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Abstract: The issue of renewable energy curtailment poses a crucial challenge to its effective utiliza-
tion. To address this challenge, mitigating the impact of the intermittency and volatility of wind
and solar energy is essential. In this context, this paper employs scenario analysis to examine the
complementary features of wind and solar hybrid systems. Firstly, the study defines two types of
complementary indicators that distinguish between output smoothing and source-load matching.
Secondly, a novel method for generating wind and solar output scenarios based on improved Gen-
erative Adversarial Networks is presented and compared against the conventional Monte Carlo
and Copula function methods. Lastly, the generated wind and solar scenarios are employed to
furnish complementary features. The testing results across eight regions indicate the proposed sce-
nario generation method proficiently depicts the historical relevance as well as future uncertainties.
This study found that compared to the Copula function method, the root mean square error of the
generated data was reduced by 4% and 3.4% for independent and hybrid systems, respectively.
Moreover, combining these two resources in most regions showed that the total output smoothness
and source-load matching level cannot be enhanced simultaneously. This research will serve as
a valuable point of reference for planning and optimizing hybrid systems in China.

Keywords: wind-solar hybrid system; complementary characteristic; scenario generation; renewable
energy curtailment

1. Introduction

With the global environmental pollution and energy crisis, variable renewable en-
ergy (VRE), such as solar and wind power, plays an increasingly important role in en-
ergy production [1-4]. Development and utilization of wind and solar energy is not just
an alternative traditional energy resource, but also an obligation and urgent necessity in
order to achieve sustainable development [5]. However, the output power of VRE is usually
strongly fluctuant due to the intermittency and volatility of solar and wind energy. As
a result, large-scale solar and wind energy integration would bring new challenges to the
power grid [6,7]. The accommodation problem is particularly prominent, and wind and
solar curtailment occasionally occur. Taking Qinghai Province in China as an example,
the wind and solar curtailment ratio in 2021 reached 10.7% and 13.8%, respectively, far
exceeding the national average level. This problem can be partially overcome by utilizing
wind and solar power’s synergy and complementary characteristics on different temporal
and spatial scales. Research in other locations shows that the combination of wind and
solar energy could improve the stability of power systems. Therefore, it is essential to study
the complementary attributes of VRE to enhance the system’s ability to peak shaving and
valley filling [8,9].

In the past, the correlation study of two variables mainly focused on calculating the
correlation coefficient between random variables directly to reflect the degree of their
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correlation [10]. Table 1 shows the details of the correlation study of wind and solar in
different studies. The time-domain energy complementarity between wind and solar
energy has been assessed in many sites, and correlation coefficients such as Pearson,
Kendall, and Spearman are the most commonly used indexes in quantifying and evaluating
the complementary properties between wind and solar power. It is easy and convenient to
calculate the correlation coefficient directly, but there are drawbacks to this approach. For
instance, the most commonly used Pearson correlation coefficient only reflects the linear
relation [11]. Furthermore, the correlation coefficient still needs to be further justified from
a physical or mathematical viewpoint [12]. The copula method is often applied to avoid this
situation. It is used as a link function of the marginal cumulative distribution functions of
the wind speed and the radiation intensity. The Kendal correlation coefficient is indirectly
calculated to describe the correlation. Xu et al. combined the Copula and Gaussian kernel
functions to establish a dependency model for wind and solar energy. They applied the
resulting Kendall correlation coefficient for wind and solar complementary research [11].

Table 1. Details of complementary study.

Article Location Data Resolution Correlation Coefficient
Cantao et al. [13] Brazil Hourly, monthly Pearson, Spearman
Kapica et al. [14] global Daily Kendall

Couto et al. [15] Portugal Hourly, daily Pearson, capacity factor
Frank et al. [16] European countries Daily Pearson

Lvetal. [17] China Daily Spearman

Dirk et al. [18] Germany Daily, seasonal Kendall

Hoicka et al. [19] Canada Hourly Kendall

Jurasz et al. [20] Poland 15-min, hourly Capacity factor

Sterl et al. [21] Africa Hourly Proposed one index
Prasad et al. [22] Australia Hourly Proposed two indexes
Bett et al. [23] the United Kingdom 6-hourly, Daily Pearson

Shaner et al. [24] the United States Hourly Kendall

Costoya et al. [25] North America Hourly Proposed two indexes

The scenario generation approach can effectively express the randomness and interde-
pendence of VREs output [26]. The method is also developed to estimate how large-scale
wind and solar energy productions could be potentially involved to complement each
other. The scenario approach can be considered as generating a variety of time trajectories
that can represent inherent stochastic characteristics. Currently, the most commonly used
scenario-generation methods are based on statistical models. Firstly, to fit a probability
model from historical data, it is sampled to generate new scenarios [27,28], such as the
Monte Carlo method (MC) [29], the Copula function method (Copula), etc. [30-32]. At
the same time, these methods typically assume that the VRE output meets a particular
probability distribution. Monforti et al. used the MC random sampling method to study
the complementary characteristics of wind and solar resources [33]. Additionally, unsuper-
vised learning methods such as the machine learning clustering method [10] and principal
component analysis method [34] can also generate typical scenarios to capture the correla-
tion between solar and wind power. Zhang et al. used the principal component analysis
method to evaluate the complementary effects of wind and solar energy [35]. However,
the uncertainty of VRE output encompasses complex temporal-spatial and meteorological
correlations [36], and there may be some unknown correlations. It is difficult for shallow
algorithms to fully exploit the information and features contained in the output data.

Compared with traditional algorithms, data-driven deep learning methods can mine
the high-dimensional nonlinear characteristics of historical data, thereby improving the
accuracy of the description of VRE uncertainty characterizations. Chen et al. generated the
wind and solar output scenarios by using Generative Adversarial Networks (GAN) [37],
and Zhang et al. generated the amount of wind resource output by using the Wasserstein
GAN-Gradient Penalty (WGAN-GP) [38]. Zhu et al. generated single-location and multi-
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location scenarios for wind power by using the WGAN-GP [39]. Tang et al. generated
scenarios for newly built wind farm by using the RAC-GAN [40]. However, the method of
scenario generation based on deep learning is mainly applied in power system scheduling
analysis, and there are few studies on the correlation of wind and solar output to the best
of our knowledge.

In summary, the relevant researchers have conducted meaningful research on wind
and solar power systems and achieved some significant results. However, the following
two aspects remain to be addressed:

1.  In complementary characteristics of VRE research, most studies only focus on the
complementary performance of wind and solar resources, while the matching degree
of the combined output to the load is usually ignored. Moreover, the impact of the
volatility of VRE output itself is overlooked by correlation coefficients, which only
pay attention to the wholeness of data.

2. The traditional probabilistic model does not fully consider wind and solar resources’
historical and unknown relationship. In addition, these methods require a prior
assumption that the data obeys a specific probability distribution, such as a Weibull
distribution, Beta distribution, etc. However, the actual environment is complex,
and the assumed distribution may not fit the real condition. On the other hand,
existing research based on deep learning lacks relevant research on the complementary
properties of new energy sources.

Taking the eight regions of Haixi, Qinghai province, as examples, contributions to
solve the above problems in this paper are concluded as follows:

1.  Two types of complementary indicators are defined, aiming at total output smoothing
and source-load matching, respectively. The significance of two types of complemen-
tary indicators in different regions is studied. Moreover, the complementary rate of
fluctuation (CROF), complementary rate of ramp (CROR), and complementary rate
of offset (CRO) are added to the correlation analysis to consider the volatility of VRE
output itself. The photovoltaic capacity ratio corresponding to the maximum CROF is
proposed as the basis for the hybrid system’s capacity allocation to stabilize the wind
and solar output volatility.

2. WGAN-GP, based on a data-driven deep learning method, is used for wind and solar
scenario generation, and an unsupervised k-means clustering method is used for
scenario reduction. At the same time, we compared the traditional statistical methods
of MC and Copula, and the results showed that WGAN-GP generated scenarios could
be applied to the VRE output complementary study, which may balance the relevance
of the historical with the uncertainty in future production.

The rest of this paper is organized as follows. In Section 2, complementary indicators
are illustrated. In Section 3, the study on complementary characteristics of wind and solar
energy in wide areas in Haixi, Qinghai, is conducted. Section 4 applies the data-driven
and traditional scenario generation methods to the complementary analysis in the chosen
regions. Conclusions are drawn in Section 5.

2. Complementary Indicators of Wind and Solar Hybrid System
2.1. Two Types of Complementary Indicators

The complementary characteristics of wind and solar energy in this paper are studied
using the energy correlation and the hybrid system’s source-load correlation. We define
the correlation coefficient between the output curves of two new energy stations as the
first type of complementary indicator, notated as 7. The more negative and smaller the T
indicator is, the more evident it is that the two trends have opposite patterns, indicating
a stronger level of complementarity of the first type. The total output curve should closely
align with the load demand curve to achieve the best complementary wind and solar
hybrid systems strategy. Therefore, the inverse of the correlation coefficient between the
total output curve of the hybrid system and the load demand curve is defined as the second
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type of complementary indicator, denoted as ;. Smaller and more negative values of 1,
suggest a stronger association between the output curve and load demand curve, indicating
a higher level of complementarity of the second type.

2.2. Correlation Coefficient
2.2.1. Pearson Correlation Coefficient

The Pearson correlation coefficient applies to continuous variables, requiring them to
conform to a normal distribution, calculated as follows:

n

iz (xi —X)(vi —¥)
ry = 1)
Y TIPS

where 7 is the sample size, x;, and y; are the individual sample points indexed with i, ¥ is
the sample mean, and analogously for .

n

1 (i —?)2

2.2.2. Spearman Correlation Coefficient

The Spearman correlation coefficient measures the strength and direction of the associ-
ation between two ranked variables, computed as follows:

6y d?
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where d; = R(x;) — R(y;) is the difference between the two ranks of each observation.

2.2.3. Kendall Correlation Coefficient

The Kendall correlation coefficient is a statistic used to measure the ordinal association
between two measured quantities:

C:—D;
— T 3
Tk %7’1(7’1—1) ( )

where C; is the number of concordant pairs, and Dz is the number of discordant pairs.

The above three correlation coefficients all fall within the range [—1, 1], and the closer
the result is to 1, the stronger the positive correlation between the two variables. The closer
the result is to —1, the stronger the complementarity between the two variables.

2.2.4. Complementary Rate of Fluctuation (CROF)

To quantitatively describe the fluctuations in the adjacent moments of wind speed
time series over a while, the corresponding change in wind speed at the adjoining point is
defined as one fluctuation. The complementary rate of fluctuation is quantified based on
the fluctuation rate of the hybrid system:

Y ‘041%1 + a4y k
a1 Y |7 + a2 S |02+ e T 0]

CROF=1-— ()

where ’yf»‘ represents the volatility rate of the kth VRE power system at point i, and «y is the
kth VRE capacity ratio in the hybrid system. The value range of CROF is [0, 1]. The greater
the value, the better the hybrid system’s complementary.

2.2.5. Complementary Rate of Ramp (CROR)

To quantitatively describe the fluctuation in the non-adjacent moments of the wind
speed time series over a while, the process of wind speed extremum in the time series to the
next extremum and the two extreme points at the non-adjacent time is defined as a single
ramp. The ramp process refers to the continuous ascent or continuous descent characteristic
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of the output power curve of the hybrid system over a continuous time window, calculated

as follows: RROC
CROR =1 — (5)
a1 RRY + apRR? + - - - + ) RRF

where RROC is the ramp rate of the hybrid system, and RRF is the ramp rate of the kth
VRE power system. The value range of CROR is [0, 1]. The greater the value, the more
pronounced the ramp complementarity of the hybrid system is.

2.2.6. Complementary Rate of Offset (CRO)

Offset refers to the deviation between the actual output power of VRE and the average
output from moment to moment, similar to other complementary rate calculations, also
calculated by offset rate between the hybrid system and single VRE power system:

Pi—P;
1 j
n Z?:l ]p ‘
CRO=1— j . ®)
arel +ape? + - -+ age

where P]l is the output power of the hybrid system at point 7, P; is the average of the hybrid
system, and e* is the offset rate of the kth VRE power system.

3. Study on Complementary Characteristics of Wind and Solar
3.1. Data

We have collected reanalysis data for five years, from 2015 to 2020, in eight regions
of Haixi, including wind speed, wind direction, temperature, and solar irradiation. The
data were recorded hourly. For Part 3 of the study, we utilized the 2020 data, while the
2015-2019 data were used in Part 4 for scenario generation research. As shown in Table 2,
the average annual wind speed in the eight regions is above 5 m/s, and the mean solar
irradiation intensity is above 200 W/m?, except for region 8. The average monthly and
yearly peak sunshine hours (PSH) in Haixi are presented in Table 3, and the annual mean
PSH is 4.88 h, the highest in Qinghai Province. Moreover, the Gobi Desert area, which
is situated in Haixi, contains the most wind and solar energy-rich regions that require
low operation and maintenance costs, thereby highlighting the benefits of wind and solar
energy potential in Haixi.

Table 2. The basic information about the selected regions.

Region Location Longitude Latitude Mean Solar Irradiance (W/m?) Mean Wind Speed (m/s)
1 Wulan 99.20E 36.34 N 203.64 5.04
2 Dachaidan 95.11E 37.35N 223.65 6.02
3 Delingha 9724 E 37.06 N 202.91 6.56
4 Dulan 96.25E 36.22N 219.64 6.24
5 Golmud 955E 36.23 N 220.47 5.86
6 Mangnai 9248 E 37.95N 221.83 5.71
7 Lenghu 93.27 E 35.54 N 208.59 5.30
8 Tianjun 9849 E 37.22N 199.13 5.35
Table 3. Peak sunshine hours in Haixi.
Month 1 2 3 4 5 6 7 8 9 10 11 12 Mean
PSH (h) 320 413 5.17 6.11 6.29 6.06 5.99 5.71 5.01 4.49 3.50 2.89 4.88
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3.2. Data-Processing
3.2.1. Output Power of Photovoltaic (PV) Power Station

The optimal slope angle of the PV power station is 38° in Haixi, and the azimuth angle
of the array is taken to be south, i.e., 0°. We assume the installed capacity is 100 MW in
each PV power station. Thus, the PV power station output power calculation model is

as follows: ‘
Gl
PS]':Z?:l ?;G X Pes X Rpy @)

where P; is the output power of the PV power station at the jth region, G- is the total
radiation of the slanted plane at point i, W/ m?, Ggre is the standard irradiance, 1000 W/m?2,
P¢; is the installed capacity of the PV power station, and Rpy is the comprehensive efficiency
of the PV power station, 0.81.

3.2.2. Output Power of Wind Farm

In this case, we have utilized the power curve of a 3.0 MW wind turbine to convert
wind speed data into wind power data. The chosen wind turbine has a cut-in wind speed,
rated wind speed, and cut-out wind speed of 3 m/s, 11.5 m/s, and 25 m/s, respectively,
with a hub height of 100 m. Assuming an installed capacity of 100 MW in each wind farm,
the wind farm output power calculation model is as follows:

Pi
Pyj=Y. -1 xPu xRy 8)

=1 Pwc

where P,; is the output power of the wind farm at the jth region, Pi is the actual output
power of a single wind turbine at point i, Py is the rated capacity of the wind turbine, P
is the installed capacity of the wind farm, and Ry is the comprehensive efficiency of the
wind farm, 0.7.

3.2.3. Normalization

Normalizing the wind and solar output data is necessary to eliminate the dimensional
influence, and this paper uses the max-min value method for normalization.

i min
PS_PS

Ple = s~ pun ©)
) pi _ pmin

Prltw = PrZXx lz\lmin (10)
wo W

where Pé, PI"N is the output power of the PV power station and wind farm at a specific
moment. Pg"™, Pg"" is the maximum and minimum of the output power of the PV power
station at the time series, respectively. P, Pi" is the maximum and minimum of the
output power of the wind farm at the time series, respectively. P, P}, is the normalized
values of the PV power station and the wind farm output power, respectively. The output
data would be in the range of [0, 1] after normalization.

3.2.4. Output Power of the Hybrid System

Assume the photovoltaic capacity ratio in the wind and solar hybrid system is &, and
the wind energy capacity ratio is (1 — «). The total theoretical output power of the hybrid
system is calculated as follows:

Pi=3 {“Pfés +(1- a)Pizw} (11)
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3.3. The First Type of Complementarity

The first type of complementarity defined in this paper pertains to the complemen-
tarity between wind and solar resources. Figure 1 displays the annual photovoltaic and
wind power output in Region 3. However, the regularity of the wind and solar output
complementarity is not evident. Additionally, the volatility and intermittency of the two
resources are observed, as well as in other regions. Hence, analyzing the synergistic effects
of wind and solar resource output at various temporal and spatial scales is necessary.

1.0

—=— Wind
—e— Solar

Power

|
st

0.0 1 1 1 1 1 1 1 1 1 1 1 1

0 30 60 90 120 150 180 210 240 270 300 330 360
Day

Figure 1. Wind and solar output in Region 3.

Firstly, the complementarity of wind and solar energy resources at the exact spatial
location is analyzed. The Kendall, Spearman, and Pearson correlation coefficients of wind
and solar resources in eight regions of Haixi are calculated in Table 4.

Table 4. The correlation coefficient in the selected regions.

Region Kendall Spearman Pearson
1 0.0392 0.1051 0.0281
2 —0.0966 —0.0643 —0.0706
3 —0.1042 —0.1139 —0.0754
4 —0.0255 —0.0348 —0.0184
5 —0.0089 —0.0488 —0.0068
6 —0.2956 —0.2772 —0.2184
7 —0.1214 —0.0727 —0.0878
8 0.0625 —0.0050 0.0452

Figure 2 depicts the degree of wind and solar energy complementarity with the
deeper green, indicating higher complementarity levels. Conversely, deeper red represents
stronger positive correlations between the two VREs. The complementarity of wind and
solar in Mangnai is significant. Furthermore, positive correlations exist between wind and
solar in Tianjun and Wulan. However, the complementarity between different VREs is
not limited to the exact spatial location, especially considering the development of large-
scale wind and solar bases across China. Hence, this paper also examines wind and solar
complementarity at different spatial sites, including four scenarios: wind-wind, wind-solar,
solar-solar, and solar-wind.
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Figure 2. The Kendall correlation coefficient of wind and solar in Haixi.

3.3.1. Wind-Wind and Wind-Solar Mode

Eight selected regions were studied to evaluate the complementarity between wind
power in a specific location and wind (solar) power in different spatial areas. Figure 3
shows box charts of the first type of complementary indicator on the hourly, daily, and
monthly scales.
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Figure 3. The first type of complementary indicator under different time scales (the blue box repre-
sents the wind-wind mode, and the red box illustrates the wind-solar mode).

We can conclude that the wind-solar mode could enhance complementarity across
different time scales, particularly when total output smoothing is prioritized. In addition,
the first type of complementarity in the selected area is most significant on the daily scale.
Therefore, the complementarity of wind and solar can eliminate inverse peak regulation
characteristics and improve the accommodation of new energy resources.

3.3.2. Solar-Solar and Solar-Wind Mode

Figure 4 shows box charts of the first type of complementary indicator on the hourly,
daily, and monthly scales.

Figure 4 illustrates that the solar resources in Haixi are highly correlated. This is due to
Haixi’s location in the Qaidam Basin, which is primarily composed of desert and wasteland,
resulting in no discernible differences in radiation intensity and PSH. When striving for
total output smoothing, the solar-wind complementary mode has a more significant effect
than the solar-solar complementary mode. Specifically, the first type of complementarity in
the solar-wind mode is more pronounced. Regarding the timescale of the solar-wind mode,
the correlation intensity varies from strong to weak in the following order: daily, monthly,
and hourly. The stable output of PV power stations at the daily scale can be significantly
improved through solar-wind complementation, particularly when there is zero output at
night. Climate mainly affects the output power of PV power stations at a monthly scale,
which makes it easy to summarize the regularity. Solar-wind complementation can help
improve low output levels during winter. Solar energy production fluctuates wildly at the
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hourly scale, and the regularity is weak. Therefore, the complementary effect of wind and
solar is not very significant.
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Figure 4. The first type of complementary indicator under different time scales (the blue box repre-
sents the solar-solar mode, and the red box illustrates the solar-wind mode).

3.4. The Second Type of Complementarity

In the operation of wind and solar hybrid systems, it is often necessary to dynamically
adjust the capacity ratio according to load requirements to achieve the optimal complemen-
tary operating effect. By Formulas (4)—(6), in addition to the volatility of the resource, the
photovoltaic capacity ratio is also a factor affecting complementary results. Figure 5 shows
the trend of CROF, CRO, and CROR with photovoltaic capacity ratio .

0.35
® CROF
0.30 [ e  CRO
e  CROR
0.25

0.05

0.00

Figure 5. The relationship between complementary indicators and photovoltaic capacity ratio.

Figure 5 shows that the three complementary indicators in the operation stage tend
to increase first and decrease later as the photovoltaic capacity ratio gradually increases
to one. Still, the a values corresponding to the peak point are different. Among them, the
peak point of CROR corresponds to the most considerable « value, indicating that solar
energy contributes more to offset complementarity. The peak point of CROF corresponds
to the smallest « value, meaning that wind energy is more sensitive to volatility. In this
paper, the individual output of wind resources in each region and the combined output
of wind and solar hybrid systems are calculated, respectively. The a value of the hybrid
system is determined according to the peak point of CROF in each region. The results are
shown in Figure 6.
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(a) The independent wind power system

(b) The hybrid system

Figure 6. The independent output of the wind farm and the combined output of the hybrid system.

Figure 6 shows that wind power support capability is weak during the morning
peak hours, photovoltaics has almost no output during the evening peak hours, and the
output level of new energy is limited. It is tough to ensure a power supply in extreme
weather, such as in extreme heat and in no-wind conditions. Wind resource output shows
inverse peak regulation characteristics in most regions except a few. However, when
combining wind and solar energy in the same area, the total output power of all regions is
higher during the day than at night. The maximum output occurs between 11 o’clock and
15 o’clock, which compensates for zero solar production at night, meets the load demand,
and is easier to consume.

3.4.1. Wind-Wind and Wind-Solar Mode

Figure 7 displays box charts for the second type of complementary indicator on hourly,
daily, and monthly scales. When the goal is to meet the load requirements as much as
possible, the second type of complementarity of wind-solar is more significant than wind-
wind mode on all three timescales. Moreover, in 8 different regions, this complementarity
is most prominent on a daily scale.
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Wind power station

(a) Hourly

Wind power station Wind power station

(b) Daily (c) Monthly
Figure 7. The second type of complementary indicator under different time scales (the blue box
represents the wind-wind mode, and the red box illustrates the wind-solar mode).

3.4.2. Solar-Solar and Solar-Wind Mode

Figure 8 displays box charts for the second type of complementary indicator on hourly,
daily, and monthly scales. In terms of matching energy sources with load requirements,
the second type of complementarity of solar-wind mode is not as evident as the first type,
especially when considering hourly fluctuations.
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Figure 8. The second type of complementary indicator under different time scales (the blue box
represents the solar-solar mode, and the red box illustrates the solar-wind mode).

To summarize, the study on the first type of complementary characteristics showed
that both the wind-solar and solar-wind modes could enhance the overall smoothness of
energy output. Meanwhile, the study on the second type of complementary character-
istics showed that the wind-solar mode proved beneficial for matching sources to load
requirements, but the same could not be said for the solar-wind mode. In fact, the solar-
solar complementary mode performed better in meeting load requirements, with the most
significant improvement being observed on a daily scale.

Furthermore, Sections 3.3 and 3.4 led us to the following conclusions. Firstly, the best
complementary outcome for wind-solar mode was found in region six concerning the first
type of complementarity. Conversely, the wind-solar mode’s most significant impact in
relation to the second type of complementarity was observed in both region six and region
seven. Moreover, statistical data indicated that the most substantial impact in the first
type of complementarity occurs when wind energy from region six is combined with solar
energy from region seven, forming a hybrid system. On the other hand, the second type of
complementarity was most evident when wind energy from region seven was combined
with solar energy from region three.

4. Scenario Generation and Complementary Analysis Based on WGAN-GP
4.1. Scenario Generation of Wind and Solar Output Based on WGAN-GP

Accurately constructing VRE output scenarios is significant for promoting VRE'’s ac-
commodation and optimal operation in multi-energy power systems. Traditional scenario
generation methods based on the probabilistic model do not consider various correla-
tions and unknown relationships of VRE output. At the same time, finding a model
widely applicable to actual complexities is difficult. GAN [41] is a generative model
based on the adversarial theory, mainly consisting of the generator and discriminator.
The input of the discriminator is the real samples and the generated samples, and the
task of the discriminator is to separate the real samples from the fake samples. Finally,
the model finds the smallest value of the cost function of the generator and discrimi-
nator to achieve the Nash equilibrium. The objective function of the GAN to complete
adversarial training is as follows, and the entire optimization process can be considered
a maximum-minimization problem:

mGinmgx V(D,G) = Ex~p,[logD(x)] + Eznp, [log(1—D(G(2)))] (12)
where P, is the probability distribution of real data, and Pg is the probability distribution of
generated data.

However, there is a problem with the original GAN. If the discriminator is too pow-
erful, the generator may face the problem of gradient disappearance and make the loss
function unable to converge. Furthermore, if the generator is too well trained, the dis-
criminator may face the problem of gradient explosion. Therefore, WGAN [42] introduces
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the Wasserstein distance into the model to ensure gradient smoothness. When the real
data has little or no overlap with generated data, the distance between the two can still be
measured to provide meaningful gradient information. The Wasserstein distance is defined
as follows:

W(Prr Pg) = ii’lf E(x,y)N"/ [H xX—=Yy ”] (13)
’YNH(PrrPg

where [](P, P;) denotes the set of all joint distributions 7(x,y) whose marginals are Py
and Py, respectively. Intuitively, y(x,y) indicates how much “mass” must be transported
from x to y to transform the distributions P, into the distribution Pg.

Although WGAN training does not require the generator and discriminator to achieve
Nash equilibrium, the generator can generate good samples so long as the discriminator
is well-trained to avoid gradient explosions. However, weight clipping in WGAN, which
limits the parameters in the model to a specific range, will weaken the modeling capability
and may cause the gradient explosion again when the clipping range approaches the limit
value. To avoid this problem effectively, the WGAN-GP model [43] introduces gradient
penalty (GP) terms to improve the influence of weight clipping constraint parameters used
in WGAN to satisfy 1-Lipschitz continuity conditions on the network. The gradient penalty
is defined as follows:

GP = AEg[| ViD(%) [|l2 —1] (14)

where A is the gradient penalty coefficient, x sampling uniformly along straight lines
between pairs of points sampled from the data distribution P, and the generator distribution
P,. The objective function is as follows:

L = Ezwp [D(%)] = Exnp, [D()] + AEsy[|| ViD(2) 2 —1]° (15)

This paper selected five years of data (from 1 January 2015 to 31 December 2019)
from eight Haixi, Qinghai Province regions as the database. The temporal resolution
is 1 h, and 24 sets of wind and solar output data were used as a single sample, with
a total of 14,608 samples. The basic structure is shown in Figure 9. Algorithm 1 shows
the Pseudocode of WGAN-GP. The WGAN-GP model was built using the Pytorch deep
learning framework and accelerated via a CUDA parallel computing on a GPU in the
simulation. The computer employed an Intel Xeon E5-2678 v3 2.50 GHz CPU with 128 GB
memory, and a NVIDIA GeForce RTX 2080 Ti GPU with 11 GB of graphics memory
(The server is rented on the website: https://matgo.cn/). The case study first validated
the effectiveness of the proposed method for generating scenarios, and then performed
a simulation comparison between the WGAN-GP method and the traditional scenario
generation methods.

< e — = \‘
" 1
o [ -
. \ Output prediction
Real/|
Fake

)
_____ " Discriminator
. . cated sz s
2\ : |
N N .

Generator

Figure 9. The architecture of GAN used for wind/solar scenario generation.
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Algorithm 1: Pseudo-code of WGAN-GP

Algorithm WGAN-GP. We use default values of A = 10, ng4i. = 5, « = 0.0002, 31 = 0.5, B = 0.999
Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration 7., the batch size m, Adam

hyperparameters &, 81, B>.

Require: initial critic parameters wy, initial generator parameters 6
1: While 6 has not converged do

2: fort=1,..., nyic do

3: fori=1,..., mdo

4: Samples real data x ~ P, latent variable z ~ p(z), a random number € ~ U[0, 1]
5: X Gg(z)

6: £+ ex+(1—e)x

7: LY = Dy(%) = Deo(x) + A(]| ViDoo(£) [l2 ~1)°
8: end for

9: w < Adam (Vw% Y L9, w, a, B1, ,82>

10: end for

11: Sample a batch of latent variables {zw }zm—l ~ p(z)

12: 0 < Adam (VoL iy ~Du(Go)), 0, &, B, Ba)

13: end while

4.2. Scenario Generation Results by Three Methods

Part 3 provides a detailed analysis of wind and solar energy complementarity in the
Haixi region. The study found the optimum combination of the first and second types
of complementarity. However, the results are based on data from a single year and are
significantly impacted by the unpredictability of wind and solar energy output. In order
to enhance the research on wind and solar complementarity, this study utilizes a scenario
analysis method. Firstly, a large number of wind and solar output scenarios are generated
using WGAN-GP, with scenario reduction completed using k-means clustering.

Furthermore, the study also analyzes scenario generation methods based on statistics,
including the Monte Carlo (MC) and Copula function (Copula), to compare results obtained
using WGAN-GP. Figure 10 shows the scenario generation results for Region 4. However,
this paper does not include the results for other regions due to space limitations.

The root mean square error (RMSE) and mean absolute error (MAE) of the generated
most probable output data are calculated to test the results of scenario generation, as shown
in Table 5. Table 6 shows the hybrid system’s RMSE and MAE composed of the generated
wind and solar data. Ps;, P, represents the photovoltaic output and wind power output in
each region, respectively. P; denotes the total output after the combination in each region.
A represents the error difference between the proposed method and Copula, MC.

The results in Tables 5 and 6 show that the generated scenarios by WGAN-GP are
closer to the actual results than those generated by the traditional statistics-based methods.
Furthermore, the effect of Copula is superior compared to the MC method. Additionally,
compared with the Copula function method, the RMSE of generated output using the
proposed methodology decreased by 4% and 3.4% in independent renewable energy
systems and hybrid power systems, respectively. Compared with the MC method, the
value comes to 9.7% and 6.7%.
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Figure 10. Generated scenarios by three methods in Region 4.
Table 5. The error of the generated data.
WGAN-GP Copula McC
RMSE MAE RMSE MAE RMSE MAE
Py 0.036 0.024 0.089 0.059 0.112 0.059
Py 0.091 0.079 0.100 0.083 0.321 0.214
Py 0.056 0.033 0.109 0.065 0.167 0.090
Py» 0.158 0.150 0.172 0.154 0.251 0.212
Ps3 0.041 0.027 0.112 0.068 0.085 0.049
Pys 0.172 0.139 0.170 0.155 0.325 0.267
Py 0.047 0.026 0.092 0.053 0.084 0.047
Pya 0.190 0.182 0.204 0.181 0.207 0.163
Pss 0.086 0.054 0.113 0.069 0.126 0.061
Pys 0.134 0.122 0.172 0.134 0.245 0.208
Py 0.065 0.044 0.073 0.048 0.140 0.068
P 0.088 0.079 0.191 0.151 0.153 0.116
Py; 0.024 0.015 0.075 0.049 0.113 0.059
Py7 0.095 0.068 0.159 0.100 0.213 0.149
Py 0.039 0.023 0.082 0.051 0.092 0.053
Pys 0.091 0.078 0.137 0.128 0.263 0.207
mean 0.088 0.071 0.128 0.097 0.181 0.126
A 0.040 0.026 0.093 0.055
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Table 6. The error of the hybrid system with generated data.

WGAN-GP Copula MC

o RMSE MAE RMSE MAE RMSE MAE

P 0.35 0.065 0.056 0.085 0.065 0.205 0.132
P, 0.46 0.097 0.090 0.124 0.101 0.165 0.139
P; 0.56 0.085 0.072 0.113 0.095 0.153 0.126
Py 0.42 0.117 0.110 0.134 0.113 0.124 0.099
Ps 0.43 0.107 0.091 0.127 0.092 0.147 0.129
Py 0.44 0.039 0.031 0.112 0.090 0.096 0.071
P; 0.45 0.058 0.043 0.097 0.064 0.120 0.085
Pg 0.47 0.046 0.038 0.095 0.082 0.139 0.108
mean 0.45 0.077 0.066 0.111 0.088 0.144 0.111
A 0.034 0.022 0.067 0.045

4.3. Complementary Analysis Based on Scenario Generation

In this paper, the generated scenarios with the highest probability generated by
WGAN-GP are close to the measured data. At the same time, the data with a lower
chance can also characterize the uncertainty and unknowability of the future output.
Figures 11 and 12 are box charts of the first and second types of complementarity indica-
tors for WGAN-GP generated data under different complementary modes, respectively.
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Figure 11. The first type of complementary indicator of the WGAN-GP-generated data.
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Figure 12. The second type of complementary indicator of the WGAN-GP-generated data.

The WGAN-GP-generated data has led to the following conclusions: Firstly, com-
bining wind and solar energies can significantly improve the first and second types of
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complementarity. Secondly, the solar-wind complementary mode has been found to im-
prove the first type of complementarity. Although there is a slight deviation from the
measured results, it can also somewhat improve the second type of complementarity.
However, the effectiveness of this improvement is limited. Nonetheless, it can bolster the
measured data’s complementary findings and enhance the overall robustness of the results.
Thirdly, wind resources in region six pair best with other regions’ solar energy for total
output smoothing, while wind resources in region seven pair best with other regions’ solar
energy for source-load matching. Additionally, a positive correlation exists between wind
and solar resources in region one and eight, as shown in Figure 3. The generated data can
partially restore this feature.

5. Conclusions

This paper explores the complementarity of wide-area wind and solar resources in
Haixi from two perspectives: total output smoothing and source-load matching. It defines
the first and second types of complementary indicators and analyzes four complementary
modes: wind-wind, wind-solar, solar-solar, and solar-wind. Moreover, the study proposes
a deep learning-based scenario generation method to comprehensively analyze wind and
solar resource complementarity, improving the results’ robustness. The main conclusions
are as follows:

1. This paper focuses on wind and solar complementarity in Haixi, Qinghai. It proposes
using the deep learning method WGAN-GP for complementary studies, which shows
that the proposed method can comprehensively analyze the correlation of resource
contributions and improve the robustness of the results. This proposed method has
a high coverage rate for measured values, which can accurately describe the un-
certainty of renewable energy output. In addition, the proposed methodology re-
duces the RMSE of the generated output by 4% and 3.4% in independent renewable
energy systems and hybrid power systems, respectively, compared to the Copula
function method. Additionally, compared to the MC method, the RMSE decreases to
9.7% and 6.7%.

2. In the first type of complementarity study, wind-solar and solar-wind modes signifi-
cantly enhance the overall output’s smoothness and stabilize fluctuations in hybrid
systems. In the second type of complementarity study, the wind-solar mode also
significantly improves source-load matching, making it easier to integrate wind and
solar resources to accommodate. However, the solar-wind mode’s improvement effect
is less pronounced than that of the first complementarity type.

3. In this paper, we found that combining wind energy from region six with solar power
from region three showed the best complementary effects in the first type of study.
Similarly, combining wind energy from region seven with solar energy from region
three yielded the best results in the second type of complementarity study.
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Nomenclature

Pearson correlation coefficient

Spearman correlation coefficient

the first type of complementary indicator

the number of concordant pairs

photovoltaic capacity ratio

the ramp ratio of the kth VRE power system
the volatility ratio of the kth VRE power system
the comprehensive efficiency of the wind farm
installed capacity of the wind farm

output of the wind farm at the jth region
actual output of a single wind turbine

rated capacity of the wind turbine

normalized wind farm output power

output of the hybrid system at the jth region
the probability distribution of real data
generator

complementary rate of fluctuation
complementary rate of offset

root mean square error

Kendall correlation coefficient

sample size

the second type of complementary indicator

the number of discordant pairs

the kth VRE ratio in the hybrid system

the offset ratio of the kth VRE power system

the gradient penalty coefficient

the comprehensive efficiency of the PV power station
installed capacity of the PV power station

output of the PV power station at the jth region

total radiation of the slanted plane

standard irradiance

normalized PV power station output power

average output of the hybrid system at the jth region
the probability distribution of generated data
discriminator

complementary rate of ramp

variable renewable energy

mean absolute error

Monte Carlo
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