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Abstract: This work aims to propose a method enabling the evaluation of wind turbine blade damage
and fatigue related to a 1 Hz wind speed signal applied to a large period and based on standard
10-min SCADA data. Previous studies emphasize the need for sampling with a 1 Hz frequency when
carrying out blade damage computation. However, such methods cannot be applied to evaluate
the damage for a long period of time due to the complexity of computation and data availability.
Moreover, 1 Hz SCADA data are not commonly used in the wind farm industry because they require
a large data storage capacity. Applying such an approach, which is based on a 1 Hz wind speed
signal, to current wind farms is not a trivial pursuit. The present work investigates the possibility of
overcoming the preceding issues by estimating the equivalent 1 Hz wind speed damage over a 10-min
period characterized by SCADA data in terms of measured mean wind speed and turbulence intensity.
Then, a discussion is carried out regarding a method to estimate the uncertainty of the simulation,
in a bid to come up with a tool facilitating decision-making by the operator. A statistical analysis
of the damage assessed for different wind turbines is thus proposed to determine which one has
sustained the most damage. Finally, the probability of reaching a critical damage level over time is
then proposed, allowing the operator to optimize the operating and maintenance schedule.

Keywords: predictive maintenance; wind turbine blade; rainflow counting; damage estimation;
composite materials

1. Introduction

The share taken up by wind energy in worldwide electricity production is expected to
grow from its current 5% to 45% by 2050 to support the ever-growing need for energy [1].
The levelized cost of energy (LCOE) is one of the key drivers that will undergird this
production growth. Operation and maintenance (O&M) optimization is among the main
elements that must be in place to ensure a reduction in the LCOE, and should be a major
factor behind the expected 30% decrease in wind turbine (WT) energy production cost
from 2020 to 2050. Wind turbine blades (WTB) represent a key component of a WT fatigue
purpose, firstly because their failure rate is one of the highest among the other components
(0.13/year, similar to the failure rate observed for the gearbox, the transformer, or the
tower [2,3]). Secondly, their replacement or repair cost is very expensive, because they
involve rope access or mobilizing a crane [4,5].

The predictive maintenance of WTBs to minimize their associated O&M costs or
assess the possibility of WT life extension is a major purpose of current research efforts.
Predictive maintenance relies on smart planning to avoid expensive corrective action
and high repair costs linked to reactive maintenance. Two main families of predictive
maintenance already exist [6]. The first one regroups the data-driven models. Among
them, a predictive maintenance model based on an exponential expression of the WTB
damage behavior can be found [7]. Another model relies on the Bayesian dynamic network;
it discretizes the WTB damage into levels of damage, and the possibility of going from
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one damage level to the next is given by a probability law. The data-driven model can
provide a damage estimation with a small computing capacity [6,7]. The drawback is that
it is challenging for these models to find parameters to achieve a reliable remaining useful
life (RUL) evaluation.

The second family of predictive maintenance relies on physical models such as that
of Eder and Chen (2020) [8]. There are different physical methods enabling to estimate
the WTB RUL. The most used method is based on the Miner’s rule and it is easy to
operate [9–20]. Other models exist, but they are less employed due to their inherent use
limits such as the method relying on the Paris–Erdogan or Walker’s elastic crack propaga-
tion law [8,21] or the stiffness degradation fatigue theories about composite materials [11].
The physical models are known to allow accurate estimations of damage behavior. How-
ever, their associated computations are extremely time consuming when considering the
complete lifetime of a WT (typically 25 to 30 years). Moreover, as laid out by Jang et al. [13],
a reliable WTB damage evaluation requires a 1 Hz wind speed (WS) sampling frequency
because WTBs are sensitive to WS fluctuations at this frequency. As a result, because 1 Hz
WS data are very hefty, and because fatigue computation via physical damage models
is time consuming, the WTB damage cannot be evaluated for a large period of time [13].
Then, the industry norm is to work with 10-min aggregated signals (average, min, max,
standard deviation), as recommended by the IEC standard 61400-12-1 [22]. The 10-min
period has been proven to provide enough information to evaluate the energetic aspects
of the WT [20]. However, as mentioned above, WTB fatigue assessment requires data
with higher frequencies, which are not always archived in the SCADA systems. Figure 1
presents the differences between various aggregation intervals in terms of data volume.
This situation forces to design a fatigue damage computation tool working with the 10-min
SCADA data in order to be applicable to as many wind farms as possible.
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Figure 1. Schema showing the relation between data weight and the measuring period for a wind
farm composed of 72 WT for a period of 3 years.

The present study intends to achieve this goal to come up with a way to estimate
blade damage regarding 10-min SCADA data. The presented model starts by computing
the damage induced by the fluctuation of the 10-min mean WS stored in the SCADA data
using the well-known Miner’s rule. This damage will be called low cycle fatigue (LCF)
in this study. Then, the damage induced by WS fluctuations within each 10-min SCADA
data period is investigated. To achieve this, a 1 Hz stochastic WS signal is numerically
generated via a turbulence model based on the Kaimal spectrum [23,24], in correlation with
the previous 10-min SCADA data. Then, the corresponding damage is again computed
via the Miner’s rule. This damage will be called high cycle fatigue (HCF) in this study.
Finally, by combining the LCF and the HCF, it is expected to obtain an overall relative WTB
fatigue damage evaluation. Finally, applying this method to an entire wind farm enables to
highlight which WT is the most damaged and allow the wind farm operator to optimize his
maintenance operations. The main breakthrough here is the possibility to achieve for the
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first time a damage evaluation based on a physical model, considering a 1 Hz WS signal
extending through the entire WT lifetime by lowering many of the computation needs.

This study is divided into four main parts. The first section deals with the data and
the numeric tools at our disposal, followed by a presentation of the hypothesis of the
model developed. The second section presents the LCF damage estimation methodology
based on 10-min WS SCADA signals. The third section shows the HCF damage estimation
methodology, based on 1 Hz simulated WS signals. The HCF damage estimation aims
to be added to the LCF evaluation based on 10-min SCADA data because the fatigue is
a cumulative phenomenon. Then, results are analyzed and discussed in the fourth section.
Finally, the conclusion proposes a global overview of the breakthroughs brought by this
study and suggests other future leads to improve the results already obtained with the
present method.

2. Resources and Hypothesis
2.1. Resources

To carry out this study, we have access to 10-min aggregated signals from SCADA
data (specifically, a 10-min mean WS history) of a wind farm composed of 5 MW WT from
February 2017 to May 2020. Then, Matlab® programming language and FAST aeroelastic
models [25] were used to estimate the aerodynamic loads leading to stress variations, and
consequently, damage due to WS fluctuations. However, to estimate the inner stress in
the WTB, a detailed numeric model of the WTB should be used. Because the wind turbine
model installed on the studied windfarm is unknown for confidentiality issues, a 5 MW WT
numeric model from the NREL library (open access) was used as reference [26,27]. This
numeric model was chosen as it is the most common and most studied model in the
literature. In this context, it is assumed that the evaluated fatigue damage on the numeric
wind turbines will differ from the real wind turbines operating in this wind farm, but the
ranking of the most damaged wind turbine is expected to remain the same. Hence, the
damage computed in this project is relative and not absolute.

2.2. Considered Environmental Effects and Hypothesis

WTB fatigue is caused by different environmental factors, such as rain erosion [28],
the gravity effect [29], and temperature variations, all of which can also affect the material
fatigue strength [30] at different locations. The blades are submitted to two mains bending
moments, the flapwise bending and the edgewise bending [20,22,31,32] (Figure 2). Because
they are locations on the WTB depending almost only on flapwise bending (like the adhesive
bond line in the trailing edge [8]) or on edgewise bending, it is possible to consider only
one of these types of bending in such locations for fatigue purpose [8,12,22,31]. Depending
on the localization on the blade root, the blade root section can be at the same time only
subjected to flapwise or to edgewise bending [12,31,32]. It appears that the fatigue damage
induced by flapwise bending at the blade root is much higher than the edgewise one [12,32].
Moreover, the flapwise bending is provoked by the wind while the edgewise bending is
mainly caused by the weight of the blade [31–33]. So, the wind speed variations can be
assumed to be the major factor influencing the WTB fatigue as already suggested in the
scientific literature [19,32]. Thus, for simplicity, we will focus only on this aspect in the rest
of this paper.
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a TI = 20%.

2.3. Hypothesis

The damage is considered at the blade root section for two main reasons. Firstly,
because it is expected to be the most sensitive part to fatigue issues [31,31,32,34], and
secondly, because it generally has a circular section no matter the wind turbine model and
the rest of the blade structural design [8,16,31–33], which is not publicly shared by the wind
turbine OEM [33]. At the blade root, only the diameter and the skin thickness depends
of the global length of the blade [26,33,35], facilitating the extrapolation of a conceivable
root structure design from basic information from the numeric WTB model. The damage is
due to variations in the stress within the part, which is correlated with flapwise bending
and edgewise bending. Considering a zero pitch, the flapwise bending corresponds to
the out-rotor plane direction while the edgewise bending is associated with the in-rotor
plane direction. However, according to estimations carried out with FAST and a 5 MW
wind turbine blade from the NREL library, of the two, flapwise bending would seem to
be more sensitive to WS fluctuations (see Figure 3), which is why, in the present study,
we focus on the stress resulting from it. Regarding the simulated 1 Hz WS signal, the
simulated wind is also considered to be blowing in the rotor axis like the previous one, but
it is generated stochastically using the Kaimal spectrum proposed in the FAST TurbSim
module [24]. The Kaimal spectrum is often used in the wind turbine fatigue field to
generate a turbulent wind field [36,37] because it has been designed for a homogeneous
and flat onshore site [38]. It best describes the turbulence wind field within the atmospheric
boundary layer, where the earth’s surface has a strong influence on the atmosphere [39].
This is why it is a recommended model for the wind turbine industry, according to standard
IEC 61,400 [20]. Finally, because of the cumulative nature of the damage, the overall WTB
damage is assumed to be the sum of the HCF and LCF damage and other factors, defined
as follows:

DTot(t) = DLCF(t) + DHCF(t) + DSD/SU(t) + DEvents(t) + Dt0 (1)

where DTot is the overall WTB root damage at time t, DLCF is the damage due to LCF, DHCF
is the damage due to HCF, DSD/SU is the damage induced by transient regimes (shut-down
and start-up of the WT), DEvents is the damage caused by extreme environmental conditions
such as storm-inducing wind velocities higher than the cut-out WS of the wind turbine (in
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our case, 25 m·s−1), damage due to lightening, etc., and finally, Dt0 is the initial damage
induced by manufacturing at time t0. Here, DEvents is not considered because it relies
on complex mechanisms like resonance issues or sudden material failures not related to
fatigue behavior, according to Chou et al. [40]. Dt0 is also not considered for reasons of
simplification because it relies on defects not depending on fatigue behavior and that are
harsh to assess, even though they can have a strong effect on WT strength [16,41,42]. In
addition, DSD/SU is also not considered here because it requires a finer analysis of the start-
up and shut-down procedures used by the wind farm operator to assess the corresponding
damage [12,43]. In the present work, only DLCF and DHCF are considered because they
refer to the WTB fatigue behavior. This study introduces for the first time an estimation
of the HCF based on 10-min aggregated SCADA data commonly used in the wind farm
industry, enabling to evaluate the WTB fatigue damage for a long period of time covering
the entire life span of the WT. Hence, the overall damage is summarized in Equation (2):

DTot(t) ≈ DLCF(t) + DHCF(t) (2)
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3. LCF Damage Assessment
3.1. Assessment of Stress

Using FAST software and the geometric properties of a 5 MW WT model from the
NREL library, the flapwise bending moment (M f lap) at the blade root could be estimated
according to the WS (see Figure 3). Following this, and knowing the flapwise bending
moment and the geometry of the WTB, it was then possible to estimate the stress his-
tory according to the mean WS history (seen at the blade root thanks to Equation (3)
(see Figure 4):

σf lap =
M f lapc

I
(3)

with σf lap being the resulting stress [Pa]. c is the maximum distance from the neutral axis,
which corresponds approximately to the chord line for a WTB in bending. So, c is nearly
equal to half of the airfoil thickness [m] at the root [31,33]. I is the moment of inertia of
the WTB root section [m4]. To obtain I, the skin thickness of the blade at the root section
troot [m] must be known. However, this information is not provided with the numerical
WTB model used in this study. Furthermore, the WTB root thickness for a 5 MW WT



Energies 2023, 16, 3156 6 of 18

varies strongly (from 50 to 80 mm) depending on the sources [44–46], making it difficult to
obtain a reliable extrapolation. So, it has been arbitrarily chosen to approximate troot via
the following empirical law [33]:

troot ≈ 0.08

√
R
40

(4)

where R [m] is the rotor radius (here, R = 64 m for the 5 MW FAST WT model).
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The next step is to carry out the Rainflow Counting algorithm (RFC) as defined in [47]
according to the standards [14,20], to have the stress cycle characterization regarding the
stress history.

[∆σi, ni] = RFC(u(t), |σ|, σu) (5)

Here, ∆σi [MPa] is the stress range amplitude of the cycles, ni corresponds to the
number of cycles according to the cycle amplitude ∆σi, i refers to the i-th stress cycle. Then,
the WTB damage can be estimated as presented in the next section.

3.2. Damage Evaluation Based on 10-min SCADA Data

Many studies rely on stress variation to carry out WTB damage evaluation [9–11,13].
However, according to [14], it is recommended to work with the strain variation rather
than stress variation in order to evaluate the damage level in composite materials due to
the fatigue phenomenon. One reason for this is that the strain remains the same between
the plies composing the laminate when a force is applied to the latter, while it is not the
case with the stress (see Figure 5).

The guide proposed by Germanischer Lloyd, or DNV GL, since 2013 [14] lays out an
approach based on the strain and the Goodman diagram of the considered laminate to
assess the damage behavior due to fatigue. For a certain i-th strain cycle characteristic,
the corresponding Ni can be known via Equation (6), with the parameters explained in
the nomenclature:
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Ni =

[
Rk,t +

∣∣Rk,c
∣∣− ∣∣2 γMa Sk,M − Rk,t +

∣∣Rk,c
∣∣∣∣

2 (γMb/C1b) Sk,A

]m

(6)

According to [14], it is expected that

γMb/C1b = γM0C2bC3bC4bC5b (7)

Here, Sk,M and Sk,A can be derived from the previous RFC of the stress. Knowing the
stacking of layers within the blade root section, the corresponding Young’s modulus of the
material at the WTB root can be obtained [48]. After which, once the Young’s modulus is
evaluated, the RFC of the stress can be converted into the RFC of the strain via the Hooke’s
law, providing Sk,M and Sk,A for each strain cycle. Then, starting from Equation (5), the
RFC of the strain allows to estimate the following:

[Sk,A, ni] = RFC(u(t), Sk,M, Su) (8)

where Su is the maximum strain to rupture of the weakest ply composing the laminate.
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Finally, as recommended by the standards [14,20], via the Miner’s rule (Equation (9))
with Ni provided by Equation (6) and ni given by the RFC of the strain, an estimation of
the WTB’s LCF damage dLCF,i for the corresponding i-th cycle can be computed:

dLCF,i =
ni
Ni

(9)

Then, the global LCF damage DLCF is computed as the sum of dLCF,i encountered
within the period of study. The global methodology is summarized in Figure 6:

DLCF = ∑
i

dLCF,i (10)
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4. HCF Damage Evaluation

According to [13], it is necessary to work with an approximately 1 Hz WS signal to
ensure a reliable damage estimation. WS signal histories with high sampling rates are
uncommon, and where available, their processing is heavily computing resource-intensive
because of the sheer volume of data involved (≈600 times more than 10-min SCADA data,
as shown in Figure 1). To overcome these issues, the approach presented herein consists
in estimating the damage due to a 1 Hz WS signal for a 10-min period parametrized with
a mean WS and turbulence intensity (TI) defined as follows [13,49]:

TI =
σV

V
(11)

Here, σV is the standard deviation of the measured WS over a 10-min period and V
[m·s−1] is the measured mean WS within this period.

TurbSim FAST’s module is used here to generate the required WS signals [24]. Series of
WS signals are generated for all the wind characteristics (in terms on mean WS and TI) that
the WT can meet in normal operating conditions as defined by the norm IEC-61400-1 [20].
So, each series of WS signals is simulated regarding a specific mean WS and TI from a range
of values starting from the cut-in WS to the cut-out WS and a TI of 1% to 50% as advised
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by [20]. The model runs with the Kaimal spectrum to generate a turbulent wind flow as
recommended by the standards [14,20]. The Kaimal spectrum is used in the wind turbine
industry to generate stochastic and turbulent wind flow [50].

Because the WS signals are generated stochastically trying to reflect the wind’s be-
havior in the nature [51], a generated WS signal can differ from another even if they share
the same V and TI. So, it is expected that the resulting WTB damage from a generated
WS signal can also differ from another WS signal, even if those signals have the same
parameters—V and TI. That is why a series composed of numerous stochastic simulations
must be carried out for each V and TI, to cover a wide variety of possible signals—and thus,
of resulting damage. Each WS signal is simulated at a 1 Hz frequency for a 10-min period
with the V and TI parameters associated to the WS series that they belong to, as shown in
Figure 7. After 100 simulations, the damage distribution tends to maintain a single shape,
converging to the same distribution values. Hence, it has been chosen to fix at 100 the
number of WS signals within each WS series. Then, for each simulation (or WS signal), the
equivalent HCF damage dHCF is assessed using the methodology presented in Section 3.2.
Because each simulation corresponds to a proper dHCF, the results can be expressed under
the form of a cumulative distribution function (CDF) of dHCF for each WS series V and
parameter (see Figure 8).
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a period of 10 min.
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Figure 8. Estimated damage CDF for a WS series with the following parameters: V = 11 m·s−1 and
TI = 10% over a period of 10 min.

Then, for each 10-min period of the SCADA data history, the associated V and the
TI are identified and the WS series damage CDF with the corresponding parameters is



Energies 2023, 16, 3156 10 of 18

selected. Next, the equivalent dHCF,t for this 10-min period is chosen according to the
cumulative distribution value (CDV) Xt.

dHCF,t = F−1(Xt) (12)

where Xt of the selected CDF is chosen according to the damage percentile considered,
with the time steps t and F being the functions describing the damage CDF. Finally, by
cumulating the selected dHCF,t for the entire 10-min mean WS history, the overall WTB
damage DHCF can be calculated:

DHCF = ∑
t

dHCF,t (13)

Hence, DHCF can be computed for a long period (1 year in this case) and the probability
distribution function (PDF) of DHCF can be extrapolated by varying the value of Xt. The
DHCF assessment methodology used is summarized in Figure 9.
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5. Results and Discussion
5.1. Damage Estimation

Regarding Equation (2), the global WTB damage DTot(t) can be computed as the
sum of DLCF(t) and DHCF(t). To evaluate the WTB damage for several years, it has been
chosen to concatenate the 1-year WS history by the number of years required to have an
approximation of the entire life WS history. However, from the results obtained, it appears
that DHCF(t) is much higher than DLCF(t) (see Table 1). These results can be explained by
the fact that the sampling frequency of the signal used for the fatigue estimation strongly
influences the WTB damage estimation, as described by [52]. According to these results,
DTot(t) could be approximated as equal to DHCF to simplify the presented WTB damage
estimation process. Thus, the following relation can be assumed, in the case where only the
operation running regime is considered:

DTot ≈ DHCF (14)

Table 1. Table showing the difference between LCF and HCF (TI = 1%) damage estimations for
different lengths of the study period.

Period of Study DLCF (t) Mean DHCF (t) DHCF (t)/DLCF (t)

1 year 7.94 × 10−5 4.02 5.06 × 104

20 years 1.56 × 10−3 7.12 × 101 4.56 × 104

Based on the hypothesis presented in Section 2.3, leading to Equation (2), it was
decided to consider only the WTB damage due to the operation running regime and
a relatively simple geometry at the blade root. In Section 5.3, a discussion about how to
increase the reliability of the results is presented.

5.2. Impact of TI and V on HCF Damage

According to the results presented in Figure 10, it appears that V has a strong impact
on dHCF. The computed dHCF reaches its maximum at WS = 11 m·s−1, corresponding
to the moment where the WT nominal power and maximum bending moment are met.
However, such wide differences can call into question the need to consider any other
WS than 11 m·s−1. The TI is another parameter influencing dHCF, albeit to a lesser extent.
Based on the results of Figure 11, for a WS = 11 m·s−1, dHCF is increased by 30%, with
TI going from 1% to 5%, and by 1320%, with a TI going from 1% to 20%. This result is
explained by the fact that with a growing TI, the amplitude of the bending cycles, and thus
of the strain cycles, increases, leading to an increase in dHCF. Concerning the evaluation of
DTot, a TI increase from 10% to 12% represents a damage increase of 50% with DTot going
from 0.04% to 0.06%, as shown in Figures 12 and 13, after 1 year.

5.3. Study Case

This damage model needs to be calibrated despite the good results presented here,
for several reasons. Firstly, the thickness of the blade root section was estimated via
Equation (4), but uncertainties about the real blade root section thickness persist. Secondly,
the layer stack of the material of the blade root section can differ between WTB models [28].
However, this damage model can already be used as a tool to rank WT within the same
park according to the evaluated fatigue damage considering the 10-min mean WS SCADA
data. In our study case, DTot was computed for 11 WT of the same wind farm for a 20-year
period (see Figure 14). This result can lead to the wind farm operator adopting its O&M
schedule and budget accordingly by focusing on WT n◦8 (which is assessed as the most
damaged WT) in this example.
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Then, once this model is calibrated, more specific results could be extracted. As
an example, taking WT n◦8 mentioned above, the DTot profiles could be computed (see
Figure 15). Take note that the oscillation of DTot is due the season impact, the distribution
of the wind flow parameters changing depending on the season.
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The damage presented here is only relative. To have an absolute damage evaluating
tool, in addition to the calibration of the damage model, other factors influencing the
damage behavior must be considered, notably the impact of the running regime on the
WTB damage. In the literature, it appears that the current damage models only focus on
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a specific running regime [7–13,15,29,43,53,54]. However, according to them, each running
regime does matter in the WTB damage evaluation field. So, as a next step, to improve
the damage calculation, the future damage model must take into account other operating
regimes influencing DTot as expressed in Equation (1). This means that the impact of the
transient regimes on DTot must be investigated to obtain a more reliable computation of
DTot. Then, because this tool is developed to help the windfarm operator taking O&M
decisions, the next damage model should consider the impact of these operations on the
WTB damage level as explained by [6]. Ultimately, because WTs are operated for a long
period (around 20 years), it would be interesting to investigate the impact of the climate
change on the WTB damage. As explained by [55], climate change can have an important
effect on WT performance, and so, on their fatigue damage.

6. Conclusions

In this paper, a method allowing to evaluate WTB high cycle fatigue damage con-
sidering 10-min SCADA data is proposed. Firstly, a WTB damage assessment based on
10-min SCADA data and considering the equivalent damage due to a 1 Hz fluctuating
WS signals, based on rainflow counting and Palmgren–Miner’s rule was put in place. The
LCF damage and the HCF damage were separated. The equivalent WTB damages for
a 10-min period with a 1 Hz stochastic wind under different environmental parameters
were assessed and stored in the form of a damage CDF database. Then, by cumulating the
estimated WTB damage CDF for each 10-min SCADA data period, the HCF damage for
a long period of time could be computed for the first time. Next, the CDV Xi was selected
in terms of the damage percentile of interest to the operator. These different steps enable to
have a PDF of the calculated HCF damage, thus providing wind farm operators a more
complete decision-making tool regarding their maintenance strategy. After comparing
the HCF damage with the LCF damage, the LCF damage appeared to be negligible as
compared to that for the HCF, leading to the assumption that the global WTB damage is
effectively equal to the latter when only operation running conditions are considered.

Secondly, the WTB damage assessed while taking only operation running conditions
into account must also consider other factors, such as transient regimes and extreme en-
vironmental conditions, because these can influence the damage behavior of the WTB.
Moreover, the model must be calibrated because assumptions will have been made regard-
ing the blade root thickness or the material properties, which could lead to uncertainties
about the computed effective damage. The next step will therefore consist in carrying
out computations while considering the transient regimes and extreme environmental
conditions of WTs and to calibrate the damage model to ensure a more reliable estimation
of WTB fatigue damage.
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Nomenclature

Rk,t Characteristic short-term structural member resistance for tension
Rk,c Characteristic short-term structural member resistance for compression
γMa Partial safety factor for material a
γMb Partial safety factor for material b
Sk,M Mean value of characteristic cycles
Sk,A Amplitude of characteristic cycles
m Slope parameter of S/N curve
C3a Vacuum infusion molding effect
C4a Post-cure polymerization effect
C2b Temperature effect
C3b Non-woven unidirectional fibers effect
C4b Post-cure polymerization effect
C5b Local safety factor at the trailing edge
C1a Ageing effect
C2a Temperature effect
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