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Abstract: In this paper, we address the problem of high greenhouse gas emissions from oil and gas
platforms in Norway. We look at the potential of integrating an energy system composed of wind
turbines and battery systems to unload the electrical power generated by gas turbines being the
main source of emissions today. We propose a simulation model of the energy system, the power
demand, the available wind speed, and different control strategies. By putting the models together,
we evaluate the performance of various compositions of the system and determine their impact on
emissions and battery lifetime. The numerical results show that changing today’s practices has great
potential to reduce greenhouse gases, with amounts varying between 30% and 80% compared with
today’s level.

Keywords: wind energy; energy system integration; energy system simulation; greenhouse gas
emissions; stochastic simulations; energy storage; offshore technology

1. Introduction

Currently, approximately 25% (12.1M tonnes of 48.9M tonnes as of 2021) [1] of Nor-
way’s CO2 emissions comes from oil and gas installations in the North Sea. These emissions
are mainly due to the usage of gas turbines, which provide electrical power to the processes
needed for oil and gas production. These emissions need to be significantly reduced in
order to meet the goals of the European green deal of reducing the net greenhouse gas
emissions by at least 55% by 2030 compared to 1990 levels [2].

To reduce the usage of gas turbines, one possibility is to supply electrical power from
land. This can, however, be challenging and costly for many facilities, especially those
furthest from the shore and in deep waters. In [3], the authors highlight the challenges
due to the large investments and high economical risks in relation to electrification of
offshore installations close to Saudi Arabia and discuss the trade-offs between using HVAC
and HVDC cables. In the North Sea, there are additional challenges regarding the bottom
depth and topography, and it may be more cost-efficient to install wind turbines close to
production facilities. The North Sea has very good wind conditions [4], and exploiting
these resources provides an opportunity to transition to renewable energy production for
future energy needs while at the same time reducing the climate impact of the ongoing
production of oil and gas.

A main challenge with wind energy is the variability of the wind resources. The
power demands of the production facilities are also variable and unpredictable to some
degree. This provides a challenge for the decarbonization of electricity production since gas
turbines will have to be left running in idle mode to rapidly take over electricity production
when wind power is not sufficient. This imbalance between available power and demand
can be alleviated by adding energy buffers. If the energy buffer capacity is sufficient to
last during the startup phase of the gas turbines, it will be possible to completely shut
off the gas turbines over long periods and only start them when needed. This way of
operating the gas turbines will significantly reduce the overall climate gas emissions since
significant amounts of CO2 are emitted even when the turbines are running idle. However,
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the capacities of the buffers are subject to space and weight constraints at or close to the
wind turbines and the production facilities.

Our approach is to place battery storage in the wind turbines’ foundations. In our
study, we assume a floating foundation of a semi-submersible type, where battery systems
can be placed. We model the energy system in a dynamical model, which includes electricity
generation from the wind, battery storage, and gas turbines. The boundary conditions are
time series of wind speed and electricity demand on the production facility. The energy
system builds on a model that was implemented in the Modelica language published
previously [5]. In [6], the authors suggest an alternative based on LabView for micro-grid
modelling. Another alternative that relies on Modelica can be found in [7]. However, none
of the mentioned alternatives address the uncertainty in wind speed and load. In [8], the
authors suggest a model that is based on a general algebraic modelling system (GAMS)
and which does account for uncertainty in the wind speed and demand. The authors
in [8] formulate the problem as a frequency dynamic control problem, which imposes
important assumptions on the system’s inertia and on the system’s components. In the
current study, we regard the demand as uncertain and not controllable. Our approach
addresses uncertainties by simulating ensembles of realizations of wind speed and demand
time series. As for our technical choices, we have adopted Python for practical software
integration reasons that are outside the scope of this paper.

Our model is used to simulate the behaviour of this closed energy system under dif-
ferent conditions, such as variable wind speed, power demand, numbers of wind turbines,
and energy storage capacity. A main question is how the system can be controlled to mini-
mize the usage of gas turbines (and thereby minimize CO2 emissions) while maintaining a
stable system with minimal power imbalance.

Section 2 gives a description of the modelling approach, including a description of the
boundary conditions (wind and power demand). Section 3 presents the battery degradation
estimation model. Section 4 gives an overview of the control approach. Section 5 presents
the simulation results. Finally, Section 6 concludes the paper.

2. Computational Models

In this section, we explain the various sub-models and the equations describing
their dynamics.

2.1. Principles

This study considers a simulation model of a power system. The principle behind the
system was to combine wind turbines, gas turbines, and a battery system to address variable
power demands. In that respect, the use cases were defined by samples of power demand,
available wind resources, and the power capacity for the energy components (wind turbines,
batteries, and gas turbines). An important aim of this paper was to find a control strategy
that minimizes the usage of gas turbines while keeping the local power grid in balance. The
architecture of the simulation model is illustrated in Figure 1. The simulation model took
as external inputs time series samples of wind speed and power demand and simulated the
system dynamics according to a control strategy. We assumed that the control can obtain
access to current load (power demand), current state of charge of the battery, and current
available power at both the wind turbines and gas turbines. The control loop time here is
given by the discrete time interval ∆t, which we will refer to as the decision time interval.
The sampling models will be further explained in Sections 2.6 and 2.7. The scope of the
control strategy shown in the figure was mainly to decide on the power set points for the gas
turbines, wind turbines, and batteries. The possible imbalance between the power supply
and demand was captured by the energy balance principle in the variable Pimb. In practice,
small energy imbalances are handled using power stabilizing units. Furthermore, the power
imbalance combined with the amount of emission gases ECO2 (and ENOx ) were used to
asses both the stability and quality of the system. Informally, we considered the system to
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be stable when it was well balanced and to be of high quality when it was both balanced
and had low greenhouse gas emissions. This will be further explained in Section 2.8.

Figure 1. Overview of the micro-grid simulation model.

The model was used to perform stochastic simulations with 50 wind speed and
power demand samples lasting for a period of 7 days. Using those samples, we simulated
multiple design scenarios by varying the number of wind turbines and battery capacities.
For practical reasons, we targeted a fast-running simulation model and have deliberately
chosen to model the system using simplified energy components in the power domain
rather than complex energy components in the electrical domain.

2.2. System Balance

The local grid component in Figure 1 models the balance between the power supply
and power demand. Note that the grid model iwas a so-called off-grid power system,
meaning that there was no main grid that could act as a regulation reserve to keep the
whole system in power balance, as is the case in [9]. Equation (1) describes the power
balance between the involved components, stating that the balance sheet Pimb is the sum
of the wind power Pwind (always positive), the gas turbine power Pgt (always positive),
the battery power Pbat (positive or negative), and the power demand Pd (always negative).
Intuitively, a well-balanced grid is one that keeps Pimb as close as possible to zero, thus
reducing the need for power stabilization units.

Pwind + Pgt + Pbat + Pd = Pimb

Pwind, Pgt ∈ R≤0

Pd ∈ R≤0

Pbat, Pimb ∈ R

(1)

2.3. Gas Turbine Model

The dynamic of gas turbine generators can be modelled as a combined cycle power
plant [10], but that would require significant details about the generator components. In the
context of this paper, an important aspect of the gas turbines’ dynamic is that they take a
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significant time before they become fully operational. To capture that aspect, we modelled
the available power of a gas turbine as a function of its state and determined the maximum
ramp-up and ramp-down speeds at any given time from the power generated at that
particular time. We also assumed that the combustion fuel was unlimited and that gas
turbines can be controlled with power set-points that can be chosen by the operator or
some control unit. The generated power Pi of a gas turbine i relates the power set point SPi
through Equation (2) using pre-subscribed (measurable) maximum ramp-up and ramp-
down speeds vu, vd, respectively, as functions of the gas turbine generating power (state),
as shown in Figure 2 (left). Likewise, Ei,CO2 and Ei,NOx are both functions of the generated
power from Figure 2 (center and right). Note that during the ramp-up phase, the emissions
are larger than zero even when the turbines are producing no or close to no power.
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Figure 2. Maximum ramp-up and ramp-down, CO2, and NOx emissions, all as functions of the gas
turbine-generated power.

Figure 3 shows the fastest possible ramp-up from zero to maximal power output
and back to zero.
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Figure 3. Fastest possible ramp-up of a gas turbine from zero to maximal power output and back to
zero and its corresponding greenhouse gas emission rate.

∆Pi = min(vu · ∆t, SPi − P), if SPi > Pi

∆Pi = max(vd · ∆t, Pi − SPi), if SPi < Pi

∆Pi = 0, if SPi = Pi

(2)

We assumed that the total generated power from the three gas turbines Pgt and the
total emissions were the sum of the power generated and gas emissions at each gas turbine,
respectively; see Equation (3).{

Pgt =
i=3

∑
i=1

Pi , ECO2 =
i=3

∑
i=1

Ei,CO2 , ENOx =
i=3

∑
i=1

Ei,NOx (3)
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To control the gas turbines, we assumed a system that took one set point SPgt and dis-
tributed that set point to three gas turbines by priority according to Equation (4). The point
here was to not start a gas turbine unless it was necessary. For example, with SPgt = 15 MW,
and ∀i, GTPi,max = 12 MW (maximum power generated by gas turbine i), we obtained
SP1 = 12 MW, SP2 = 3 MW, and SP3 = 0 MW.

SPi = min(SPgt −
i−1

∑
j=1

SPj, GTPi,max) (4)

2.4. Wind Power Model

The wind power model relates wind speed, V, to available wind power, AWP, follow-
ing Equation (5), where A is the swept area, ρair is the air density, Nwt is the number of
wind turbines, and Cp is the performance power coefficient. In this paper, we used a 10 MW
DTU reference wind turbine [11] with the characteristics shown in Figure 4. The rotor
radius R was 89 m, and the density of air ρair was assumed to be constant at 1.225 kg/m3.
The number of wind turbines, Nwt, were varied during the study. We neglected reduced
power output due to wake and blockage effects in this study. The inclusion of these effects
would require consideration of the wind farm layout and was deemed outside the scope of
the current study.

We considered that wind power Pwind could be regulated with a power set point SPwt
to power levels below AWP, as is shown in Equation (5).

AWP =
1
2
· ρair · A · Cp ·V3 · Nwt

A = π · R2,

Pwind = min(AWP, SPwt) | AWP ≥ SPwt ≥ 0

(5)
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Figure 4. Characteristics of 10 MW DTU wind turbine.

2.5. Battery Model

The dynamic of the battery system is given by Equation (6). The charge rate, Crate, is a
number that tells how fast a battery can charge or discharge. A Crate of 1 h−1 means that the
battery can fully charge from 0 to full capacity in 1 hour, and similarly for the discharge rate
Drate. Equation (6) states that the energy stored in the battery varies with the power Pbat
and that Pbat is subject to limits Clim and Dlim. These limits capture the notion that a filled
battery cannot be filled more, as well as the fact that an empty battery cannot be drained.
These limits, being functions of the state of charge of the battery (SoC), were expressed
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using two efficiency factors, ηd (discharging efficiency) and ηc (charging efficiency), both
modelled as logistic functions that were parameterised with kd, d0 and kc, c0 respectively.

dEb
dt

= −Pbat

Pbat ∈ [Clim, Dlim]

SoC =
Eb

Emax

Clim = −ηc · Crate · Emax

Dlim = ηd · Drate · Emax

ηd =
1

1 + e−d0·(SoC−kd)

ηc = 1− 1
1 + e−c0·(SoC−kc)

(6)

To calibrate the parameters of the logistic functions ηc and ηd, we used data from [12].
The chosen battery was a lithium iron phosphate or LFP (lithium ferrophosphate) battery
with a charge rate of Crate = 0.5 h−1 and a discharge rate of Crate = 1 h−1. These types
of batteries have characteristics that make them suitable for the current purposes, such
as low cost, a high degree of safety, and long cycle life. After calibration, the logistic
functions take the shape shown in Figure 5. The simulated state of charge (SoC) over some
charge/discharge cycles fit very well with the measured data with a max absolute error of
less than 5%; see Figure 6, which shows that modelling the charge/discharge efficiencies as
logistic functions are good approximations.
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Figure 5. Efficiency factors ηc and ηd modelled using logistic functions with parameters α = 0.04 and
β = 0.95.
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Figure 6. Battery model calibrated with sample data SNL_18650_LFP_25C_0-100_0.5-1C_d_timeseries.csv
from [12].

2.6. Demand Model

In principle, the power demand can be modelled in the time domain similarly to how
we modelled the supply and storage. However, this required in-depth knowledge about
the oil and gas platforms and their power demanding processes and was deemed to be
outside the scope of our work. A more practical approach was to use a measured time series
of the power produced by the gas turbines for a specific platform as the demand side of the
power equation. This approach will, however, inherently be platform-specific.

A stochastically generated time series, which is based on and preserves some main
features of the measured time series, provided flexibility to vary the demand side time
series and alleviate the problems associated with relying on a single time series for the
demand side modelling.

To generate a stochastic power demand time series that may be relevant for platforms
of different sizes and different power characteristics, we decided to model the demand as a
Gaussian hidden Markov model (GHMM) [13]. GHMM is a powerful technique for time
series analysis and modeling and has been used in many application areas ranging from
analysis of financial time series [14] to forecasting for water resource planning [15] and
power system load forecasting [16]. A main assumption is that while the power demanding
processes may vary between different platforms both in magnitude and frequency, some
main features of the demand time series will remain similar between platforms since the
processes themselves are similar. The GHMM approach enables us to vary parameters of
the fitted model to characteristics and demand levels for platforms that are different from
the one that the power demand time series originated from.

Some main processes for a typical oil and gas platform include drilling, injection, and
the separation of liquids and gases, in addition to the base demand for the living quarters,
but we generally have no way of correlating these processes to the measured time series.
This means that both the state distributions and the transition probabilities between states
need to be estimated.

The power demand cannot be considered to be normally distributed; clearly, the power
demand will never be negative, and neither will any of the underlying processes demand
negative power. A better approach is to assume a log-normal distribution, i.e., to fit the
GHMM to the logarithm of the demand time series.

To fit a GHMM to the data, one must choose the number of states to fit. The expectation
values and the standard deviations for each state in addition to the transition probabilities
between states are then fitted to the data through likelihood maximization. The optimal
number of states for the model is estimated using the Bayesian information criterion
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(BIC) [17], which is a trade-off between the number of parameters and the model fit. The
BIC as a function of the number of states is shown in Figure 7.

0 4 8 12 16 20 24 28
# states

-35,000

-30,000

-25,000

-20,000

-15,000
BI

C

BIC curve

Figure 7. BIC as a function of the number of states in the GHMM.

The BIC is lowest for 16 states. However, the difference in BIC between 11 and 16 states
is negligible, so we have chosen to use 11 states in the model.

Figure 8 shows the distributions of the different states with their heights weighted by
the stationary distribution for the transition probability matrix. The stationary distribution
represents the fraction of time that the system is expected to be in the different states,
given by the left eigenvector with eigenvalue 1 of the transition probability matrix. A joint
probability distribution is also shown in the figure, together with a histogram of the values
in the logarithm of the original time series (shown in gray bars), verifying that the model
gives a probability distribution that is consistent with the measured data.
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Figure 8. The histogram of the occurrence of each (log) demand level of the original time series (gray
bars) together with the state distributions and the stationary joint probability distribution (solid black
curve) for the GHMM.

An example of a random sampling from the fitted GHMM is shown in Figure 9.
The sampled time series shares many features with the original data, e.g., the height and
frequencies of the demand peaks and valleys and the same average demand level.



Energies 2023, 16, 3062 9 of 24

2015-02-01 2015-02-05 2015-02-09 2015-02-13 2015-02-17 2015-02-21 2015-02-25

6

8

10

12

14

16

18

De
m

an
d 

[M
W

]

markov samples
orig data

Figure 9. Sampling of the GHMM (blue) together with the original time series (orange).

2.7. Wind Speed Sampling

Time series of relevant wind speeds were downloaded from the ERA5 repository
(https://cds.climate.copernicus.eu, accessed on 21 February 2023). The repository contains
reanalysis data of past weather on an hourly time step and covers the earth on a 30 km grid
up to a height of 80 km.

The downloaded data cover the years 2018 and 2019 at the closest grid point to 61.2N,
2.1E, which corresponds to the location of the Hywind Tampen offshore wind project, which
will supply wind energy to the offshore oil and gas platforms at Snorre and Gullfaks off the
west coast of Norway. The data were taken at a height of 100 m, which is approximately
the hub height of the DTU 10 MW reference turbine (119 m).

A month of the time series of the wind speed data is shown in Figure 10.
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Figure 10. ERA5 wind speed at 100 m at Hywind Tampen in September 2018. The cut-in and cut-out
wind speeds of the DTU 10MW turbine are marked with red lines.

2.8. Cost Model

We define two dependent cost functions that quantify the notions of system stability
and quality modelled in Equation (7). The system stability is expressed using Sst as a func-
tion of the imbalance between the power generation and power demand Pimb. The function
is defined in such a way that the system is considered to be stable (Sst ≈ 1) with small
values for Pimb ≈ 0, but the stability drops relatively quickly after a certain threshold in
Pimb. We justify the tolerance for power imbalance by the fact that it can to some extent be
compensated for using power stabilizing units. However, such units cannot compensate
for large variations and should thus be reflected in poor system stability. The system
quality Sqt is expressed using both the system stability and the amount of greenhouse gases
emissions (limited to CO2). The normalized CO2 emission rate ÊCO2 is calculated using the
emission rate ECO2 divided by the maximum CO2 emission rate MAXCO2 . In Figure 11,

https://cds.climate.copernicus.eu
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we used MAXCO2 = 4.5 kg s−1, corresponding to 3 gas turbines delivering 10 MW each.
Figure 11 also shows that the system is defined to be high quality when it is stable and has
low greenhouse gas emissions, and it is of poor quality otherwise.

Sst =
1

1 + 104 · P̂imb

P̂imb =∈ [−1, 1]

pu = 10MW

Pimb = P̂imb · pu

Sqt = S2
st × (1−

√
ÊCO2)

ÊCO2 =
ECO2

MAXCO2

(7)
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Figure 11. Plots of stability and quality from Equation (7).

3. Estimation of Battery Degradation

Typically, battery manufacturers consider a battery to have reached its end of life
when it is at 80% of its initial capacity. The battery life is usually given by the number of
cycles before its end of life. However, due to the intermittent usage pattern of batteries in
this system with variable wind power and gas turbines that may either be switched on or
off, estimating the number of battery charge-discharge cycles is not a trivial task. For this
purpose, the rainflow counting algorithm developed by Matsuishi and Endo [18] can be
used to identify the cycles and their ranges from time series data.

The relationship between cycle range and degradation can be estimated through
empirical parameters. In Chawla et al. [19] and Alam et al. [20], the authors propose an
exponential relationship between the state of charge (SoC) range, R, and the number of
cycles the battery can experience at that range, C(R), before the cycle-life is spent.

C(R) = ARB (8)

The LFP batteries used in this study have a quite long cycle-life of around 5000 cycles
for 80% SoC swings. The corresponding cycle-life when the battery experiences lower SoC
swings is usually not available from the manufacturers. However, based on the assumption
that the batteries will provide more than twice the number of cycles when halving the SoC
swings, Chawla et al. [19] proposes to set B = −1.483. The life curve for these parameters
is shown in Figure 12. These estimates can be calibrated from recordings of actual usage
patterns and the corresponding degradation of similar battery systems.
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Figure 12. Proposed life curve for the LFP batteries. The dots are at 0.01, 0.1, 0.2, 0.5, and
1.0 SoC swings.

The rainflow counting algorithm counts either half or full cycles. Let Sj be defined
such that

Sj =

{ 1
2

if j is a half-cycle

1 if j is a full-cycle
(9)

and let {(Sj, Rj); j = 1...n} be the cycles and their ranges identified by the rainflow count-
ing algorithm.

The total degradation, D, can then be estimated based on all the identified half and
full cycles and their ranges by using Equation (10).

D =
n

∑
j=0

Sj

ARB
j

(10)

Note: In this study, we only consider battery degradation due to usage. We do
not consider degradation due to the environment, e.g., due to temperature variations or
humidity. Such degradation will come in addition to the usage degradation above.

4. Control Policies

The control of the energy system has multiple objectives. The main objective is to
ensure a stable energy supply to meet the energy demand of the oil and gas platform, while
the secondary objective is to minimize the CO2 emissions. The third objective is to optimize
the lifetime of the system components. It is, at the same time, an advantage if a control
policy is explainable and easily implementable in practice.

Therefore, the general policy is always to give preference to using the available wind
power. If the available wind power is not sufficient to meet the demand, power from the
batteries will be used. If the state of charge of the batteries becomes low, the gas turbines
are started according to the policy explained in Section 4.1. The gas turbines are stopped
according to the policies explained in Section 4.2. Surplus energy will be used to charge the
batteries. Surplus exceeding what the battery system is able to accept is curtailed. When
the gas turbines are running, they will, after the start-up time, be able to provide sufficient
power to meet the demand , plus additional power to charge the battery system, according
to the policies explained in Section 4.3.

4.1. Policy for When to Start the Gas Turbine System

When the state of charge of the battery system is low and decreasing, the gas turbines
will have to be started to ensure a stable energy supply. As discussed in Section 2.3, the gas
turbines takes some time to start producing power from the moment they are switched on.
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The gas turbines, therefore, need to be given the signal to be switched on some time before
the battery system is depleted.

The policy could be based on a preset state of charge limit of the battery system, which
is shown in Figure 13. The policy in this case is simply to give the signal to switch on the
gas turbines when the state of charge is less than the pre-computed low limit and to switch
off the gas turbine when the state of charge is higher than a pre-computed high limit.

However, for this study, we have implemented what we believe is a better policy,
which we call the dynamic energy level policy, explained below.
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Figure 13. Low and high state-of-charge limits.

4.1.1. Dynamic Energy Level Policy

Forecasts of the wind power can be used to estimate the remaining time before the
battery system is depleted and unable to provide power. We define a forecast horizon ∆T,
with ∆T slightly longer than the startup time of the gas turbines. We also assume that ∆T
is longer than the time between decision intervals, ∆t, and for simplicity, we assume that
∆T is a multiple of the decision interval ∆T = n · ∆t.

If the current rate of change, D, of the state of charge remains constant, the state of
charge SoC after time ∆T can be estimated as:

SoC(t0 + ∆T) ≈ SoC(t0) + D∆T, (11)

where t0 is the current time.
We assume a perfect wind forecast so that the available wind power AWP is known

in the forecast horizon. The perfect forecast assumption can be relaxed, but we assume a
perfect forecast here to simplify the derivation.

Then, the available wind energy, AWE, within the time interval [t0, t0 + ∆T] is given by

AWE(t0) =
n

∑
i=0

AWP(t0 + i∆t)∆t (12)

The change in energy ∆Ew generated from wind energy within the time interval
[t0, t0 + ∆T] relative to the persistent assumption is

∆Ew(t0) = AWE(t0)−AWP(t0)∆T (13)

We assume that the demand level stays constant since we have no method for predict-
ing the change in demand.

Taking the prediction of available wind energy into account, the state of charge limits
for starting the gas turbines can be relaxed.

The relaxed low level limit becomes:

SoC(t0) + D∆t +
∆Ew(t0)

Emax
≤ 0 (14)



Energies 2023, 16, 3062 13 of 24

This means that the gas turbines are started if the battery system is estimated to be
depleted after the time horizon ∆T. ∆Ew may be positive or negative. Emax is the energy
capacity of the battery system.

4.2. Policy for When to Stop the Gas Turbine System

Here, the question is when to give the signal to stop the gas turbine system and rely
on the wind turbines and battery system to provide energy.

We proposed two policies for when to stop the gas turbine system.

4.2.1. Fixed Level Policy

The policy in this case is simply to give the signal to switch off the gas turbines when
the battery state of charge exceeds a preset level, as illustrated in Figure 13.

4.2.2. Available Wind Power Policy

The policy in this case is to switch off the gas turbines if the available wind power
alone is sufficient to meet the system’s demands.

4.3. Battery Policy

Degradation of the batteries due to usage can be an issue. We proposed and tested
two policies for how to run the battery system.

4.3.1. Maximal Power Output Policy

The policy is to utilize the whole capacity when charging and discharging the batteries.
The battery system will, in this case, accept charging and discharging rates up to the
maximal possible limits given in Equation (6).

4.3.2. Limited Power Output Policy

The battery system will, under this policy, only utilize some defined fraction of the
maximal charging and discharging rates, except in emergency situations where the needed
power cannot be provided otherwise.

4.4. Strategies

We define a control strategy using the different policies explained above and summa-
rize them in Table 1.

Table 1. Simulated control strategies and their associated policies.

Policy
Gas Turbines On Gas Turbines Off Battery Degradation

Strategy 1 Dynamic-level Section 4.1.1 Fixed-level Section 4.2.1 Limited power output at 10% Section 4.3.2
Strategy 2 Dynamic-level Section 4.1.1 Fixed-level Section 4.2.1 Maximum power output Section 4.3.1
Strategy 3 Dynamic-level Section 4.1.1 Available-wind-power Section 4.2.2 Limited power output at 10% Section 4.3.2
Strategy 4 Dynamic-level Section 4.1.1 Available-wind-power Section 4.2.2 Maximum power output Section 4.3.1

5. Simulations

In this section, we present the different simulation cases and their results. We will first
present the different inputs and outputs in Section 5.1. In Sections 5.2 and 5.3, we present
the input samples and their variations. In Section 5.4, we present the simulation results of
an individual case to gain an intuition of the system dynamics, and later on in Section 5.5,
we present the results of simulating the whole sample set in an aggregated manner.

5.1. Inputs and Outputs

The simulation cases were run by selecting time series of wind speed and power
demand among 50 different samples of 7 days duration. These samples were then used to
simulate different system scenarios by varying the number of wind turbines and batteries,
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as well as the control strategies. The main simulation parameters are summarized in Table 2.
The simulation results are summarized in Table 3.

Table 2. Overview of the simulation parameters.

Input Description
Wind speed samples We used 50 samples of 7 days, sampled at 1 h intervals and with interpolation possibilities to 1 s intervals
Power demand samples We used 50 samples of 7 days, sampled at 1 h intervals and with interpolation possibilities to 1 s intervals

Batteries

We used battery units of a capacity of 10 MWh, with Crate = 0.5 h−1 and Drate = 1 h−1. We varied the number
of batteries between 1 and 7, which correspond to variation of energy storage capacity between 10 MWh and
70 MWh. Varying the number of batteries was modelled as one large battery and parameterized using Emax ∈
10, 20, 30, 40, 50, 60, 70 MWh

Wind turbines We used wind turbine units of a capacity of 10 MWh and varied their number between 1 and 7, corresponding to
variation of maximum wind power generation between 10 MWh and 70 MWh

Gas turbines We used 3 gas turbine units of a maximum power of 12 MW each
Control strategy We simulated the four control strategies that are defined in Table 1

Table 3. Overview of the recorded simulation results.

Output Description
Wind turbines A time series of available wind power AWP and generated wind power Pwind from Equation (5) presented in MW
Gas turbines A time series of the emission rates Eco2 and Enox presented in kg s−1, and the generated power Pgt from Equation (3)

Battery A time series of the battery state of charge SoC presented in % and the power delivered or consumed Pbat presented in
MW

Simulation metrics A time series of the system stability Sst and quality Sqt from Equation (7)
Stochastic metrics Total CO2 emissions relative to a base case with gas turbines only and battery degradation from Equation (10)

5.2. Wind Speed Inputs

The wind speed samples were generated by picking a start time at random from the
downloaded time series in Section 2.7. Figure 14 shows some of the characteristics of
the wind speed samples used in the simulations. The figures show relatively important
variations with cases where the wind speed is frequently high, such as in case numbers 20
and 40, and relatively low, such as in case numbers 48 and and 49.
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Figure 14. Wind speed variation for 50 samples containing 7 day records at 100 s intervals.

5.3. Power Demand Inputs

The power demand samples were generated with the GHMM model in Section 2.6.
The variation of the power demand can also be observed in Figure 15. A typical example
of high demand in this study would be case number 43, while case number 7 can be
considered a low-demand scenario.
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Figure 15. Power demand variation for 50 samples containing 7-day records at 100 s intervals.

5.4. Simulation Case Example

For illustration, we present a case with a relatively low wind speed and contrast it
with a case with relatively high wind speed. To illustrate some differences of the strategy
choices, we ran the simulations for Strategy 1 and Strategy 4 from Table 1. The first thing to
notice is that the system is energy-stable for all four simulations, as the Stability variable Sst
equals 1 for all cases. However, we notice that the system quality is higher for the cases with
high wind speed (Figures 16 and 17) than in those with low wind speed (Figures 18 and 19),
which is, as expected, proportional to the rate of CO2 emissions. However, we can notice
important differences between the two strategies in the periods where the gas turbines are
engaged, as well as in the state of charge of the batteries. Analysis of single simulation
cases give insight into how the energy management strategies work in specific scenarios.
However, to provide answers about which strategy is best, we have to look at ensembles of
simulation results.

5.5. Simulation with Stochastic Inputs

Deriving conclusions from individual simulations has been shown to be challenging.
For this reason, we aimed to simplify the analysis by aggregating the relevant simulation
results and excluding observations that had less relevance. These are stability and quality
results. The stability was stable at a value of 1 (Sst = 1) for all the simulation cases that we
ran, making it less relevant for our case study. However, for scenarios where the demand
becomes higher than the capacity of the system, the stability can be a useful concept to
exploit. The quality, as we have defined it in this paper, depends on the stability of the
system and the CO2 emission rate, but since the stability was constantly equal to 1, we
considered it irrelevant for the remaining analysis.

To analyse the simulations, we focused on two observations. The first one was the
amount of CO2 emissions relative to the case where the whole power demand was supplied
using gas turbines (today’s situation), which we refer to as the baseline case. This is presented
in Section 5.5.1. The second one is the battery life time.
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Figure 16. Strategy 1 with high wind speed scenario.
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Figure 17. Strategy 4 with high wind speed scenario.
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Figure 18. Strategy 1 with low wind speed scenario.
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Figure 19. Strategy 4 with low wind speed scenario.

5.5.1. CO2 Emissions Results

For every simulation case, the CO2 emissions were integrated for the whole simulation
period to obtain the total amount of emissions. These total amounts were normalized with
the baseline emissions (no wind turbines or batteries) and then averaged for the whole
set of samples (wind speed and power demand). The results are shown in Figures 20–23.
In the figures, the values in the cells stand for the % emissions relative to baseline when
we allow the gas turbines to be switched off completely (0 emissions), as well as the %
emissions when a single gas turbine is kept idle (shown in parentheses) with a minimum
CO2 emission rate of 0.5 kg s−1 (today’s practice). As a first observation, we notice the
significant increase in CO2 emissions when keeping a gas turbine idle, and this is regardless
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of the strategy, the number of batteries, and the number of wind turbines. We notice that the
applied strategies have a comparable effect with respect to CO2 emissions, where Strategy
2 performs slightly better. We also notice that the impact of adding wind turbines appears
to be significantly more important than the impact of adding batteries, although this effect
is less significant for Strategy 2.

The results show that the CO2 emissions can be reduced by up to around 80% depend-
ing on the configuration and up to 55% if one gas turbine is kept idle.
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Figure 20. CO2 emissions relative to baseline when the gas turbines can be turned off completely
(0 emissions) or are kept idle with an emission rate of 0.5 kg s−1, shown in parentheses.
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Figure 21. CO2 emissions relative to baseline when the gas turbines can be turned off completely
(0 emissions) or are kept idle with an emission rate of 0.5 kg s−1, shown in parentheses.
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Figure 22. CO2 emissions relative to baseline when the gas turbines can be turned off completely
(0 emissions) or are kept idle with an emission rate of 0.5 kg s−1, shown in parentheses.
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Figure 23. CO2 emissions relative to baseline when the gas turbines can be turned off completely
(0 emissions) or are kept idle with an emission rate of 0.5 kg s−1, shown in parentheses.

5.5.2. Battery Degradation

The aggregated battery degradation for the strategies in Table 1 are presented in
Figures 24–27 using the rainflow counting algorithm from Section 3.

Using the fifty one-week simulations for each combination of wind turbines and
batteries, we computed the average degradation per week and extrapolated the result to
the equivalent degradation over 20 years. A degradation of more than 100% means that the
batteries will have reached their end of life before the first 20 years of operation.

It may be surprising that the degradation that occurs with only one wind turbine
using strategy 3 and 4 is clearly less than when having more wind turbines. The reason
for this is that one wind turbine is usually not sufficient to supply the demand. Therefore,
the gas turbines will have to run most of the time in this case, leading to less demand on
the batteries.

There is also more degradation when using two batteries compared to one battery,
which can be seen clearly for strategies 1 and 2. The reason for this is that one battery is
often not sufficient to provide the needed power, and therefore, the gas turbines will have
to run most of the time in this case. However, if there are two or more batteries, the gas
turbines can be switched off more often, leading to more degradation of the batteries.

The results show that the battery system can be expected to last more than 20 years
for strategies 3 and 4 and more than 20 years for strategy 1 if the number of wind turbines
is greater than 3. However, strategy 2 leads to severe strain on the batteries due to the
power cycling.
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Figure 24. Degradation of the batteries over 20 years of usage with strategy 1.
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Figure 25. Degradation of the batteries over 20 years of usage with strategy 2.
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Figure 26. Degradation of the batteries over 20 years of usage with strategy 3.
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Figure 27. Degradation of the batteries over 20 years of usage with strategy 4.

6. Conclusions

In this paper, we have provided details about a flexible power simulation model
and used it to evaluate control strategies and design options for a system of offshore wind
turbines and battery systems to provide power to offshore installations without a grid
connection to the land. All the proposed control strategies provide a stable energy supply
but differ in the estimated CO2 emissions and the estimated battery degradation. If one gas
turbine is kept idle all the time, the CO2 emissions can be reduced by 30–55%, depending
on the control strategy, the number of wind turbines, and the number of batteries. However,
if all the gas turbines are shut completely down when they are not needed, the CO2
emissions may be reduced by more than 80% given sufficient wind power capacity. The
simulations show that with sufficient battery capacity, it is possible to shut down the gas
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turbines for extended periods of time and start them on demand, thus enabling significant
reductions in CO2 emissions compared to running the gas turbines in idle mode. The
battery storage can be controlled in a way that does not severely limit its lifetime, and it is
estimated not to have spent more than approximately 50% of its lifetime within the first
20 years for strategies 3 and 4 when using two or more wind turbines.

The component models are quite simple and are parameterized, which enable calibra-
tion and validation with measurements in realistic situations to give good approximations
to reality, as we have done for the batteries. For the validation of the other components
of the model, we propose to use measurements in the lab or the field. The demand side
can be more flexible than we have assumed in this study. It may be possible to delay
energy-demanding processes on oil and gas installations until sufficient wind power is
available. Such flexibility may be exploited to enable further reductions in CO2 emissions.

For further work, we propose to optimize both the control and design options to
maximize the system quality as introduced in Section 2.8 and redefine it by including other
costs, such as delaying energy demanding processes, the carbon tax, the investment and
operational costs of the battery systems, and the investment and operational costs of wind
farms. The cost of the resulting system should be compared to estimates of the cost of the
alternative, which is electrification of the oil and gas installations using land cables and
connection to the onshore grid.
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Abbreviations
The following abbreviations are used in this article:

AWP Available wind power AWE Available wind energy
ρair Air density A Wind turbine swept area
BIC Bayesian Information Criterion Nwt Number of wind turbines
Clim Charging power limit Crate Battery Charging rate
Cp Performance power coefficient of wind turbine Dlim Discharging power limit
D Total battery degradation Eco2 CO2 emissions
Emax Energy capacity of battery Enox NOx emissions
GHMM Gaussian Hidden Markov Model Nwt Number of wind turbines
Pbase Base power Pbat Battery power
Pd Demand power Pgt Gas turbine’s power
Pimb Power imbalance Pwind Wind farm power
Sqt System quality Sst System stability
SoC State-of-charge ηc Battery charging efficiency
ηd Battery discharging efficiency c0 Sigmoid’s midpoint on charge
d0 Sigmoid’s midpoint on discharge kc Steepness of charge
kd Steepness of discharge pu Per unit
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