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Abstract: Having a high theoretical capacity density of 4200 mAh g−1, silicon has been highlighted
as one of the most promising anode materials for lithium-ion batteries. Countless silicon-based
materials have been proposed and reported in research articles, mostly synthesized using bottom-up
methods. While the infamous volume expansion issue can be settled with the bottom-up processes,
the complicated protocols and high cost leave a non-neglectable gap between laboratory-scale and
mass production. The top-down ball-milling method is still favored by industrial suppliers because
of its simplicity and cost-effectiveness, even with compromised electrochemical performances. This
paper reviews the latest development of ball-milling-based silicon anode materials. Although the
ball-milling process seems straightforward, the procedures and parameters influencing the product
have hardly been discussed in research papers compared to the bottom-up ones. This paper reviews
recent advances in ball-milling-based silicon anode materials, provides a material comparison, and
discusses how ball milling can provide lithium-ion batteries with greater possibilities at a larger scale.

Keywords: ball mill; Si anode; lithium-ion battery; electric vehicle; electrochemistry

1. Introduction

In the early times of energy storage research, secondary batteries represented by nickel
metal hydride and lead acid systems were widely applied [1,2]. However, their energy
density (<100 Wh/kg) [3] cannot fully meet the increasing demand, limiting subsequent
development. Having a small radius of ions, high carrier diffusion coefficient, low density,
and high specific capacity [4], lithium metal soon became an important candidate in
battery research. With the continuous understanding of organic electrolytes and layered
compounds [5], lithium metal secondary batteries have developed rapidly, but the lithium
dendrite problem forced the [6] research on the battery to stagnate [7]. After the Nobel-price-
winning rocking-chair lithium-ion batteries (LIBs) were developed and commercialized
in the 1980–90s, lithium-based batteries entered a new stage [8–11]. From then on, for
just less than ten years, LIBs dominated the market with their excellent electrochemical
performance [12]. Nevertheless, with the dramatic development of the electric vehicle
(EV) industry, LIBs require enhanced energy density to meet the minimum energy density
(~800 W h kg−1) requirements of vehicles [13]. With the development in electrochemistry
and material chemistry, conventional graphite-based LIBs widely applied in the industry
nowadays are approaching their theoretical energy density [14]. Silicon (Si) is a promising
candidate because of the 4200 mAh g−1 theoretical specific capacity based on the alloying
reaction mechanism to replace the traditional graphite electrode (~372 mAh g−1) [15].
While fully lithiated, 1 Si atom accommodates 3.75 Li+ compared to graphite (LiC6), being
theoretically more ideal, along with the improved safety and energy density coming from
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its working potential (0.4 V vs. Li/Li+) [16]. Taking lithium cobalt oxide as the cathode and
Si anode [17], the reaction for the Si anode is as follows:

Cathode: LiCoO2↔CoO2 + Li+ + e−

Anode: 4Si + 15Li+ + 15e−↔Li15Si4

Overall reaction: 15LiCoO2 + 4Si↔15CoO2 + Li15Si4

However, with such high expectations, Si also faces challenges, i.e., the well-known
more than three-fold volume expansion causes severe pulverization of active substances
and electrode decomposition, resulting in the failure of electrochemical performance [18].
Consequently, the huge volume change in Si during cycling also results in uncontrollable
stress accumulation and leads to material cracks and capacity decay. The volume effect
also causes instability of the battery’s internal interface, damaging the solid electrolyte
interface (SEI) film and continuously consuming the electrolyte. The SEI film grows
thicker to extend the distance of lithium-ion diffusion and weakens the electrical contact
between materials with increased impedance and poor rate performance [19,20]. Low
reaction kinetics is also a bottleneck issue for Si material because of its semiconducting
nature. The rather low electronic conductivity, between 10−5 and 10−3 S cm−1, and Li ion
diffusion rate (10−14~10−12 cm2 s−1 diffusion coefficient) [21] need improvement to realize
high performance.

Researchers have been committed to developing Si materials and their derivatives
in the past two decades [22]. Keeping Si’s advantages while avoiding the catastrophic
volume change is the key for Si to be realistically applied in the LIBs. By reducing the
size of Si to submicron level [23], Si can adapt well to volume and stress changes and
structural damage can also be reduced [24]. Mixing/compounding/doping Si with rigid or
flexible materials (e.g., various forms of carbon and binders) is as effective in improving
the cycling stability [25] and energy density since those materials can act as a framework
to confine the volume change. Synthesis methods with controllable Si particle shapes and
sizes suit the scenario, thus the laboratory-scale Si fabrication and innovation mostly follow
the “bottom-up” strategy [26], starting with nano-Si to the fabrication of zero to three-
dimensional Si materials and corresponding composites [27]. The classic template-based
methods, such as the vapor–liquid–solid and solution-based methods produce Si materials
with uniform morphologies and extremely high electrochemical performances [28]. On
the other hand, countless up- and downstream compositing strategies can be applied to
further enhance the performance at the nanoscale [29]. The mature material modifications
have led to undeniable success in the field with numerous research papers and reports.
However, the excellent and evolving material design, such as yolk–shell particles and
layered structures [30], is at the expense of expensive precursors, complicated protocols,
and harsh conditions, limiting the scalability and practicality for mass production. Only a
few companies such as Amprius claim the commercialization of high-Si-content LIB anode
materials, while the majority of the market still follows a strategy to add a small amount of
Si materials to the carbon anode (<20%) to improve the battery performance.

Standing at a perspective to serve the immediate EV market demand, the so-called
“top-down” approach is more cost-effective and practical [31]. Most top-down synthe-
sis methods are physical instead of chemical, such as ball milling, laser bombardment,
electrospinning, and plasma sputtering [32–34]. The advantage is that it is simple and
cost-effective to prepare various exotic three-dimensional structures and porous materials
that contain micro- or nanostructures. Electrospinning is a top-down fabrication method
that uses strong electric fields to spin polymer solutions or melts in a jet manner to fabricate
nanofiber materials. It has been identified as one of the most promising approaches to de-
signing new anode materials and structures. Electrospinning technology is also an effective
method to modify silicon carbon materials. The preparation of silicon carbon nanoparti-
cles into nanofibers can effectively slow the volume expansion of silicon after inserting
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lithium ions. In addition, mechanical ball milling is commonly used for industrial-scale
bulk material grinding and blending. This method uses the grinding balls’ kinetic energy
to stir and grind the materials, and the materials are dispersed and destroyed to modify
the materials during the process [35]. Ball milling is also easily tailored to the current
silicon/carbon (Si/C) composite strategy, even though it sacrifices material uniformity,
energy density, improved safety, and cycle life [36]. Compared with electrostatic spin-
ning, since the material prepared by ball milling is mostly spherical, which can effectively
disperse the stress generated by the volume expansion of lithium inserted in silicon, the
material is difficult to fracture due to the uneven stress. Additionally, material prepared
by electrostatic spinning almost all have subsequent chemical and thermal treatments [34],
which not only increase the complexity of the process, but also increase the cost, and are not
conducive to the development of industrialization. Therefore, ball milling is more suitable
for the preparation of industrial Si/C anode materials compared to electrostatic spinning.

Although in laboratory synthesis, the top-down ball-milling method is more straight-
forward to operate than the bottom-up method, the long operation time, noise, difficulty
in maintenance, and limited Si morphology hinder the latest research, not to mention the
requirement of repetitive trials to improve material uniformity and achieve repeatable
results. Thus, there is a gap between the laboratory and industrial scales for ball milling.

This review shares recent progress in laboratory-scale Si, Si/C, and SiO materials
synthesized from ball milling, summarizes the protocols and performances, and comments
on the feasibility of Si material preparation for industrial operation. With the EV market’s
rapid growth, the significance of ball milling will greatly increase, and the contents can also
be applied to related LIB material production, such as binder materials.

2. Ball-Milling Method

Ball milling is commonly used in industrial mass production for ores, ceramics, and
pigments. It mainly uses grinding media to mix and crush material through impact,
extrusion, and friction [37]. In the ball-milling process, while the sealed and partially filled
chamber rotates along its own longitudinal axis, the grinding balls are given kinetic energy
to move at high speed and collide with the materials, realizing samples of desired sizes with
increased surface area. While traditional ball milling focuses on physically breaking down
and refining material-specific surface area [38], chemical processes (mechanochemistry) are
also possible through continuous impact and collision between reactants and balls [39–42].
Unconventional ball-milling protocols, such as cryogenic/magnet milling, can also be
adapted for specific situations [43].

The degree of milling, i.e., the material properties after ball milling, are influenced by
numerous factors and are typically more complicated than bottom-up synthesis. Milling
machine/grinding ball/source material/environmental properties, milling media and
time, and ball-to-material ratio need to be considered along with cost and safety for mass
production [44]. Continuous operations, such as a coarse mill followed by a fine mill, may
further increase the experimental design complexity, and ball milling is usually case by
case since various parameters are involved. Laboratory ball milling thus typically analyzes
a single variable at a time, while companies have the ability to optimize production in a
rather short period at a much higher expense.

Based on the media, two types of ball milling, namely dry and wet, are classified. As
the name suggests, wet milling disperses the material in liquid media to form a slurry, while
dry milling relies on particle contact. Although dry and wet milling can both be adapted
for various materials, certain restrictions do apply. Materials react with liquid such as water
should be carried out in a dry environment and inert gas can be used; materials that require
rapid mixing and impact are also suitable for dry milling. Pyrotechnic materials possess
improved quality using dry milling compared to wet milling. Heavy dust, excess enthalpy,
material aggregation/oxidation, and chamber dead volume are the major limitations of
dry milling [45–47].
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On the other hand, wet milling involves liquid such as water, ethanol, or isopropanol
(IPA) to disperse the material and is appropriate for air-free cases. With more uniform
material sizes, superior heat dissipation and production efficiency, wet milling suffers from
higher costs and extra material post-treatment, such as drying. For Si, both dry and wet
millings are reported; the dry method is typically used for laboratory-scale since only a
single variable or correlation is the research focus, so other parameters just need to be
identical. For example, if milling time vs. Si size distribution is the main focus, other factors
such as Si oxidation level or ball sizes are not obstructive to drawing a conclusion once the
samples are treated the same during experiments. Additionally, safety and pollution issues
for small batch production at the laboratory scale are less of a concern. Industrial-scale Si
production typically uses anhydrous ethanol or IPA as the wet-milling media to operate
safely, avoid oxidation, and properly store the Si end product before the composite unit.

The choice among ball-milling machine types, high or low energy, should also be
decided based on research/production focus, and details about ball-milling basics can be
found in other references [48]. This review focuses on the recent advances in ball-milled
Si and related materials. It is divided into sections, namely pure Si, Si/C composite, Si/X
composite, Si/C/X composite, Si/C composite followed by additional treatments, SiO-
based, and other Si-based materials, where X denotes materials mixed and milled in the
machine along with Si particles.

3. Pure Si

Pure Si particles, especially nano-Si produced through ball milling, despite the source
material size and the milling environment, were soon realized to be not effective compared
to bottom-up synthesis because of the reduced material morphology uniformity, size
distribution, and the volume change still remained a problem even though the cost was
reduced. The research direction turned toward silicon–carbon composites after that [49],
and the concept was to rely mainly on carbon materials and add a minor amount of Si;
carbon materials also prevent Si volume-change during cycling. This idea is currently
commonly applied in industrial Si/C production.

A representative work on the shift from pure Si to Si/C is that by Cetinkaya et al. [50],
who studied the effect of carbon content in Si/C through simple and straightforward
experiments: 0, 25, and 50 wt% graphite was added to Si during ball milling. Although
pure Si showed much higher initial coulombic efficiency (ICE), the discharge capacity soon
decayed to < 50 mAh g−1. With increased graphite content, the ICE showed a reasonable
decay with > 6 fold cycles and improved discharge capacity, and the higher graphite
content of 50% showed increased cycling performance and higher capacity retention of 45%
(Figure 1a). Additionally, the X-ray diffraction (XRD) 2θ peak intensity of graphite at around
26.5, 45, and 54◦ was proportional to the graphite content. While the correlation between
battery performance and Si/C composition can be further investigated, it was evident
that XRD can be more representative and effective for material evaluation compared to
morphology characterizations such as scanning electron microscopy (SEM) for Si material
with a large size range. The later research typically involve < 20% Si content, and recent
updates on pure Si are rare.

Not only can XRD reveal Si composite information, the signature peaks also provide
valuable information for Si material properties and is thus useful for initial studies to
settle the milling parameters at the first stages of ball-milling projects. Typically the first
peak, the fcc (111) plane at ~28◦ 2θ degree, is enough to provide Si particle information
such as crystallite size and lattice strain, and milling-time-dependent XRD patterns can
be collected and analyzed to form Si-particle-size fingerprints together with SEM images.
Gauthier et al. demonstrated that [51] ball-milled micrometric and even near-millimetric
silicon have superior electrochemical performance than nanometric Si powders, and one
of the major characterization methods was XRD. The broader peaks after milling indicate
increased lattice strain and decreased crystallite size (Figure 1b). The milled nanostructured
micrometric Si particles contain a large number of dislocations and defects, leading to
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different crystallographic planes compared to single-direction commercial nano-Si, con-
tributing to the enhanced electrochemical performance, maintaining a discharge capacity of
1600 mAh g−1 after ~600 cycles (Figure 1c). The concept can be used to produce high-
performance milled Si materials from large-sized waste Si materials [52,53] to reduce the
capital cost, especially for scaled-up processes, while how to incorporate coarse (from
bulk to microsized particles) and fine (create nanostructures and decrease material size
distribution) milling is properly of great importance.
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Figure 1. (a) Cyclability of 50% graphite–50% silicon [50]. (b) XRD patterns of the as-received 1–5 mm
Si powder (black line), milled 1–5 mm Si powder (dotted black line), and milled 20 mesh Si powder
(dashed gray line with filled circles). (c) Discharge capacities and coulombic efficiencies with cycling
of milled millimetric Si (O) or nanosized Si-based electrodes for full discharges. Reproduced with
permission [51]. Copyright 2013, The Royal Society of Chemistry. (d–f) SEM images of silicon particles
resulting from the ball-milling process for 10 h (Si10h), 20 h (Si20h), and 30 h (Si30h). (g) Cycling
stability curves of the cells with Si 10h, Si 20h, and Si 30h electrodes at 400 mA g−1. Reproduced
with permission [54]. Copyright 2022, MDPI. (h) Scheme of the nanocrystalline structure of the
milled Si powder showing grain boundaries (hatching) where faster Li diffusion is supposed to occur.
Reproduced with permission [51]. Copyright 2013, The Royal Society of Chemistry.

Although pure Si studies were quickly dominated by Si composites, the characteriza-
tions, methodologies, and parameter settings have insights into Si-based materials. The
time-dependent Si particle shape and size effect was studied by Koraag et al. [54] With
increased milling time, the plate-shaped Si was gradually worn to round particles with
decreased sharpness, showing isotropic stress and leading to a more stable SEI during cy-
cling (Figure 1d–f). Additionally, the Si size decreased from micro to nano with a narrower
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particle size distribution from 10 to 30 h milling, shortening the Li-ion diffusion distance
and reducing the crack formation and pulverization, further increasing the SEI stability
and cycling performance (Figure 1g).

Pure Si studies typically focus on the experimental condition–particle characteristics–
electrochemical performance relations; it is also encouraged to study the detailed reaction
mechanism using some common bottom-up techniques, such as transmission electron
microscopy (TEM). It was proposed that the additional grain boundaries (interfacial regions)
of nanostructured micrometric Si after ball milling that can be regarded as amorphous
contributed to the higher electrochemical performance [51] (Figure 1h). Possible future
research directions include exploring optimal crystalline/interfacial region content or Li-ion
diffusion pattern through the regional network.

Pure silicon nanoparticles prepared by ball milling are still not well adapted to se-
vere volume changes during the insertion/extraction by lithium ions. It has been found
in studies that carbon can act as a cushion for volume changes because of its softness,
good electronic conductivity, reasonable lithium insertion ability, and small volume ex-
pansion [50]. The conclusions from ball-milled pure Si inspired some first-generation
Si/C composite fabrication both from top-down and bottom-up [55]. However, caution is
needed, especially for pure Si research at the laboratory scale, since the end product may
vary greatly even when the same parameters are applied. Bimodal particle size distribution
may occur [54], and repeated experiments may be necessary. Additionally, the degree of Si
oxidation has to be monitored to draw reliable conclusions.

4. Si/C Composite

Although nanoscale Si can adapt to the volume expansion during cycling, the degra-
dation of Si and the insufficient adhesion lead to anode delamination. Synthesis of Si/C
composite follows the strategy to improve the electrochemical performance based on carbon
materials with superior conductivity; unlike pure Si synthesis, the attempt was to unleash
the maximum energy density from Si. C denotes carbon element-based materials, including
graphitizing and nongraphitizing carbons produced from various precursors. Graphitized
carbon is a graphitic carbon with a three-dimensional regular ordered structure of graphite.
The graphitization of carbon enhances the bulk density, electrical and thermal conductivity,
corrosion resistance, and mechanical properties of the product; nongraphitized carbon is
the ordinary nongraphitized amorphous carbon. The composite of silicon and carbon can
effectively retain the high energy density of silicon and have good electrical and mechanical
properties with the addition of various types of carbon [56]. Ball milling is suitable for
the material crystal to amorphous transitions at room temperature, especially for Si/C
composites.

As early as 1998, Wang et al. reported composites [57] synthesized by ball milling with
various graphite/Si atomic ratios. The graphite was grounded and deconstructed, resulting
in Si nanoparticle encapsulation by thin amorphous carbon layers. The composite’s mi-
crostructure contained wrinkled layers with increased interlayer spacings. As the Si content
in C1−xSix increased from 0 to 0.25, the graphite crystalline size increased while the Si
crystalline size decreased. The nanosized Si particles effectively suppressed pulverization
during cycling, increasing specific capacity from 437 mAh g−1 (C1Si0) to 1039 mAh g−1

(C0.8Si0.2), even superior to the early graphite/Si composite prepared with a bottom-up
chemical vapor deposition method (500 mAh g−1) [58]. Although effective, the material’s
irregularly thick carbon layer and unevenly distributed nano-Si left space for optimization
in the ball-milling process and improvement in the electrochemical performance.

Whether dry or wet milling was more effective toward Si/C was discussed by
Cabello et al. [59]. Milling with and without IPA as the media were compared. The
material morphology of commercial Si source, and dry- and wet-milled Si/graphite was
compared using SEM (Figure 2a–c). Both Si and graphite aggregates were observed in the
dry sample, leaving voids and dead space in the network, while the graphite remained
platelet-like in the wet sample, surrounding and protecting the Si particles. The laminar
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graphite survived the lower-friction wet milling and was also helpful during electrode
fabrication, contributing to more ordered packing. XRD agreed with the SEM that the wet
sample kept well-defined diffraction peaks compared to the poor crystalline structure from
the dry sample. Additionally, a higher SiOx content was confirmed by X-ray photoelectron
spectroscopy (XPS) in the dry sample. The ICE increased to 77% for the wet sample com-
pared to the dry sample (66%), and the cycling capacity increased because of the IPA added
(Figure 2d). Indeed, for Si-based materials, liquid grinding media possesses advantages in
temperature control, safety, and oxidation prevention. However, in this specific research,
the IPA was simply added into the milling chamber; the liquid volume and oxygen level
should be quantified stepwise, and the heat effect should have been mentioned since pauses
were added for heat dispersion and the temperature response could be different for dry
and wet milling.

Yoshio et al. provided guidance on the material microuniformity for Si/C composite
prepared through ball milling [60]. A footprint to determine the ball-milled Si/C electrode
uniformity was proposed—local voltage drop to near 0 V (vs. Li metal) within propylene
carbonate containing electrolyte is a sign of electrode dead spot and mechanical failure.
Figure 2e shows the disordered graphite flakes damaged during the Li+ intercalation
process compared to the uniform region. The authors also claimed that the grain size holds
the key to balancing the electrode uniformity and the material preparation complexity, and
Si/C particles with a grain size between 0.5 and 1.0 µm generally present less heterogeneity
with higher electrochemical performance when the materials are prepared at a large scale.
Note that the particle grain size region can vary based on the raw Si and carbon source
and should be tested and optimized case-by-case; this research used synthetic graphite as
the carbon source, while currently, more cost-effective sources such as asphalt and others
are considered.

Aside from graphite and other conventional hard/soft carbon sources, unconven-
tional carbon sources have also been applied to Si/C composite as well [61]. Multiwalled
carbon nanotubes (MWCNT) were used in 1:9, 3:7, and 5:5 MWCNT: Si ratios Figure 2f.
The network formed reduced agglomeration for MWCNT and Si separately, and the in-
terspaces and electronic resistance were reduced. With increased MWCNT content, Si
shape-change-induced pulverization was suppressed, and the discharge capacity was
improved, sacrificing minor ICE. The limitation was that a broader range of MWCNT: Si
was not studied, and the composite materials with various ratios did not display obvious
morphological differences. The study provided conceptual progress on nanostructured
carbon source application into Si/C composite; other nanomaterials, such as nanorods and
nanospheres, can also be attempted.

Typically, Si/C composite focuses on the carbon source choice and properties, yet
Si material pretreatment and functionalization before ball milling with carbon sources
is another effective strategy. It is worth mentioning that graphite-like materials which
were prepared by high temperature treatment of unburned carbon concentrates from coal-
combustion fly ashes can be used as one of the carbon sources for electrode material in
lithium-ion batteries [62]. Fly ashes are the main solid wastes generated in coal combus-
tion plants. If there is an economical and convenient way to separate and further utilize
this carbon material as a precursor such as graphite would help reduce the cost of elec-
trode materials for lithium-ion batteries. Zhang et al. [63] introduced amino-functional
trialkoxysilanes onto Si particles to modify the Si surface with a -NH2 group (Figure 2g).
Opposite charges were created between Si and graphene sheets to improve the binding
efficiency through self-assembly and maintain a uniform Si dispersion between layered
graphene sheets with the help of ball milling. The specific capacity cycled at 100 mA g−1

was maintained at 1516.23 mAh g−1 after 100 cycles, with high capacity retention of 83.28%.
The reversible capacity remained at 1151.5 mAh g−1 after 1000 cycles, which indicates a
decay rate of only 0.08% per cycle, even at 1000 mA g−1. The scaffold graphene structures
avoided drastic Si shape change, enhanced the electrode conductivity, and provided faster
Li-ion diffusion paths. It is questionable if the separate pretreatments for both Si and
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graphene can be easily realized through mass production with proper unit operations and
a low cost.
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Figure 2. Scanning electron microscopy (SEM) micrographs of (a) Si nanoparticles (Alfa Aesar),
(b) s-BMD, and (c) s-BMW. (d) Coulombic efficiency (CE) (squares) and specific capacity (spheres)
vs. cycle number of e-BMD (orange) and e-BMW (green). The initial coulombic efficiency (ICE)
is shown. Reproduced with permission [59]. Copyright 2020, MDPI. (e) SEM image of a graphite
electrode cycled in 1 M LiPF6 dissolved in propylene–carbonate/ethyl methyl carbonate (PC/EMC)
1:5. Reproduced with permission [60]. Copyright 2022, Elsevier B. V. (f) Schematic illustration of the
projected nanocomposite structure. Reproduced with permission [61]. Copyright 2013, Elsevier B. V.
(g) Schematic of the fabrication process of the present Si@APTES/f-Gr composite. Reproduced with
permission [63]. Copyright 2021, Elsevier B. V.

Si/C composite through ball-milling possesses improved structural stability and
electric conductivity because of the high carbon content and C-surrounding-Si network. At
the same time, the achievable capacity decreased because of the low Si content, and it is
thus of significance to balance the Si/C content. In addition to the Si source, carbon sources
should also be carefully selected before ball milling since the crystallinity, morphology,
and other parameters could vary based on the milling time and speed. It is possible
to lose the original carbon property, such as high microporosity, and even the desired



Energies 2023, 16, 3099 9 of 21

material morphology may no long exist after the strong collision for a long time. The
related research papers are still mostly performance-oriented since drawing conclusions on
materials through characterizations, especially morphological techniques, is difficult. On
the other hand, typical control samples for Si/C comparison are pure Si, and the properties
of ball-milled carbon sources are not taken into account. Ball-milling Si and the mix with
carbon sources followed by additional post-treatments became more reasonable since the Si
properties can be controllable, and the carbon quality can be maintained without variation
during the grinding.

5. Si/X Composite

Similarly to Si/C, Si/X composite simply changes the carbon source to other materials
milled with Si particles in the ball-milling process. The materials typically have additional
functions or are superior against Si volume change compared to carbon sources.

Polymer is an outstanding candidate to composite with Si since the long-chain struc-
ture can form a network to enfold the Si, and the polymer can also be converted to carbon
with various functional groups through pyrolysis if needed. Shi et al. [64] milled micro-Si
and poly(vinyl alcohol) (PVA) to a nanostructure in which nano-Si was coated by PVA
(Figure 3a). The hydroxyl groups on the PVA chain formed Si-O-C covalent bonds with
Si, and the particle size was tunable through PVA weight adjustment. The nanostructure
was adaptive to the volume change during LIB cycling, and 5 wt% PVA displayed op-
timal electrochemical performance. At 0.2 A g−1, the 5 wt% PVA/Si sample provided
1526 mAh g−1 capacity after 100 cycles with 86.1% ICE and an average CE of 99.2%. It is
obvious from the SEM images (Figure 3b–g) that Si/PVA had ~5 times lower crack width
compared to the electrode fabricated with pure Si. The details of the Si/PVA structure were
not strongly distributable under TEM, and other polymers with different chain lengths and
functional groups can be used for future analysis.

A layered ternary carbide, titanium silicon carbide (Ti3SiC2, TSC), was milled with Si
to enhance the electrode’s mechanical strength and electronic conductivity [65]. Different
Ti3SiC2/Si mass ratios were applied from 0 to 100 Ti3SiC2. The elastic modulus increased
as the Ti3SiC2 content increased from 1.6 to 18.2 GPa, and material hardness increased from
0.03 to 0.81 GPa. There was also a 5-fold increase in material electronic conductivity. The
cycling stability was slightly better because of the Ti3SiC2 compared to the pure Si from the
rate performance. However, the ICE and cycling performance was inversely proportional
to the Ti3SiC2 content (Figure 3h). The addition of Ti3SiC2 improved the overall mechanical
strength by compromising the performance.

Ball-milled Si/iron–manganese alloying behavior was studied in depth by Cao et al. [66]
Having similar atomic radii, Fe and Mn silicides show different structures and the ternary
system properties were investigated for the first time for LIB anodes. On the Si85Fe15-
Si75Mn25 tie line, alloys involve Si, Si2Fe, and Si19Mn11 (Figure 3i). Ball milling showed its
advantage in preparing large quantity samples with various mixing ratios simultaneously.
FexMnySi100-x-y, where x and y are 5/0, 12/5, 9/10, 6/15, 3/20, and 0/25, were prepared,
and three regions of phase behaviors were concluded from fitting XRD results (Figure 3j).
Amorphous Si was observed in Fe15Si85 along with β-FeSi2 and α-FeSi2. The CE decreased
with the increase in Mn content because of the exaggerated electrolyte decomposition, even
though the volume expansion was less severe. The study of Si/Fe-Mn was an excellent
example of a laboratory-scale ball-milling application to explore the alloy-mechanism
performance correlation and can also be applied to other alloy combinations.

Materials other than carbon-based may make up some of the advanced properties carbon
sources cannot provide, yet the material selection needs additional consideration. Researchers
need to take into account the mechanical properties, material reactivity with Si, the milling
media, and even the balls before milling to avoid safety issues and then obtain materials with
enhanced properties for LIB anodes. Situations such as Ti3SiC2 may occur, where ball-milled
material properties were improved but not helpful to the electrochemical performance. Thus,
there are fewer Si/X composites with the abovementioned rather strict prerequisites.
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6. Si/C/X Composite

The experimental logic flows smoothly from Si/C and Si/X to the combination of
Si/C/X; the ternary system gathers the advantages from the three components and boosts
the LiB performance to a higher level, ideally. Additionally, precursors with various shapes
and morphology can be synthesized and milled with other materials.

Compounds with great hardness (B4C, TiC, TiB2) were typically applied to help lower
Si grain size in a shorter period. However, other product characteristics, especially electric
conductivity, were not considered. Different ratios of TiB2 and Si were milled with the
addition of graphite after 8 h of milling at a speed of 500 rpm [67]. The hard TiB2 turned
both Si and graphite amorphous, forming core-shell structures in which Si was sandwiched
between the outer carbon shell and the TiB2 core. Nanoscale Si/TiB2/G with a molar
ratio of 4:3:3 showed a superior performance of 660 mAh g−1 for 60 cycles. An optimally
low TiB2 did not prevent electron/Li-ion transfer to the Si, leaving dead space so that
Li-ion cannot reach the Si. However, with an increased TiB2 molar ratio, minor cracks
form to activate the trapped Li-ion, leading to enhanced capacity. The molar ratio of the
three components along with the sequence of material addition during ball milling can
be investigated in detail to improve the performance. A similar work [68] on Si/TiC/G
followed different protocols and synthesized TiC through ball milling before the composite
process. The main focus was the effect of milling time on the material instead of the mixing
ratio and the rotational speed was kept at either 1000 or 600 rpm. The situation became
more complex with multiple scenarios when the Si and TiC were milled for short/long time.
When the milling time was 2 h, the Si maintained its crystallinity and was in a mixture form
with TiC. On the other hand, Si became amorphous after milling with hard TiC (Figure 4a).
The Si/TiC/G milled for 10 h showed improved and more stable cycling performance with
the help of the 2–15 nm well-spread conductive TiC network, and the battery retained
835.4 mAh g−1 over 100 cycles (0.2 C, 71.5% capacity retention), as shown in Figure 4b.
The combination of the two studies provides a comprehensive view of the Si/C with the
addition of materials with high hardness.

Ball milling can serve as a proper industrial waste treatment and recycling tool.
Si/C/binder composite proposed by Sbrascini et al. [69] utilized corn-cob-derived hard
carbon (CCDHC) as the carbon source (Figure 4c). Combined with chitosan/citric acid
(CS/CA) crosslinked binder, the hard carbon matrix maintained excellent electrode and
SEI integrity, leading to higher cycling stability and capacity retention compared to other
binders (Figure 4d). This study provides insights into tailoring ball milling with up- and
downstream processes to reduce the capital cost and investment further.

While binary composite typically follows the route of Si-wrapping, different mor-
phologies such as layered, sandwich, and core-shell are possible for the ternary composite.
Mesoporous Si was sandwiched between SnO2 and N/P doped graphitic carbon to form
a C/Si@SnO2 structure [70] (Figure 4e). It was claimed that Si was oxidized, and the
Si-O-C and Si-O-Sn bonds formed through Si integration promoted Li-ion diffusion since
additional mesopores and cracks were formed during cycling, which allowed fast charging
performance with a discharge capacity of 805.57 mAh g−1 at 0.2 A g−1 for ~ 500 cycles and
maintaining 919.21 mAh g−1 1 at 0.1 A g−1 for 200 cycles (Figure 4f). The structure should
have been denoted as C/SnO2@Si since the as-formed SiOx layer was the coating layer, and
milled pure Si performance should be provided as a comparison.

Pretreatment of the milling precursors is also common to realize the final product
with superior electrochemical performance. Material oxidation through heating effectively
introduces lithium oxide (Li2O) and lithium silicate species during cycling, buffering the
Si volume expansion [71]. Cu-Zn nanomaterials were heated and milled with Si/C to
form Si/Cu-Zn(ox)/C composite; a Cu-rich CuxZn matrix was generated along with ZnO,
CuO, and C to improve the electronic conductivity. During the first discharge process, the
electrode was further activated since the metal oxides were transformed into Li2O, Cu, and
Zn, leading to a specific capacity of 800 mAh g−1 cycled 100 times and only 20% capacity
loss cycled with rates from 0.1 to 1 A g−1. Similar heat treatment, although conducted with
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a much higher temperature, 900 ◦C, was performed for Si [72], followed by hydrofluoric
acid etching to create Si/SiOx composite followed by ball milling with graphite to form
Si/SiOx/G with promoted electrochemical performance, using SiOx as the buffer layer and
graphite as the connecting medium between the Si-based material and the current collector.

While more advanced than the Si/X binary systems, synthesizing Si/C/X can be
more complicated, with increased possibilities from countless pretreatments and milling
sequences. Single or multistep ball milling may be involved, and the material characteristics
may vary because of the protocol. Even minor operations such as product collection could
greatly affect the oxidation extent. Thus, repeatable and reliable experimental design is
necessary when more than one material is added to the milling process.
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sion [68]. Copyright 2021, Springer Nature. (c) Schematic diagram of working volume change in
Si/CCDHC composite. (d) Comparison of galvanostatic cycling of Si/CCDHC employing different
binders at 1.0 A g−1 (CS/CA = green, sodium carboxymethyl cellulose (CMC) = violet, polyacrylic
acid (PAA) = orange, sodium alginate (Alg) = red). Reproduced with permission [69]. Copyright
2022, American Chemical Society. (e) Reaction mechanism diagrams and diagram of Li+ diffusion of
the C/Si@SnO2. (f) Cycle curves of C/Si@SnO2, Si@SnO2, C@SnO2, and SnO2 electrodes at 0.1 A·g−1.
Reproduced with permission [70]. Copyright 2022, Elsevier B. V.

7. Si/C Composite Followed by Additional Treatments

Rather than Si/C/X composite, which focuses on the milling and material treatment
processes, a more popular strategy is to add one or more post-treatments to Si. Moreover,
ball milling only serves a section of the overall process. Although it sounds complicated,
the protocol typically involves industrially mature techniques such as solution etching,
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material mixing, and heating and spray drying, which is especially suitable for large-scale
Si material synthesis with low operational cost and labor requirements. Another important
concept to note is that the carbon sources are typically specified in this section compared to
the formerly mentioned categories. A common approach uses graphitizing carbon to serve
as the capacity source along with Si because of its higher density and ordered structure.
Nongraphitizing carbon is used as the protection/buffer layer to suppress volume change
through its low density and high porosity nature. As a result, Si/G/C composite is usually
denoted, and since most of the recent Si ball-milling studies involve post-treatments, there
are more scientific reports than other strategies.

Laboratory-scale studies still focus heavily on the source material and ball-milling
parameters, followed by simple post-treatments. A Si/G composite followed by poly-
acrylonitrile (PAN) coating was prepared, and the PAN served as the carbon source and
support after heating and NaOH etching [73] (Figure 5a). The NaOH etching process
was claimed to remove certain Si to buffer the volume expansion. The etched-Si/G/C
composite outperformed the Si/G/C at a low current density and for rete performance,
yet the specific capacity was lower at a high current density; an in-depth investigation is
needed for proper explanations. A similar approach was taken in [74], yet the composite
materials were reversed. Cyclized PAN was ball milled with Si and graphite in a single
batch and then carbonized, and graphite served as the wrapping network. This reversed
Si/amorphous carbon/graphite structure displayed more stable cycling performance but
lower discharge capacity during the initial cycling period, and the performance variation is
possibly attributed to NaOH etching.

Si/MWCNT with heat-annealing treatment was studied by Nulu et al. [75]. In addition
to the CNT network, the mild annealing temperature at 400 ◦C promoted Si to attach to
the outer wall of MWCNT with minor aggregations without Si oxidation. Additionally,
the mild oxidation of the CNT wall created additional surface defects to promote the
electrochemical performance, realizing discharge capacities of 1685 mAh g−1 at 1 C for
more than 80 cycles and 913 mAh g−1 at 5 C for > 100 cycles. Similarly, another work
reported the modification of Si/TiN/C by calcination and citric acid etching [76]. A highly
porous composite was synthesized, adapting the high electrode integrity and electric
conductivity provided by TiN. It was claimed that the composite exhibited high stability
in a wide temperature range (5–50 ◦C) in addition to excellent cycling performance; in
fact, the reversible specific capacity dropped under 200 mAh g−1 when the temperature
was below 15 ◦C. Post-treatments, especially thermo-treatments, allow low-cost industrial
waste-derived hydrocarbon sources to composite with Si particles. Waste petroleum resin
derived from crude oil with the formula C176H148O containing 92.5 wt% C, 6.0 wt% H,
0.6 wt% O, and minor N and S was ball milled with Si [77]. The Li2O volume expansion
buffering effect was correlated to the surface Si oxidation state and was greatly influenced
by the calcination temperature. A calcination temperature of 700 ◦C showed the highest
battery performance of 2291 mAh g−1 first cycle discharge capacity and retained 76% of
the capacity after 100 cycles with the initial capacity of 1402 mAh g−1. A cost analysis
comparing the waste resin to regularly used carbon sources may be more convincing to
promote the material application.

In situ mechanochemical reduction was realized when micro-Si was milled with
nano-SnO2 [78], SnO2 was reduced, and Si was partially oxidized to SiOx; the as-formed
Si/Sn@SiOx composite was then coated with thin carbon layers using chemical
vapor deposition. The combined top-down and bottom-up strategy achieved exceptional
rate performance with a high-capacity retention of 95% even after 500 cycles 2 A g−1

(<0.01% capacity loss per cycle) because of the synergistic buffer effect from the carbon
coating and the SiOx.

Caution is needed with Si/C post-treatments when collecting the ball-milled products
after dry milling. Oxidation may be induced in Si or even composite materials when
the product is collected from dry milling, leading to unexpected battery performance
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fluctuation; on the other hand, how to effectively remove the liquid media for Si material
through wet milling is an issue.

Rapid solvent-removing techniques such as spray-drying are outstandingly effective
in drying and reshaping the Si-based materials, making them ready for anode fabrication
or the next composite step. Hierarchical silicon/reduced graphene oxide/C was prepared
by Wu et al. [79]. Pretreated positively charged Si with a thin SiOx layer was milled
with negatively charged graphene oxide (GO) and carbon sources and spray-dried with
polystyrene spheres as the sacrificial template; the Si/GO/C was then sintered to form the
Si/rGO/C composite (Figure 5b). The spherical composite contained <50 nm mesopores to
provide a fast Li-ion transport path and mitigate the Si volume change. The spray-dried
Si/GO/C displayed a much more uniform spherical morphology than most references
mentioned above. High capacity retention of ~75% was achieved, while the pristine Si only
had 40% capacity retention. It is noticeable that cycling involves a rather large capacity
fluctuation, which can be attributed to the complex structure. This approach is close to the
most adapted Si/C production procedures, except that multiple pretreatments and costly
precursors were used.

Du et al. [80] vividly depicted their dual-layered Si/C composite as “pearl in mussel”,
in which Si was firstly embedded into the glucose-based carbon source and additional
graphite was introduced. Similar to the previously mentioned strategies, the amorphous
carbon from glucose milling and calcination, along with the rigid graphite, ensured a high
performance of 670 mAh g−1 specific capacity and 85% capacity retention for >850 cycles
at 0.2 C. Like other organic sources, glucose serves as an easy-to-obtain and inexpensive
carbon source, yet the calcination temperatures and functional groups require further
investment to improve the battery performance further.

Other post-treatments also show excellent effectiveness for Si/C composite to realize
performance-beneficial morphologies. Aside from the mostly adapted high-temperature
annealing processes, unconventional post-treatment of the ball-milled Si material under
high pressure was investigated [81]. Si/CNT/G composite was treated with a supercritical
CO2 fluid under 12 MPa at 70 ◦C, causing the exfoliation of graphite to folded graphite.
Si particles were homogeneously distributed between the folded graphite layers. The
graphite scaffold prevented Si from directly contacting the electrolyte while retaining a high
electric conductivity with the help of the CNT, leading to improved cycling performance
of 970.3 mAh g−1 with 0.2 A g−1 current density for more than 100 cycles. Porous silicon
is typically synthesized through hydrofluoric acid etching, which is not safe to realize
with the ball-milling process, thus is difficult to scale up. Dong et al. used a ball-milling-
friendly approach: LiCl [82] was used as a removable template to mill with Si particles
and washed away after compositing and calcinating, creating mesopores around 12.8 nm,
leading to improved cyclability compared to pure Si and nonporous Si/C anodes. Similar
to spray drying, other approaches can realize Si/C with controllable and rather uniform
Si/C morphologies. Microspherical Si/C containing nanostructures were synthesized via
softening and polycondensation of pitch powder [83]. The pitch powder, Si nanoparticles,
and graphite flakes were milled in unconventional poly(dimethylsiloxane) media and
stirred with elevated temperature and pressure. The spherical shape with compact structure
allowed for increased tap density and electrode mechanical properties, leading to a high
ICE of 90.5% and an 85% capacity retention over 300 cycles at a high areal capacity of
4 mAh cm−2. Additional treatments, such as chemical activation, deserve further investigation.
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8. SiO-Based Materials

Reading through the previous sections, it should be rather clear how different re-
searchers engage in the Si anode problem—suppressing Si volume, improving electrical
conductivity, and Li-ion diffusion rate, while sticking tightly to the ball-milling method. A
certain amount of SiOx buffers the Si volume change by forming Li2O and lithium silicate
species, sacrificing the ICE for cycling stability. However, too large an oxidization content
also leads to low electrical conductivity and specific capacity; the details about SiOx are
well explored and explained in previous research [85,86].

For most of the ball-milled Si-based research, it is not easy to maintain an oxygen-free
environment, yet usually the SiOx effect was ignored, and only a few studies characterized
the oxygen content. At the same time, most ball-milled SiO-based material papers follow
the logic discussed above [87–94], except for switching commercial Si to SiOx and composite
material sources, while few provide material oxidation status study through the ball-milling
process and insights into the next-generation ball-milled SiOx research direction. Unlike
the studies using commercial SiOx starting material, several studies analyzed the oxidation
level through ball milling. Hwang et al. mixed and milled Si and SiO2 and investigated
the correlation between milling time and the SiOx oxidation status, decoupled and fitted
XPS results of the milled sample served as a powerful indicator and was compared to
commercial SiO [95]. Park et al. [96] milled Si with ZnO to form Zn and SiO, and the Zn
was etched away to form porous SiO to enhance the anode properties.

Different from Si, some biodegradable materials naturally contain SiOx. In addition
to particle size refinement and crystal–amorphous transformation, ball milling holds an
unparalleled advantage in Si-based material composition redistribution and dispersion with
large quantities. Ball milling is especially suitable for pairing with the idea of sustainable,
biodegradable natural resources. Feng et al. [97] proposed the idea of a SiO2/C composite
prepared from rice husks. Partially oxidized Si particles were demonstrated to help improve
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LIB electrochemical performance, and the SiO2 distribution was controllable and correlated
to the milling time. While the natural SiO2 in rice husks had SiO2 aggregation issues and
materials ground with a long duration showed greatly varying particle size distribution,
SiO2/C milled for 12 h showed advanced performance of 827 mA h g−1 for 300 cycles with
100 mA g−1 current density. The concept provides insights into environmentally friendly
bulk material production for LIB, and additional parameters other than milling time, such
as raw materials used, additives to pair with the raw materials, and rotational speed vs.
particle size distribution can be studied to promote the idea.

9. Other Si-Based Materials

With Si and SiO being the most popular ball-milling candidates, other Si-based materi-
als, analyses, and methodologies existed to promote a more comprehensive understanding.
SiP-based materials [98–101] have also been brought to attention because of their high
theoretical capacity (2900 mAh g−1). Researchers have focused on the relationship be-
tween the as-prepared Si anodes to other LiB battery parts, such as binder materials [102].
Processing-related studies such as material doping were also investigated to understand
material synergetic effects [101,103]. Table 1 summarizes the detailed LIB electrochemical
performance for most of the ball-milled materials discussed above, while the few that did
not provide enough performance information were excluded.

Table 1. Summary of recent ball-milling-based Si materials for LIB.

Material
Current
Density

(mA g−1)

ICE
(%)

Reversible
Capacity

(mAh g−1)

Cycle
Number Year Ref.

50:50 wt% Gr/Si 300 / 418.5 50 2012 [50]
Milled Si / 81 1600 600 2013 [51]
Si/CNT 400 98.06 1761 100 2022 [54]

Si/C 45 / 1039 20 1998 [57]
Wet Si@Graphite 250 77 850 100 2020 [59]

Si/MWCNT 200 66 750 30 2013 [61]
Si@APTES/f-Gr 1000 61.23 1151.5 1000 2021 [63]

Si-5% PVA 200 86 1526 100 2020 [64]
Si/TiB2/C 100 71.7 662 60 2015 [67]

Si/TiC/Graphite 1500 / 501.5 300 2021 [68]
Si/Corn Cob-carbon 1000 53.24 800 1800 2022 [69]

C/Si@SnO2 100 77.96 919.21 200 2022 [70]
Si/Cu-Zn(ox)/Cu 200 50 800 100 2021 [71]
Si/SiOx/Graphite 100 62.2 804.2 100 2020 [72]

Si-Graphite-Carbon 200 / 965 100 2022 [73]
Si@c-PAN@G 200 83 1422 50 2019 [74]

SiCNT 1 C 83.7 1685 80 2020 [75]
nano-Si/TiN@carbon 500 71.4 (100 mA g−1) 852.82 800 2019 [76]

CPC/Si 0.1 C 80.5 1402 100 2021 [77]
Si/CNTs@FG 200 62.3 1204 100 2020 [81]

Si/rGO/C 400 / 602 500 2019 [79]
Si/C 200 89.4 670 850 2021 [80]

Porous Si@C 0.2 C 76.4 680 50 2021 [82]
Si/EG/C 500 85 834 500 2022 [84]

SiOx/Ag/C 0.5 C 71.5 1102.7 150 2021 [87]
SiOx/G/SnO2 100 62.2 424.6 110 2022 [88]
SiOx/C@CoO 1000 68.1 1079 250 2019 [89]

C nanoslices-SiOx 1000 66.1 900 600 2021 [90]
SiO/C-nanofiber 0.1 C 35.7 700 200 2011 [91]

Si@SiO2@C 1000 54 973 200 2021 [92]
SiOx@C(SC) 200 / 729.5 200 2021 [93]
SiO@TiO2 200 79.4 901 200 2019 [94]

SiOx 100 71.7 1270 100 2019 [95]
SiO 100 48.9 783 200 2020 [96]

SiP2/nanocarbon 500 88 (100 mA g−1) 1515 300 2019 [98]
CuSi2P3@G 2000 / 1394 1500 2021 [99]
ZnSi2P3/C 300 92 1955 500 2019 [100]

AlSiP 100 / 1580 30 2023 [101]
Si/Graphene 400 84.6 484 50 2014 [102]
SiO@C/CNS 1000 51 (100 mA g−1) 690 400 2021 [103]

Si/Sn@SiOx-C 2000 71.8 1073 500 2021 [78]
SiOx/C 100 / 550 180 2019 [104]
Fe14Si86 0.5 C 92 (0.1 C) / 100 2020 [105]
BG/Si 500 82.5 1110 100 2021 [106]
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10. Conclusions and Outlook

This review summarized the recent progress in ball-milled Si-based anode materials
for lithium-ion batteries. Ball milling serves as a low-cost, easy-to-operate method for Si
mass production. The core concept and key issues need to be resolved—how to minimize Si
volume change while promoting the material, electrical conductivity, and Li-ion diffusivity
in a rather uncontrollable mixing and grinding process, where uncertainty occurs even
when a single parameter or operation varies.

We have categorized the research into material-based sections to better represent the
strategic evolution to ball-mill Si materials. Currently, one of the most adapted protocols is
compositing Si with graphitic carbon and then coating the material with amorphous carbon.
The Si/G provides enhanced specific capacity, and the amorphous coating suppresses the
Si volume change and provides paths for Li-ion diffusion. Additionally, both carbon layers
provide high electrical conductivity.

Compared to the dominating bottom-up methods, ball milling, as one of the top-down
syntheses, still remains a minority because of the progress/operation-oriented research
focus, time-consuming experiments, entangled and complicated variable relations, and
the high investment and safety concerns at the laboratory scale. More importantly, a long
project cycle may only lead to a small increase in the electrochemical performance, making
ball milling less worthwhile for performance-oriented research.

However, from an industrial perspective, facing a drastically growing electric vehicle
market where even a 5% increase in the LIB energy density means market domination,
ball-milling Si becomes one of the most promising methods. Mature ball-milling technology
requires little initial investment, and the long project cycle can be effectively reduced by
employing multiple machines simultaneously. Thus, ball-milling Si anode is one of the
sweet spots for LIB-related industries and will attract increased attention in the near future.
Unfortunately, the gap between laboratory- and industrial-scale ball-milled Si may increase
because of the increasingly mature ball-milling protocol, leading ball-milled Si research
toward a more profit-oriented optimization path.
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