part;

• a detailed overview of the prosumer control structure, EMS with a detailed exami-
nation of each aspect and the market environment are presented as a result of the
conducted research;

• recommendations, the conclusion and room for improvement are based on a detailed
review of scientific papers.

Figure 2 shows a review structure of this study that includes all sections and subsections.
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Figure 2. A review structure of the paper includes all section and subsections.

3. An Overview of the Prosumer Control Structure

A review of the scientific literature reveals prosumer control structures that can be
roughly divided into centralized and decentralized. Furthermore, by optimally integrating
RES into the distribution grid, RES can be integrated as part of a prosumer community or
a microgrid.

In the case of prosumers (as a smaller unit), by reviewing scientific papers [58,59,64–74],
it can be concluded that a centralized control structure is the most commonly used control
structure in the literature. Based on this, each prosumer has an EMS (one central controller)
for optimal resource allocation. Additionally, a prosumer EMS allows prosumers to trade
within the prosumer community by offering a community offer based on more or less
electricity [55,64,65,75–78].

A microgrid can be a controllable unit in relation to the rest of the power system.
Accordingly, it must be equipped with an appropriate EMS. There is a problem with the
standardization of solutions in the mass exploitation of microgrids, especially in the stan-
dardization of their energy management. A microgrid EMS is classified in the scientific
literature into two main groups according to a degree of responsibility of each microgrid
(element) controller, centralized or decentralized control. Furthermore, as there is no gen-
eral concept of the architecture of a microgrid EMS due to differences in construction size,
types and existing infrastructure, the concept of a microgrid EMS with a hierarchical orga-
nization is often encountered in the scientific literature. According to [79], the hierarchical
organization represents a local and a central controller and communication system on the
following three levels:

• Primary regulation is realized using a fast local controller in control of only one
element of the microgrid, be it DG, a controllable load or several aggregated elements;

• Secondary regulation is usually realized using the central controller in control of
coordination and supervision of all local controllers;

• Tertiary regulation serves as an intermediary between the central microgrid controller
and external agents such as aggregators, grid operators, or electricity market operators.
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The evolution in the standardization of the microgrid EMS is evident in the IEEE
2030.7-2017 standard for microgrid controllers, which defines a new microgrid management
framework on three levels [80]:

• Lower control functions—regulation of voltage, frequency, active and reactive power
at the level of local controllers of each controllable element of the microgrid;

• Essential control functions—operation between on-grid and off-grid mode and vice
versa, and energy management;

• Upward control functions—realization of communication with the system opera-
tor, market operator, and aggregator, and integration into external information and
communication systems.

Primary controllers are realized as one unit (lower control functions), while secondary
controllers (essential control functions) and tertiary controllers (upward control functions)
are usually realized within an EMS.

In a centralized microgrid EMS, secondary and tertiary regulations are responsible
for optimal planning and management of the plant regardless of the operational strategy
(economic, environmental, technical, or a combination). In a decentralized system, man-
agement capability is distributed to local controllers that are empowered to make their
own decisions [79]. A decentralized microgrid EMS is most often implemented using
multi-agent systems (MAS).

4. An Overview of a Prosumer EMS

This section provides a detailed overview of a prosumer EMS. An EMS is extremely
important because it ensures optimal resource utilization. A review of the scientific lit-
erature in the field of optimal energy management at the distribution grid level shows a
division in terms of grouping prosumers. According to the literature review, all electricity
customers with integrated RES can be grouped into prosumers communities or microgrids.
It should be noted that the whole microgrid can be viewed as one prosumer, especially if
it is connected to the main grid at a point of common coupling (PCC). According to the
reviewed literature, a generalized EMS scheme can be derived as shown in Figure 3.

Figure 3. Overview of the prosumer EMS.
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In the case of the prosumer community, each prosumer must ensure optimal energy
management to maintain distribution grid stability, optimize resource utilization, and
ensure savings.

According to [18], the concept of an intelligent home (IH) is a technology that serves
prosumers. In addition, according to [18], innovative technologies also raise the level of
user comfort by providing security and optimal electricity consumption for a specific future
period. Users can control and monitor smart devices using an intelligent home EMS in
households (IHEMS). Such system also enables remote control through telecommunication
technologies [18]. According to [18], there are many definitions of IH. One of them reads:
“The IH concept is the integration of different services within a home by using a common
communication system. It assures an economical, secure and comfortable home operation
and includes a high degree of intelligent functionality and flexibility”. Furthermore, accord-
ing to [18], each IH should be equipped with an IHEMS that contains hardware, software
and a smart meter (SM). The idea is that through an SM, power suppliers can send signals
for the current price of electricity to the household, which can be forwarded by the SM to
the energy management controller (EMC) (an EMS is a subsystem of the IHEMS). At the
same time, the user status can be returned to the power supplier. The EMC is the main
part of the IHEMS that is connected via a sensor and actuators with smart devices (SD) in
the household and via mobile applications with users [18]. According to [18], the power
scheduling problem in an intelligent home (PSPIH) is defined as the allocation, subject to
constraints, of resources to objects being placed in space-time in such a way as to minimize
the total cost of some set of the resources used. The PSPIH should be implemented with
several constraints that can be divided into two basic types:

• hard constraints—must be satisfied in the solution;
• soft constraints—satisfaction in the solution is not essential but desirable.

The PSPIH is an optimization problem whose primary objective is to plan the operation
of household appliances to achieve optimal savings, the peak-to-average ratio for energy
and customer satisfaction [18]. Most frequently, a short-term energy management schedule
is developed for the next 24 h in the future [55,58,67–74]. As mentioned above, the IHEMS
contains hardware with the necessary software, communication and connection with SD
and often with RES (for optimal energy management of SD and RES). The most common
integrated RES are PV and WT, which are most frequently combined with ESS, such as
batteries [61]. It is important to note that the PSPIH can be applied to different profiles of
prosumers, not necessarily households. According to [61], applications of different solution
methods (techniques) to the IHEMS problem can be divided into:

• a rule-based algorithm—used for shifting loads to periods of low prices and reducing
peak load;

• artificial intelligence—used for finding optimum maintenance of heat, consumption
energy, renewable energy use, turning devices on and off, reducing total energy costs
using an artificial neural network (ANN), fuzzy logic control (FL) and an adaptive
neuro-fuzzy inference system (ANFIS);

• optimization methods (techniques)—the objective function is the minimization of er-
rors, cost, optimal design and management using classical mathematical and heuristic
optimization methods (techniques).

Furthermore, according to [81], biologically inspired algorithms (often called meta-
heuristic methods) can be divided into:

• evolutionary computing (EC);
• swarm intelligence (SI).

On the other hand, an EMS also ensures optimal planning and management of the
microgrid (as already mentioned, a microgrid can be seen as a type of prosumer). An EMS
is considered to be any computer system responsible for implementing an operational
strategy that generates optimal decisions for each controllable unit within the system to
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which it is superior and can be applied to the microgrid. The microgrid EMS is most
commonly used for short-term planning and management of a microgrid plant with a
scheduling horizon of 24 h to several days. Additionally, examples for long-term planning
and management of the microgrid plant can be found in the scientific literature, usually
on an annual basis [45,82–84]. Such studies are mainly used for optimal planning of the
configuration and size of microgrid components.

In [19], the authors generally divide EMS into four basic subsystems:

• human machine interface (HMI) of the operator for monitoring and entering
input settings;

• supervisory control and data acquisition (SCADA);
• a module for predicting input data required for optimization based on current and

historical measurement data;
• the optimization module responsible for optimal operations by generating decisions

for the observed scheduling horizon.

The main parts of the prosumer EMS are the optimization module and the prediction
module for input data shown in Figure 3. EMS modeling is a multidisciplinary problem
with many features due to the diversification of possible prosumer design and operation
aspects. In order to cover all aspects of the EMS at the same time, a review of the scientific
literature was observed from the following aspects:

• The type of the prosumer and the elements the prosumer integrates;
• The market environment in which the prosumer is integrated;
• Methods for predicting input parameters in optimization problems;
• Optimization frameworks and optimization problems of the prosumer EMS.

The prosumer as a concept can be realized in many different topologies and elements,
which gives them an advantage. Different prosumer topologies modeled in the literature
can be found in the examples of DC (DC prosumer), AC (AC prosumer) and hybrid
(AC/DC prosumer) prosumers. Due to the more significant existing infrastructure, the
most commonly used type in the literature is AC (AC prosumers). However, each type has
its advantages.

One of the main features and advantages of the microgrid as a prosumer is island
mode operation, which enables the power supply to local consumers in the event of power
supply interruption or a failure in the main electricity grid. Furthermore, although island
mode of the microgrid is essential, there are a large number of EMS in the scientific literature
that do not model the possibility of island mode operation [26,30,32,37,47,52,85–115].

The optimization module under the EMS must contain models of all prosumer ele-
ments together with aspects of prosumer operation. Diversified examples of prosumers
with various controlled and uncontrolled elements are found in the scientific literature,
such as:

• electricity sources:

– controllable sources (CS),
– uncontrollable sources (RES);

• electricity loads:

– controllable loads (CL),
– uncontrollable (critical) loads (UL);

• energy storage systems:

– electrochemical systems (secondary batteries),
– chemical systems,
– electrical systems.
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4.1. Types and Elements of the Prosumer
4.1.1. Electricity Sources

Electricity power sources can be roughly divided into controllable and uncontrollable
sources, as shown in Figure 4. Controllable electricity sources enable the regulation of power
output, which usually depends on the primary energy source (fuel) used by the electricity
source. Furthermore, controllable electricity sources are often used as additional (backup)
power supply systems essential for island mode operation of the microgrid. The following
controllable electricity source technologies are most often modeled in the literature:

• generators with an internal combustion engine (usually diesel or petrol) (GWICE) [37,
46,96,101,105,111,115–122];

• microturbine (MT) [24,39,46,47,85,92,96,97,103,106–110,112,115,117,119,122–125];
• cogeneration power plants for simultaneous production of electricity and heat

(CP) [25,88,92,96,97,100,110,116,123,125–127].

Although different technologies are involved, mathematical models of such elements
mainly have the properties of the optimization problem of unit commitment and economic
dispatching with the following constraints:

• the minimum/maximum output power of the aggregator (electricity power source);
• the rate of change of the output power or ramp up/down;
• the minimum electricity generation time and the minimum interruption time of elec-

tricity generation or the minimum up/down time;
• electricity generation (working time) costs are most often divided into fuel and

start-up costs.

Figure 4. Overview and division of electricity sources

The constraints engaged in the mathematical model depend on the generator type and
the installed power of the generator. With a small-size generator, which can be integrated
into the microgrid, some constraints can be ignored.

Uncontrollable electricity sources most often involve renewable energy technologies
where the power output depends on the availability of primary energy sources (wind speed
and solar irradiance). The term uncontrolled refers to the inability to change the output
power throughout the range as needed. Photovoltaic systems (PV) and wind turbines (WT)
are most commonly used in the scientific literature [26,27,30,32,49,52,55,58,66–74,86,87,89–
91,93–95,98,99,114,128,129]. Table 1 shows an overview of the scientific papers with respect
to the electricity sources used by the authors in their papers.
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4.1.2. Electricity Loads

An unavoidable feature of the prosumer is consumption management. Electricity
loads come in a variety of installed power and consumption profiles. A division into
controllable and uncontrollable (critical) electricity loads is most frequently used in the
scientific literature, as shown in Figure 5.

Figure 5. Overview and division of electricity loads.

Controllable electricity loads are mostly not modelled in the EMS. However, various
examples are found in the scientific literature that modelled a set of controllable electricity
loads (aggregate of loads) or each individually controllable electricity load. In Table 1, a set
of controllable electricity loads is indicated by the abbreviation (Aggr). Depending on the
modeling method, two effects are achieved when managing the consumption of a set of
controllable electricity loads: load shifting and/or load shedding. When modeling control-
lable electricity loads, the authors believe that the prosumer participates in DRP. In this way,
the same effect on the electricity consumption profile of the prosumer is achieved, but with
some financial compensation [24,37,39,46,86,96,100,101,105,117–119,121–124,126]. In sepa-
rate modeling, controllable electricity loads are most often a time-shiftable (Tshift) device
that can move its consumption cycle to another time interval [32,96,102,104,107,108,111,112].
Furthermore, examples of statically (on-off) and dynamically (consumption regulation
between the minimum and maximum value) controllable electricity loads can be found in
the scientific literature, and they are used only in the case of emergency. In Table 1, statically
(on-off) and dynamically controllable electricity loads are indicated by the abbreviation
(SAD). These electricity loads do not consume the needed energy in their consumption
cycle [102,104,108,125,128]. A detailed overview of DRP can be found in the prosumer
market environment section.

It is important to note here that EV have great potential for use in DRP because they
stand out from other electricity loads due to their high charging power and long charging
time. An overview of methods for charging (and discharging) EV connected to the power
grid is given in [130] to ensure controlled charging (and discharging) of EV and reduce
the impact on the power grid. An optimization algorithm for EV charging based on real-
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time measurement is presented in [59]. Based on the measurements, peak load avoidance
and savings of 60% are achieved compared to uncontrolled EV charging. Optimization
models of controlled EV charging (CCEV) in the prosumer environment are presented
in [58,66–68,70–73], and these also represent the current direction of the research community
and room for improvement.

Uncontrollable electricity loads represent a set of multiple electricity loads (aggregate
electricity loads) that require power at every moment of prosumer scheduling and oper-
ation. Therefore, the consumption of uncontrollable electricity loads cannot be managed
regardless of whether the microgrid in on-grid or off-grid (island) mode.

Table 1 shows an overview of the scientific papers with respect to the electricity loads
used by the authors in their papers.

Table 1. Review of the scientific literature with respect to types, elements and modeling of the power
electronics converter of prosumers.

Ref. CS RES EV/PHEV CL ESS BPEC CCCEL CCADE and LCADP

[85] MT PV No - ECS No - Yes
[86] - PV Yes Aggr CHS - - -
[26] - PV No - ECS No - Yes
[32] - PV, WT No Tshift ECS No - Yes
[37] GWICE PV, WT No Aggr ECS No - Yes
[52] - PV No - ECS No - Yes
[87] - PV No - ECS No - Yes
[88] CP - No - TS - - -
[89] - PV, WT No - ECS No - Yes
[90] - PV, WT No - ECS No - Yes
[91] - PV No - ECS - Yes Yes
[92] MT, CP PV No - ECS No - Yes
[30] - PV No - ECS - Yes Yes
[93] - PV, WT No - ECS - Yes Yes
[47] MT PV No - ECS No - Yes
[94] - WT No - ECS No - Yes
[95] - PV, WT No - ECS No - Yes

[96] GWICE, MT, CP PV, WT No Aggr,
Tshift ECS, CHS - - -

[97] MT, CP PV No - ECS No - Yes
[98] - PV No - ECS No - Yes
[99] - PV No - ECS - Yes Yes

[100] CP PV No Aggr ECS No - Yes
[101] GWICE PV, WT Yes Aggr ECS No - Yes
[102] - - No Tshift, SAD ECS No - Yes
[103] MT PV, WT No - ECS No - Yes
[104] - - Yes Tshift, SAD ECS No - Yes
[105] GWICE PV No Aggr ECS - - -
[106] MT PV No - ECS - - -
[107] MT PV, WT No Tshift ECS No - Yes
[108] MT PV, WT No Tshift, SAD ECS No - Yes
[109] MT PV, WT No - ECS No - Yes
[110] MT,CP PV, WT No - ECS, CHS No - Yes
[111] GWICE PV, WT No Tshift ECS No - Yes
[112] MT WT No Tshift ECS No - Yes
[113] - - Yes - ECS No - Yes
[114] - PV, WT No - ECS No - Yes
[115] GWICE, MT PV, WT No - ECS, CHS No - Yes
[116] GWICE, CP PV, WT No - ECS - - -
[46] GWICE, MT PV No Aggr ECS No - Yes

[117] GWICE, MT PV, WT No Aggr ECS No - Yes
[118] GWICE PV, WT No Aggr ECS No - Yes
[119] GWICE, MT PV, WT No Aggr ECS No - Yes
[120] GWICE PV, WT No - ECS No - Yes
[121] GWICE PV No Aggr ECS No - Yes
[122] GWICE, MT PV, WT No Aggr ECS No - Yes
[24] MT PV, WT No Aggr ECS No - Yes

[123] MT, CP PV, WT Yes Aggr CHS No - Yes
[124] MT - No Aggr - - - -
[39] MT PV, WT No Aggr ECS No - Yes

[125] MT, CP PV, WT No SAD ECS No - Yes
[25] CP PV, WT No - ECS No - Yes

[126] CP PV No Aggr ECS No - Yes
[127] CP - No - TS No - Yes
[128] - PV, WT No SAD ECS No - No (CC/CV)
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Table 1. Cont.

Ref. CS RES EV/PHEV CL ESS BPEC CCCEL CCADE and LCADP

[27] - PV, WT No - ECS No - Yes
[129] - PV No - ECS, CHS No - Yes
[49] - PV, WT No - ECS No - No (CC/CV)
[58] - PV Yes CCEV - - - -
[66] - PV Yes CCEV - - - -

[67] - PV Yes CCEV,
Aggr ECS No - Yes

[68] - - Yes CCEV - - - -
[69] - PV, WT Yes - ECS No - Yes
[70] - PV Yes - ECS No - Yes
[71] - PV Yes CCEV - - - -
[72] - PV Yes CCEV ECS No - Yes
[73] - PV Yes - ECS No - Yes
[74] - PV Yes CCEV ECS No - Yes
[55] - PV, WT No - ECS No - Yes

4.1.3. Energy Storage Technologies

Flexibility is essential in an advanced power system, and an increasing number of
scientific papers have been published on this topic. An advanced power system would
collapse without flexibility, and the reason for that is the unpredictability of electricity
generation from RES (especially from wind and sun) and unpredictable demand (especially
in relation to EV). That is why this area is of great importance to research. Flexibility is
necessary to ensure advanced power systems in the case of the prosumer as well. A flexible
power system can be achieved in several ways, the most important of which are:

• energy management;
• energy storage.

In comparison with electricity sources and electricity loads, ESS is an element with
bi-directional power flows. Two-way power flows allow ESS to act as both a source
and a load of electricity, thus ensuring flexibility in operation and balancing between
electricity consumption and electricity generation in advanced power systems in the case
of the prosumer. In [131], the authors provide an overview of energy storage technologies
such as:

• electrical storage (ES)—(i) supercapacitor and (ii) superconducting coil;
• mechanical storage (MS)—(i) pump-accumulation hydropower plant, (ii) compressed

air, and (iii) flywheels;
• electrochemical storage (ECS)—(i) secondary batteries and (ii) instantaneous batteries;
• thermochemical storage (TCS)—solar fuel;
• chemical storage (CHS)—fuel cells;
• thermal storage (TS)—(i) low-temperature energy storage and (ii) high-temperature

energy tank.

Figure 6 shows a detailed overview and division of energy storage technologies.
Mechanical technologies were primarily used in the conventional power system but can
be utilized in the advanced power system as well. Other technologies have the potential
to be used in the advanced power system, especially stationary battery storage and EV
batteries with significant battery capacities and charging and discharging powers, which
is possible to conclude from the scientific papers [55,58,64–68,70–74]. ESS optimal sizing
and allocation methods are also presented in [131]. Optimal sizing and allocation of ESS
are particularly important due to optimal power flows, reduced grid losses and initial
investment during building. However, this paper did not observe methods for optimal
sizing and allocation.

Electrochemical ESS (secondary batteries) are most commonly used in the microgrid,
and more recently, chemical ESS (fuel cells) and electrical ESS (ultracapacitors). The most
technologically ready types of electrochemical ESS are lead-acid and lithium-ion batteries.
Lead-acid batteries are the most widely used form of energy storage characterized by low
cost and ease of recycling, but their disadvantage is the dependence of capacity on the power
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and depth of discharge, energy density and the use of lead. On the other hand, lithium-ion
batteries are the fastest growing battery technology, whose sales doubled between 2013
and 2018. Most of the capacity is installed in EV and consumer devices, and the rest is in
stationary battery storage. The main characteristics of lithium-ion batteries are high energy
density and high efficiency, high discharge power and a larger number of cycles in the
battery life, while they lack safety features due to the high dependence of performance on
temperature [132,133]. Table 1 gives an overview of the scientific papers with respect to
energy storage technologies and EV or PHEV used by the authors in their papers.

Figure 6. Overview and division of electricity storage technologies.

Technologies of the electrochemical ESS as part of the EMS found in the literature are
lead-acid and lithium-ion secondary batteries, which are most frequently
used [24–27,30,32,37,39,46,47,49,52,85,87,89–122,125,126,128,129]. Furthermore, examples
of electricity management that modeled the fuel cell using stored hydrogen for fuel can be
found in the scientific literature [86,96,110,115,123,129]. For more information about new
emerging technologies of fuel cells and their performance, we refer the interested reader
to [134] and [135], respectively.

A review of the scientific literature on mathematical modeling of a battery ESS
shows that simple models are modeled by a large number of simplifications and ap-
proximations in which essential features that affect work are neglected. For example,
most of the reviewed EMS in the scientific literature neglect modeling of a bidirec-
tional power electronics converter (BPEC) as one of the two basic parts of a battery
ESS [24–27,32,37,39,46,47,49,52,85,87,89,90,92,94,95,97,98,100–104,107–115,117–123,125–129].
Examples of research modeling a converter with constant conversion efficiency and constant
energy conversion losses are presented in [30,93]. Furthermore, functional dependence of
the efficiency on the converter current load as the most accurate interpretation of converter
operation is presented in [91,99]. Scientific papers, in which converters with constant
conversion efficiency and constant energy conversion losses and functional dependence of
the efficiency on the converter current load were considered, are indicated in Table 1 by the
abbreviation (CCCEL).

During the review of the scientific literature on the EMS and battery modeling as the
second part of the battery ESS, room for improvement was observed. When modeling the
battery, researchers model lithium-ion technology with constant charging and discharging
efficiency (CCADE) and limit the charging and discharging power to the maximum amount
(LCADP) defined by the battery manufacturer [24–27,30,32,37,39,46,47,52,85,87,89–95,97–
104,107–115,117–123,125–127,129]. This approach can significantly affect the accuracy of
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the battery ESS model because it is known that the allowable battery charging power
changes during the charging process and depends on various factors, most notably the state
of charge of the battery. Furthermore, a review of the scientific literature reveals a small
number of examples that limit the charging power of the battery using the constant cur-
rent/constant voltage (CC/CV) method [49,128]. Table 1 shows an overview of the scientific
papers with respect to modeling the power electronics converter and battery charging.

A review of the scientific literature reveals that most papers neglect the power elec-
tronics converter when modeling EV battery charging [58,66–74], which is also of particular
importance, as already mentioned above, when charging the batteries.

As batteries are electrochemical storage systems, complex degradation processes
affected by various stress factors occur during their use. As a result, there is a reduction in
performance and operation life, primarily in terms of the ability to charge and discharge
and the capacity of the battery. The lifespan of lithium-ion batteries depends on factors that
can be divided into operation-dependent and operation-independent [136]. For example,
outdoor temperatures, humidity, calendar age and battery health are factors that do not
depend on the operation [137]. At the same time, battery cycle depth of discharge, over-
charge and over-discharge of the battery, discharge and charge currents, and the average
state of charge status are among the factors that depend on battery operation [138]. A review
of the scientific literature shows that most EMS do not consider the battery degradation
factors, which can affect battery life and the need to reinvest in batteries at high investment
costs. However, the authors who consider battery degradation add virtual costs to the
objective function, which prevents the frequency of charging and discharging the battery
and high discharges of the battery [37,47,93,99,105,114,119,122].

4.2. Prediction of Input Parameters in Prosumer Optimization Problems

Forecasting electricity generation and consumption (especially RES) and electricity
prices is important because input parameters directly affect optimization results. One set
of input parameters defines one operating point of the optimization problem [139]. The
optimization process is performed for a discretized period in the future (a scheduling
horizon) which includes a discrete step (an optimization time step) that represents one
operating point of the optimization problem. In case the input data for prediction are not
satisfactorily predicted, the optimality of the optimization results is questionable because
optimization operates based on the value of data expected in the future. It can be concluded
from the above that for the optimal result of resource allocation in the future, input data
accuracy must be ensured. This reflects one of the EMS characteristics, namely robustness
or resilience to uncertainty.

If the electricity consumption and generation (especially from RES) profiles are ob-
served, it can be said that they depend on several often unpredictable parameters. Some
of the factors influencing electricity consumption are the characteristics of the consumer
whose consumption profile is predicted (households, business sector, industry), the spatial
size of the facility whose consumption is observed (distribution area, feeder, neighbor-
hood, street, building, household), user habits (departure/arrival patterns, shifts, working
hours), meteorological factors (outdoor temperature, wind speed, air pressure, humidity),
the current time of day, type of day (working day, weekend, holiday), and current day
in a week, month and year. Meteorological parameters that impact the RES generation
profile also depend on many other unpredictable meteorological parameters, which further
complicates the forecasting process.

When predicting the profile of electricity consumption and generation from RES plants,
two approaches are presented in the scientific literature, i.e. direct and indirect prediction.
Direct prediction involves predicting a power consumption or generation profile of the
plant, while indirect prediction involves predicting the profile of input physical quantities
which power consumption or generation of the plant depends on. Indirect prediction also
requires a certain mathematical model that gives the power consumption or generation
results. An example of the use of indirect prediction is found in a PV, where solar irradiance
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and the outside temperature represent mathematical model input data for the numerical
calculation of PV output power. Figure 7 shows an overview and division of prediction
input parameters in the prosumer optimization problem.

According to [16], electricity generation from solar radiation and speed wind forecast-
ing methods are divided into:

• statistical methods;
• physical methods;
• artificial intelligence methods;
• hybrid methods,

while electricity demand forecasting methods are divided into:

• statistical methods;
• artificial intelligence methods;
• hybrid methods,

where AI and hybrid methods in principle contain the smallest error [16]. Furthermore,
according to [140], forecasting methods can be divided into time horizons as:

• very short term (min–h);
• short-term (h–week);
• medium short-term (month–year);
• long-term (over a year).

Figure 7. Overview and division of prediction.

In addition, models based on support vector regression (SVR) and ANN proved
helpful in rapid change when predicting the generation of a PV power plant [140]. In [141],
the authors agree that AI methods have recently dominated the scientific literature.

A large number of methods developed for predicting electricity consumption profiles
can be roughly divided into statistical methods and computational intelligence methods,
which have dominated lately [142]. Hybrid prediction methods are presented in [143], and
these are machine-based learning methods for electricity consumption that the authors
claim give the best results and show significant potential for using SVM and ANN. Fur-
thermore, ref. [143] provides an overview of individual electricity consumption predicting
methods based on learning, rules, and metaheuristics. In [144], the authors focus on an
overview of short-term predicting methods for electricity consumption which they claim
are of exceptional importance. Intelligent systems, as the authors call them, are also based
on ANN and SVM, with which they achieved the best results.

In addition to predicting electricity generation and consumption, it is essential to
predict the price of electricity. In [145], the authors provided a clear overview of statistical
methods, deep learning methods and hybrid methods, referring to the accuracy of the
methods for day-ahead price prediction in the electricity market. Furthermore, the authors
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showed the importance of input data when testing prediction methods and developed a
toolbox to evaluate new algorithms. Finally, ref. [146] provides an overview of optimization
methods in the phase of data set selection and training of ANFIS for the purpose of
predicting the price of electricity for the day-ahead electricity market. By applying the
optimization method for selecting input data and ANFIS training, significant progress has
been achieved in terms of the accuracy of short-term electricity price prediction.

It can be concluded that the choice of a particular method depends on several fac-
tors, such as the availability of historical data, the length of the forecasting horizon, the
accuracy of meteorological data and the desired level of prediction accuracy. Furthermore,
a detailed overview of the scientific papers on the prediction of the electricity consump-
tion profile and the profile of input-output (e.g. solar irradiance-power) quantities for
the RES plant is given in this paper. Unfortunately, perfectly accurate predictions have
been used in [25,27,32,37,46,47,49,52,55,58,67,68,70–74,86–90,92,94–98,102,103,105–107,110–
113,115,117–121,123–126,128,129], which is not present in practice. Therefore, the following
approach found in the scientific literature is to manually enter deviations from pre-known
(measured) profiles of input quantities to increase the reality of the model that has been
used in [26,85,99,101,114,116], thus achieving a certain resilience of the EMS to uncertainties
in the optimization problem. Furthermore, examples of probabilistic approaches using
probability density functions have been used in [24,39,108,109,122]. Probability density
functions are generated based on historical data (measurements), which can be used to
generate an arbitrary number of profiles and determine the probability of their occurrence.

The following scientific papers show slightly more complex examples of predicting
electricity generation and consumption profiles. In [91], the authors use the k-means
clustering method, which is a statistical method that utilizes historical data on power and
energy of generation from PV systems and electricity consumption to classify by certain
types of days and calculate the probabilities of their occurrence. Furthermore, in [30],
the authors use two different prediction methods for different prediction horizons. In
the higher layer of the EMS, they use ANFIS as an AI method to predict the electricity
consumption profile. They also use perfect predictions based on historical data with manual
creation deviations in the higher layer to predict generation from PV. In the lower layer of
the EMS, they use the adaptive autoregression algorithm (AARA) as a statistical method
for predicting generation from PV and the electricity consumption profile. A similar
application is seen in [93], where the same authors apply the same AARA for predicting
generation from PV and the electricity consumption profile. In [100], the authors use the
least-square support vector machine (LSSVM) method as an AI method for predicting
generation from PV, while they do not mention any method for predicting consumption.
An example of using another statistical method is available in [104], in which the authors
use multiple linear regressions with exogenous explanatory variables (MLRWEEV) with
a moving average (MA) model. Furthermore, in [108], the authors use the autoregressive
integrated moving average (ARIMA) statistical method to predict generation from PV, WT,
and electricity consumption profiles. Furthermore, three short-term predicting methods for
the real-time electricity price, PV and WT generation, based on a hybrid combination of
the K-medoids algorithm and the Elman neural network, are presented in [69]. Predicting
profiles of electricity consumption and electricity generation from PV using statistics-based
algorithms and predicting EV usage by combining statistics and clustering techniques are
presented in [66]. EV usage prediction is also of particular importance, considering the
charging power and battery capacity of EVs in relation to overall welfare. There is also
room for improvement here.

Table 2 shows an overview of papers with respect to input data prediction.
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Table 2. Review of the scientific literature with respect to the optimization framework, optimization
method, optimization approach, objective function and other specificities of the optimization problem.

Ref. Optimization
Framework

Optimization
Method Time Step Scheduling

Horizon Optimization Objectives Optimization
Approach

Prediction of
Input Data

[85] Online MIQP 1 h 48 h Technical Stochastic Yes
[86] Offline LP 1 h 168 h Economic Deterministic No
[26] Online QP 30 min 24 h Technical, Economic Deterministic Yes
[32] Online MILP 15 min 24 h Economic Deterministic No
[37] Offline WOA 1 h 24 h Economic Deterministic No
[52] Online HGAFL 15 min 168 h Economic Deterministic No
[87] Offline HGAFL 15 min 168 h Economic Deterministic No
[88] Online MILP 1 h 20 h Economic Deterministic No
[89] Online QP 1 h 24 h Economic Deterministic No
[90] Online QP 1 h 24 h Economic Deterministic No
[91] Online MILP 15 min 24 h Economic Deterministic Yes
[92] Online LP, NLP 15 min 24 h Environmental, Economic Deterministic No
[30] Online MILP, RBA 1 min, 15 min 24 h Economic Deterministic Yes
[93] Online MILP 1 min, 15 min 24 h Economic Deterministic Yes
[47] Offline HDPLP 1 h 24 h Economic Deterministic No
[94] Offline NLP 1h 24 h Economic Deterministic No
[95] Offline PSO 1h 96 h Economic Deterministic No
[96] Offline MINLP 1 h 24 h Technical, Economic Deterministic No

[97] Offline MILP 1 h 24 h Economic Robust pro-
gramming No

[98] Online QP 30 min 24 h Economic Deterministic No
[99] Offline DP 10 min 24 h Economic Deterministic Yes
[100] Online MILP 15 min 6 h Economic Deterministic Yes
[101] Online SDP 5 min 24 h Technical, Economic Deterministic Yes
[102] Offline MILP 15 min 24 h Economic Deterministic No

[103] Offline MINLP, SDP,
TMINLPSP 1 h 24 h Technical, Economic Deterministic No

[104] Online MILP 1 h 24 h Economic Deterministic Yes
[105] - MILP 1 h 24 h Economic Deterministic No
[106] - MILP 15 min 24 h Economic Deterministic No

[107] Offline MILP 1 min, 10
min, 1 h 24 h Economic Deterministic No

[108] Offline MILP 1 h 24 h Economic Stochastic Yes

[109] Offline MILP 1 h 24 h Economic
Stochastic,

Robust pro-
gramming

Yes

[110] Offline SQP 1 h 24 h Economic Deterministic No
[111] Offline MILP 1 h 24 h Economic Deterministic No

[112] Online MILP,
MINLP 1 h 24 h Economic Robust pro-

gramming No

[113] Online MILP 15 min 12 h Economic Stochastic No

[114] Online QP, MINLP 1h
96 h, 72 h, 48
h, 24 h, 12 h,

6 h
Technical, Economic Deterministic Yes

[115] Online MILP 1 h, 5 min 24 h Technical, Economic Deterministic No
[116] Online MILP 30 min 24 h Economic Deterministic Yes
[46] Online PSO 1 h, 1 min 24 h Economic, Technical,

Environmental
Deterministic No

[117] Offline CMISOCP 1 h 24 h Technical, Economic Robust pro-
gramming No

[118] Offline PSO 15 min 24 h Economic Deterministic No
[119] Online MILP, QP 30 min, 5 min 24 h Economic Deterministic No
[120] Offline NLP 1 h 24 h Technical, Economic Stochastic No

[121] Offline MINLP 1 h 24 h Economic Deterministic,
Stochastic No

[122] Online MILP, NLP 5 min 24 h Economic Deterministic Yes
[24] Offline HGAPO 1 h 24 h Environmental, Economic Stochastic Yes
[123] Online MILP 1 h 24 h Economic Stochastic No
[124] Online SLP 1 h 24 h Economic Deterministic No
[39] Offline MILP 1 h 12 h Economic Stochastic Yes
[125] Offline GA 15 min 24 h Environmental, Economic Deterministic No
[25] Offline MVPA 1 h 24 h Economic Deterministic No
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Table 2. Cont.

Ref. Optimization
Framework

Optimization
Method Time Step Scheduling

Horizon Optimization Objectives Optimization
Approach

Prediction of
Input Data

[126] Offline MIQP 1 h 24 h Economic Deterministic No
[127] Offline MILP 5 min 24 h Economic Deterministic No
[128] Online MILP 1 h 24 h Economic Deterministic No
[27] Offline RBA 1 h 48 h Economic Deterministic No

[129] Offline LP, MILP,
PSO 1h 24 h Economic Deterministic No

[49] Online MILP 1 h 24 h Economic Deterministic No
[58] Online MILP, RNN 15 min 24 h Economic Deterministic No
[66] Online MILP 15 min, 1 min 168 h Tehnical Deterministic Yes
[67] Offline MILP, RBA 15 min 24 h Economic Deterministic No
[68] Offline MINLP, GRA 1 h 24 h Economic Deterministic No
[69] Offline MILP 15 min 24 h Economic Deterministic Yes
[70] Offline NLP - 24 h Economic Deterministic No
[71] Offline MILP 1h 24 h Economic Deterministic No
[72] Offline - 1 min 24 h Economic Deterministic No
[73] Offline DP 1 h 24 h Economic Deterministic No
[74] Offline MILP 1 h 24 h Economic Deterministic No
[55] Offline MAS 30 min 24 h Economic Deterministic No

4.3. Optimization Framework and Optimization Problems of the Prosumer EMS

A review of the scientific literature revealed the existence of a wide range of views dur-
ing modeling. Some views are emphasized, while others are ignored or taken into account
to a lesser extent through approximations. The complexity of EMS modeling is the reason
for diverse solutions found in the scientific literature. In order to make a comprehensive
overview of the areas of optimization frameworks and properties of optimization problems
used in the EMS, different points of view will be taken into consideration:

• optimization framework;
• optimization method;
• objective function and constraints.

Figure 8 shows a detailed overview and division of optimization frameworks, opti-
mization methods and objective functions and constraints of optimization problems used
in the scientific literature. What follows is a detailed overview of the scientific papers in
the field of optimization frameworks and properties of optimization problems used in
prosumer EMS.

The optimization model of mixed integer linear programming (MILP) for energy
management of prosumer households to minimize the cost and three short-term predicting
methods for the real-time electricity price, PV and WT, are presented in [69]. Predictions
are based on one of the ANN types and the selection of input data. The authors considered
DRP, controlled and uncontrolled loads. The results show that in the case of the prosumer,
optimal distribution of resources is mostly affected by RES generation. Furthermore, a smart
home EMS containing PV, a battery as electricity storage, EV and different loads related to
DRP is presented in [67]. The optimization problem was solved by using MILP to minimize
household costs and ensure user comfort, and the algorithm for charging and discharging
the battery and extending battery life. Furthermore, an optimization model for EV charging
in a residential community with prosumers is presented in [72]. The objective function is to
minimize the costs for the required electricity applied to the entire community. In this way,
it was achieved that excess electricity generated is stored in batteries, and EV are charged
in the evening according to user habits. Moreover, the proposed online model utilizing a
recurrent neural network (RNN) to control EV charging and discharging in office buildings
is presented in [58]. The results show that by applying the RNN it is possible to determine
the optimal solution in milliseconds and significantly reduce the impact of prediction
and calculation time compared to the application of MILP optimization. Furthermore,
an optimization model for an electric vehicle battery charging and discharging based on
predicting electricity consumption and generation using algorithms based on statistics and
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predicting EV usage by a combination of statistics and clustering techniques is presented
in [66]. The objective function is to minimize the exchange of electricity with the grid by
applying MILP formulation and a real-time control algorithm.

Figure 8. Overview of optimization frameworks, optimization methods, objective functions and
constrains of optimization problems.

An optimization model aimed at minimizing the cost of electricity using EV in different
locations is presented in [70]. The results show that if EV is used as electricity storage, this
is achieved without any influence on the satisfaction and demand for electricity of the user.
Furthermore, a low-complexity model of scheduling EV charging and discharging in shared
parking is presented in [68]. The objective function is to maximize the profit of all EV users
by applying mixed integer nonlinear programming (MINLP), after which the algorithm
determines the optimal charging and discharging power for each interval and each EV.
A comparison of the usage potential of stationary battery storage and EV battery storage
of the prosumer is presented in [73]. More significant savings can be achieved by using
an electric vehicle battery in combination with a dynamically programmable algorithm to
minimize electricity costs and dependence on the tariff system. An optimization model
for EV charging and discharging to minimize the costs of a prosumer who owns a PV is
presented in [71]. Significant savings were achieved by applying two-level charging and
discharging power compared to one-level charging and discharging power of an EV battery.
The optimization model of the prosumer for profit maximization by participating in the
energy market is presented in [147]. Ref. [147] also shows the possibility of manipulation
of the energy market by the prosumer.

What follows is a detailed overview of the scientific literature with respect to optimiza-
tion frameworks, optimization methods, objective functions and constraints.

4.3.1. Optimization Framework

Optimization frameworks can be divided into online and offline, Figure 8. Most EMS
use an offline optimization approach in which the optimization process is performed only
once, i.e. before the beginning of the observed scheduling horizon [24,25,27,37,39,47,55,
67–74,86,87,94–97,99,102,103,107–111,117,118,120,121,125–127,129]. Online optimization
involves performing the optimization process at every time step or whenever new predicted
input data are available. Online optimization achieves greater resilience (adaptability)
of the EMS to uncertainty. One of the most commonly used strategies in the scientific
literature that implements online optimization is the rolling horizon strategy (RHS), a
technique often used in model predictive control (MPC) to minimize the impact of uncertain
parameters [26,30,32,46,49,52,85,88–93,98,100,101,104,112–116,119,122–124,128]. MPC is
used for discrete control, which means that the amounts of control quantities do not
change during the one-time step. Furthermore, examples of papers where the results are
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corrected to a certain extent with the real-time EMS can be found in the scientific literature
in [58,66]. In addition, one more example of rescheduling the optimization result is given
in [64]. According to [64], the optimization result obtained on the data from the day-ahead
electricity market can be corrected by the data from the intraday electricity market.

As shown in Figure 8, the scientific literature mainly contains the prosumer EMS that
has a scheduling horizon length of:

• 24 h (one day) [24–26,30,32,37,46,47,49,55,58,67–74,89–94,96–99,101–112,114–129];
• 6 h [100,114];
• 12 h [39,113,114];
• 20 h [88];
• 48 h [27,85,114];
• 72 h [114];
• 96 h [95,114];
• 168 h (one week) [52,66,86,87].

When analyzing the time steps of prosumer EMS optimization, hourly values are
most frequently used in the scientific literature [24,25,27,37,39,46,47,49,68,71,73,74,85,86,88–
90,94–97,103–105,107–112,114,115,117,120,121,123,124,126,128,129], which are related to the
wholesale energy markets in which hourly values are mostly used for bids to buy or sell.
The downside of a one-hour time step can result in not being able to see changes that
occur within that time step. Therefore, examples can be found in the scientific literature
with 30-min [26,55,98,116,119], 15-min [30,32,52,58,66,67,69,87,91–93,100,102,106,113,118,125],
10-min [99,107], 5-min [101,115,119,122,127] and 1-min [30,46,66,72,93,107] time steps, thus
increasing resistance to change, Figure 8.

Table 2 shows a detailed overview of the scientific papers with respect to the optimiza-
tion framework, the time step and the scheduling horizon.

4.3.2. Optimization Methods

As shown in Figure 8, a review of the scientific literature identifies two primary
groups of optimization approaches used in the design of optimization problems, deter-
ministic and stochastic. In the deterministic approach, it is considered that all input
parameters into the optimization problem are known with a certain accuracy [25–27,30,32,
37,46,47,49,52,55,58,66–74,86–96,98–107,110,111,114–116,118,119,121,122,124–129]. While a
stochastic approach includes the property of probability, a stochastic programming ap-
proach is most frequently used in the scientific literature to model such optimization
problems [24,39,85,108,109,113,120,121,123]. The choice of approach primarily depends on
the methods used to predict input parameters of optimization problems. Stochastic ap-
proaches use probability density functions that generate an arbitrary number of possi-
ble scenarios based on historical data, which are then used in optimization problems.
In addition to stochastic programming, examples of robust programming can be found
in [97,109,112,117] that also introduce the property of probability into an optimization
problem using probability density functions of certain input parameters but have certain
features of deterministic optimization approaches.

If optimization methods are observed, a wide range of methods appear in the scientific
literature, which can be roughly classified into:

• classical mathematical programming methods;
• methods based on intelligent search of solution space (global optimum approximation

methods, metaheuristics);
• rule-based methods;
• multi-agent systems;
• artificial intelligence methods;
• hybrid methods.

The most common methods in the scientific literature are classical mathematical pro-
gramming methods. Classical mathematical programming belongs to a more extensive set
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of mathematical optimization methods and is defined as a numerical solution to the prob-
lem of minimizing or maximizing a function [139]. The objective function and constraints
must have some form for mathematical programming methods to be applied.

The following optimization methods can be found in the scientific literature in relation
to classical mathematical modeling of optimization problems:

• linear programming (LP) [86,92,129];
• mixed-integer linear programming (MILP) [30,32,39,49,58,66,67,69,71,74,88,91,93,97,

100,102,104–109,111–113,115,116,119,122,123,127–129];
• quadratic programming (QP) [26,89,90,98,114,119];
• mixed-integer quadratic programming (MIQP) [85,126];
• nonlinear programming (NLP) [70,92,94,120,122];
• mixed-integer nonlinear programming (MINLP) [68,96,103,112,114,121];
• dynamic programming (DP) [73,99];
• sequential linear programming (SLP) [124];
• sequential quadratic programming (SQP) [110];
• semidefinite programming (SDP) [101,103];
• convex mixed-integer second-order cone programming (CMISOCP) [117];
• hybrid methods of using dynamic programming and linear programming

(HDPLP) [47];
• transformation of mixed-integer nonlinear programming in semidefinite programming

(TMINLPSP) [103];
• other approaches [72].

Examples of methods based on intelligent search of solution space, often called meta-
heuristic methods (methods of approaching the global optimum), can be found in the
scientific literature. These methods are often inspired by phenomena or behaviors in nature.
These methods do not require knowledge of the objective function properties but only
knowledge of the numerical value of the function, which enables modeling of more realistic
optimization problems with fewer approximations. Intelligent space search based methods
used in the scientific literature are as follows:

• particle swarm optimization (PSO) [46,95,118,129];
• whale optimization algorithm (WOA) [37];
• genetic algorithm (GA) [125];
• most valuable player algorithm (MVPA) [25];
• hybrid algorithm (combining the genetic algorithm and particle optimization)

(HGAPO) [24];
• hybrid algorithm (the genetic algorithm and fuzzy logic) (HGAFL) [52,87];
• greedy algorithm (GRA) [68].

In addition to optimization algorithms, there are rule-based EMS (RBA) in the sci-
entific literature, where the optimization procedure is not used, but decisions are made
based on strictly defined conditions or rules [27,30,67]. Furthermore, decentralized EMS
are most often implemented using MAS (especially considering the decentralized EMS
of the prosumer community and the microgrid) [55]. With metaheuristic methods and
RBA, the optimality of optimization results is questionable compared to the methods of
classical mathematical programming because these methods are based on obtaining a
global solution approach. Currently, more and more researchers are using AI methods [58]
or hybrid methods (a combination of several optimization methods) to solve optimization
problems [52,87]. Moreover, it has been shown that the use of AI methods can contribute
to achieving high accuracy of results in a short time needed to solve the optimization
problem [58]. However, with AI methods, it is also possible in some cases to achieve a ques-
tionable optimal optimization result compared to classical mathematical methods because
it can happen that the system does not know the answer to a new, unexpected condition. As
can be concluded from the above, hybrid methods consist of several different optimization
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methods aimed at achieving greater accuracy of output results and minimizing the time for
solving the optimization problem.

Table 2 and Figure 8 show a detailed overview of the scientific papers with respect to
optimization approaches and optimization methods.

4.3.3. Objective Functions and Constraints

A review of the scientific literature and a detailed analysis of the prosumer EMS
reveals different numbers and types of optimization objectives, Figure 8. Most often it
reveals papers with a single objective function [25–27,30,32,37,39,47,49,52,55,58,66–74,85–
95,97–124,126–129], while examples with multiple objective functions can be found less
frequently [24,46,96,125].

With regard to the optimization objectives to be achieved [148], the following division
can be made:

• economic objective [25,27,30,32,37,39,47,49,52,55,58,67–74,86–91,93–95,97–100,102,104–113,
116,118,119,121–124,126–129];

• technical objective [66,85];
• a combination of technical and economic objective [26,96,101,103,114,115,117,120];
• a combination of environmental and economic objective [24,92,125];
• a combination of all three objectives, i.e. economic, technical and environmental [46].

Table 2 and Figure 8 show different numbers and types of optimization objectives.
The constraints in the optimization problems depend on the modeled elements and

operating aspects, and the form of the constraints depends primarily on the optimization
method used. If elements of a prosumer are considered, the most common constraints
are physical constraints of the elements. However, in addition to physical constraints, in
the case of mathematical programming methods, it is also necessary to define the power
balance of the prosumer as a constraint.

5. An Overview of the Prosumer Market Environment

Considering increasing RES integration, much attention is paid to the market aspect.
The market aspect observes prosumer profit maximization and/or cost minimization
in the electricity market and the ancillary services market. By studying the scientific
literature, several mechanisms were observed in terms of the participation of prosumers
in the electricity market, such as day-ahead and intraday markets, a (local) flexibility
market, multilevel tariffs, Peer to Peer (P2P) (P2P—combined with some new distributive
technologies such as Blockchain), and additional participation in DRP.

Electricity billing schemes, either in the direction of energy imported from the grid
or energy exported to the grid, are primarily defined per unit of exchanged electricity.
Therefore, this profit or cost is regularly included in the objective function of the optimiza-
tion problem. In the scientific literature, authors observe multi-tariff electricity billing
systems, especially for prosumers, as DRP. DRP are defined as measures taken by system
operators/aggregators in response to a lack of energy to supply customers in the near
future. The aim of these measures is to influence electricity consumption of end-users
through different types of programs [149]. From the point of view of the system opera-
tor, prosumers have an advantage over classic end-users with controllable loads due to
their flexibility in operation which can be activated by controlled loads, controlled sources
and ESS. Most research integrates the microgrid into the retail market as an end-user
using time-of-use (TOU) or dynamic pricing, also known as RTP. This electricity billing
system is an example of a price based on DRP. In multi-tariff systems, most microgrid
EMS modeled dual-tariff systems [47,49,92,94,109,114,119,128,129], and examples with a
fixed price over time (one tariff) [99,126], three-tariff [97,113,122,126], four-tariff [30,52,93]
and seven-tariff systems [89,90] can also be found. Examples of microgrid EMS with dy-
namic prices where the price changes more often than in multi-tariff systems can be found
in [25,27,86,87,95,96,110,114,118,126]. Prices are modeled to reflect the current demand for
electricity in the electric power system. In times of high demand, prices are high and vice
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versa. In the case of the microgrid EMS that uses multi-tariff systems, the same price is
applied regardless of the direction of energy exchange (import from the grid or export to
the grid). It is important to note that in practice there are generally two different prices,
one price for the purchase of electricity and the other price for the sale of electricity to the
grid. Examples that take different prices when importing and exporting electricity from
and to the grid are available in [37,46,88,91,99,114], which is also applicable to prosumers
who have an integrated system for electricity generation from RES connected behind the
meter. Furthermore, it is important to note that in practice the retail market is usually
encouraged to use one’s own (i.e. prosumer’s) generated electricity because the price of
energy imported from the grid is higher than the price of energy exported to the grid. An
example of a detailed cost system of exchanged energy (a microgrid with the power grid)
is available in [104] and [71], where several tariff items define the price.

Moreover, as explained in [18], motivation schemes encourage prosumers to reduce
electricity consumption during peak loads by shifting consumption to low load periods
and distributing electricity consumption over a time horizon. Motivation schemes have
been developed based on DRP, and following this, researchers have been interested in and
focused on developing DRP [18]. According to [150,151], DRP ensures optimal management
(scheduling) of prosumer devices while ensuring user comfort and lowering overall costs,
and the aforementioned results in increased savings for the prosumer and benefits for DSO
as well. DRP achieve savings by moving the consumption to the interval of lower electricity
prices or turning on and off devices, ensuring a reduction in the peak power consumption
in the prosumer power grid, and it can additionally be combined with a plant for electricity
generation. According to [61], in Europe and the United States, DRP have been widely
implemented in order to achieve the above objectives. The classification of DRP according
to the United States Department of Energy is shown in Figure 9 [150,151].

Figure 9. Overview and division of demand response programs.

In the research community, some EMS authors integrate the microgrid into the
wholesale market, more precisely into the day-ahead market, where electricity prices
for the next day are taken before optimizing the plant for the future
period [24,26,39,102,105–107,109,111,115,120,121,123], and microgrids are considered as
price takers. In addition to the day-ahead market, some EMS also use intraday market
prices in the case of deviations from the planned operation due to uncertainties in relation
to various aspects such as future electricity consumption or generation contributing to the
optimization problem [100,108,112,116,124].

The application of this market environment largely depends on the legislation that
defines the minimum installed power (the microgrid size) required to participate in these
forms of the electricity market.
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It can be concluded from the above that participation in the wholesale electricity
market has been extensively researched and works well in practice. The trend of future
research can be concluded from the papers [55,64,65,75,77,78,152], where the solution
to the problem of participation of prosumers in the local electricity market within the
prosumer community is solved by using P2P services. Furthermore, it is necessary to apply
distributed technologies in addition to the P2P service that ensures the recording and secure
execution of the transaction, which is presented in [55,76]. A framework for providing
flexibility at the local level that allows participants to compete voluntarily in the provision
of ancillary services through aggregators is presented in [153]. There is also an increase
in the number of scientific papers aimed at integrating the ancillary services market to
increase earnings and provide ancillary services to the system [154,155]. Contributions to
the provision of ancillary services are, on the one hand, a delay in upgrading the electricity
grid, lower costs and an increase in the distribution grid capacity, and on the other hand, a
benefit to prosumers, DSO and balance responsible parties (BRP) at the same time [153].

A detailed analysis of the markets in Europe, North America and Australia with
respect to barriers and the potential for RES integration is presented in [156]. The authors
agree that in the future the analysis should include 5-min bids, co-optimization of electricity
and balance services, the intraday market as a rescheduling of day-ahead market operation,
a higher degree of deregulation and better adaptation to various market participants.
Ref. [157] presents room for improvement and challenges of the EU electricity market
and electricity grid with an increase in the share of electricity from RES. In terms of rapid
implementation and a supplement to the electricity grid and the electricity market, the
authors recommend the application of AI and Blockchain technology.

Furthermore, in [158], the authors agree that the energy transition in the European
Union countries is in progress, and that formal and legal regulations define its scope, while
its effectiveness is defined by the position of decision makers legitimized by public support
for a certain type of challenge. Finally, the authors note that this research is an important
complementary element dedicated to RES market development analysis in Poland and the
Baltic countries related to individual RES dimensions [158]. The research results show that
an increase in social awareness determines the popularization of RES in individuals [158].

It can be concluded that all aforementioned prosumer market participation methods
require an EMS.

6. Recommendations for Future Work

Based on the contribution of this review paper, there is room for improvement in
several aspects.

• Optimization problems lack detailed models of EVs that encompass different types
of energy management during the charging/discharging process and predict their
usage patterns.

• EVs, PV systems and ESS are almost always interfaced with power converters that are
regularly left out in optimization models.

• For detailed battery models, it is necessary to consider the amount of charging and
discharging power, which is not equal in the entire range but depends on various
factors and, most notably, on the state of charge of the battery.

• Input data such as RES generation, load, and market prices into optimization models
rarely use exact prediction methods.

• Participation of prosumers in new market mechanisms, especially the local market en-
vironments, and detailed modeling of DRP must be further developed and improved.

• Optimization frameworks play a very important role in alleviating the uncertainty
associated with RES generation, load and market prices that influence the optimality
of the solution. High volatility of RES generation and loads demands higher temporal
resolution of the optimization time step, especially when participating in emerging
electricity markets.
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The recommendations for the authors refer to the development of more detailed
optimization models considering room for improvement given above. Such optimization
models would give highly accurate results and be resilient to uncertainties.

7. Conclusions

A large number of scientific papers have been observed in the scientific community to
solve optimal management of prosumer electricity. The problems that arise when integrat-
ing RES into the household premises, the importance of increasing power system flexibility
and ensuring optimal energy management are explained in this paper. In order to present
the current state of development of the prosumer EMS, it is necessary to look at several
aspects that make up an EMS. This paper provides an overview of the current scientific liter-
ature with regard to different organizational and control structures of prosumers, types and
elements of prosumers, prediction of input data, optimization frameworks, optimization
methods, objective functions and their constraints, and the market environment. On the
other hand, this research did not cover other aspects, such as security and communication
technologies. Furthermore, the overview of review papers has shown that these studies
did not analyze optimization frameworks and input data prediction, which is becoming
increasingly important in the future. The significance of optimization frameworks comes
from the influence of RES generation and consumption, which also results in the adjustment
of electricity market participation with higher temporal resolution as DRP and resilience to
uncertainties. Because of that, this paper provides a detailed review of scientific papers
with respect to optimization frameworks used by the authors. In addition, the review of
scientific papers focused on the development of each part of the EMS and the part that the
authors mostly neglect. The review process results show that the authors develop simpler
optimization models without taking into account functional dependencies of individual
parameters which they replace with constant values. In this paper, gaps and room for
improvement are described in detail in each section giving clear guidelines for future work.

Author Contributions: Conceptualization, N.M., M.Ž. and G.K.; methodology, N.M., M.Ž., G.K.
and D.Š.; formal analysis, N.M., M.Ž., G.K. and D.Š.; investigation, N.M. and M.Ž.; writing—original
draft preparation, N.M., M.Ž. and G.K.; writing—review and editing, N.M., M.Ž., G.K., D.Š. and A.S.;
funding acquisition, G.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Croatian Science Foundation under the project “Prosumer-
rich distribution power network” (project number: UIP-2020-02-5796).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was founded by the Croatian Science Foundation under the project
“Prosumer-rich distribution power network” (project number: UIP-2020-02-5796). The work of
Andreas Sumper was supported by the Catalan Institution for Research and Advanced Studies
(ICREA) Academia Program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kyoto Protocol. Available online: https://unfccc.int/kyoto_protocol (accessed on 5 September 2022).
2. Paris Agreement. Available online: https://unfccc.int/process-andmeetings/the-paris-agreement/the-paris-agreement (ac-

cessed on 5 September 2022).
3. Climate Action—2030 Climate & Energy Framework. Available online: https://www.consilium.europa.eu/en/policies/climate-

change/2030-climate-and-energy-framework (accessed on 5 September 2022).
4. 2050 Energy Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 6 September 2022).
5. Clean Energy for All Europeans Package. Available online: https://ec.europa.eu/energy/topics/energy-strategy/cleanenergy-

all-europeansen (accessed on 6 September 2022).

https://unfccc.int/kyoto_protocol
https://unfccc.int/process-andmeetings/the-paris-agreement/the-paris-agreement
https://www.consilium.europa.eu/en/policies/climate-change/2030-climate-and-energy-framework
https://www.consilium.europa.eu/en/policies/climate-change/2030-climate-and-energy-framework
https://ec.europa.eu/clima/policies/strategies/2050_en
https://ec.europa.eu/energy/topics/energy-strategy/ cleanenergy-all-europeans en
https://ec.europa.eu/energy/topics/energy-strategy/ cleanenergy-all-europeans en


Energies 2023, 16, 3179 27 of 32

6. Energy Performance of Buildings Directive. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/energy-
efficient-buildings/energy-performance-buildingsdirectiveen (accessed on 7 September 2022).

7. Renewable Energy Directive. Available online: https://ec.europa.eu/energy/topics/renewableenergy/renewable-energy-
directive/overviewen (accessed on 7 September 2022).

8. Energy Efficiency Directive. Available online: https://ec.europa.eu/energy/topics/energyefficiency/targets-directive-and-
rules/energy-efficiencydirectiveen (accessed on 7 September 2022).

9. Governance of the Energy Union. Available online: https://ec.europa.eu/info/energyclimate-change-environment/
implementation-eucountries/energy-and-climate-governance-andreporting/national-energy-and-climate-plans_en (accessed on
7 September 2022).

10. Electricity Regulation. Available online: https://energy.ec.europa.eu/topics/marketsand-consumers/market-legislation/
electricity-marketdesign_en (accessed on 8 September 2022).

11. Electricity Directive. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0125.01
.ENG&toc=OJ:L:2019:158:TOC (accessed on 8 September 2022).

12. Risk Preparedness. Available online: https://energy.ec.europa.eu/topics/energy-security/security-electricity-supply_en (ac-
cessed on 8 September 2022).

13. ACER. Available online: https://european-union.europa.eu/institutions-law-budget/institutions-and-bodies/institutions-and-
bodies-profiles/agency-cooperation-energy-regulators-acer_en (accessed on 8 September 2022).
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