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Abstract: Future wireless communication systems require higher performance requirements. Based
on this, we study the combinatorial optimization problem of power allocation and dynamic user
pairing in a downlink multicarrier non-orthogonal multiple-access (NOMA) system scenario, aiming
at maximizing the user sum rate of the overall system. Due to the complex coupling of variables,
it is difficult and time-consuming to obtain an optimal solution, making engineering impractical.
To circumvent the difficulties and obtain a sub-optimal solution, we decompose this optimization
problem into two sub-problems. First, a closed-form expression for the optimal power allocation
scheme is obtained for a given subchannel allocation. Then, we provide the optimal user-pairing
scheme using the actor–critic (AC) algorithm. As a promising approach to solving the exhaustive
problem, deep-reinforcement learning (DRL) possesses higher learning ability and better self-adaptive
capability than traditional optimization methods. Simulation results have demonstrated that our
method has significant advantages over traditional methods and other deep-learning algorithms, and
effectively improves the communication performance of NOMA transmission to some extent.

Keywords: NOMA; deep-reinforcement learning; actor–critic; power allocation; user pairing

1. Introduction

With rapid advances in wireless communication and mobile access technologies, the
forthcoming digital society will experience an increasing number of mobile applications.
This unprecedented growth in technologies and applications requires sixth-generation wire-
less systems (6G) with enhanced bandwidth, highly reliable low-latency communication,
and massive machine interconnection. Meanwhile, mobile users are also demanding higher
transmission capacity and lower network latency [1,2].

Several vital 6G-oriented technologies are being investigated to meet the high require-
ments of mobile users and the emerging communication technology such as Multiple-Input
Multiple-Output (MIMO) [3], Spatial Multiplexing Technology, Intelligent Reflecting Sur-
face (IRS) [4], Unmanned Aerial Vehicle (UAV) communication [5–7], T-Hz communication,
etc. In traditional methods, orthogonal resource blocks are allocated to different users
to reduce interference between them. In NOMA schemes, signals from different users
are coded and modulated at the NOMA system transmitter and directly superimposed
together, in the same block of time and frequency resource, and then demodulated using
serial interference cancellation (SIC) for the sub-user signals at the receiver [8–10]. There-
fore, NOMA can effectively enhance spectral efficiency, enabling massive connectivity and
the combining of new technologies.

Machine learning (ML) is used in various fields as an emerging technology in infor-
mation generation. In a broad sense, ML refers to giving a machine the ability to learn
so that it can accomplish functions that cannot be done by programming directly. The
key is the machine model, which can make predictions in a practical sense, but before
that, the model needs to be trained using data. Reinforcement learning (RL) is a branch of
ML, usually described by Markov decision processes (MDP), but it is different from ML.
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Mainly reflected in the absence of specific training data, the reward signal is not real-time.
The research data of RL are mainly reflected in time series rather than independently
distributed data, and the behavior of the current training choice will affect subsequent data.
RL is the interaction between a machine and its environment, where the machine receives a
desired state and receives a reward from the environment, which changes as a result of the
machine’s actions [11].

According to the description in Figure 1, the whole RL is an iterative update process.
The intelligent agent interacts with the environment while performing a task, and the agent
itself generates actions to change the environment. The agent continuously updates its
action strategy based on the reward feedback value from the environment, and eventually
achieves the task requirements. According to what agents focus on, RL algorithms can be
classified into two categories: the optimal strategy (policy-based), the optimal cumulative
reward (value-based) and the optimal action at each step (action-based).

Figure 1. The basic framework of reinforcement learning.

One factor to consider when using this method is how large a problem could be
handled. Practical tasks tend to be more complicated, have higher dimensionality, possess
more states, and behave in a continuous pattern. In this situation, RL cannot handle
complex high-dimensional continuous tasks due to the limitations of its own state space
and action space. DRL combines traditional RL with a network structure, maintaining the
superiority of RL while increasing the dimension of the input, making it the optimal choice
for handling high-dimensional continuous tasks. DRL combines DL’s perceptual capability
with RL’s decision-making capability, and is an artificial intelligence approach that is
closer to the human way of thinking [12]. DRL has derived many related algorithms, e.g.,
Q-learning, Deep Q-Network (DQN), AC, etc. The AC algorithm can perform continuous-
action learning, which enables single-step updates, and has higher accuracy and faster
discovery of the highest cumulative reward strategy.

1.1. Related Work

In recent years, the issue of resource allocation has attracted increased attention in
NOMA scenarios, including the optimization problem of power allocation, user pairing,
etc. Numerous pieces of literature are devoted to optimizing transmission power allocation
and channel assignment using different optimization methods. For instance, in [13], by
analyzing Karush–Kuhn–Tucker (KKT) conditions in the presence of channel error, an
optimal allocation solution aiming to maximize performance was derived. A mixed-
integer programming problem of joint resource allocation was considered to optimize the
communication performance with Quality of Service (QoS) constraint for each user [14].
A joint optimization method was proposed to enhance the sum rate of multiple users
in NOMA uplinks, derived closed-form optimal solutions for decoding order and user
power allocations, and obtained global optimal solutions using exhaustive search for user
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grouping schemes, significantly improving system performance in [15]. For the NOMA
downlink with imperfect SIC, an adaptive user-matching algorithm was derived in [16],
which used the difference between the signal-to-noise ratio (SNR) of the users to pair users
and improve the overall system sum rate. Generally, most channel-allocation schemes have
been proven to be NP-hard problems [17]. The computational complexity of these problems
is very high and hence it is difficult to obtain their global optimal solution. In multicarrier
NOMA scenarios, under the constraints of maximum fairness, maximum weighted sum
rate and QoS, a low-complexity joint channel allocation and power distribution algorithm
was proposed in [18]. In [19], a channel-to-noise ratio outage threshold was defined, and a
global optimal solution for the non-convex optimization problem was derived using the
branch-and-bound method.

Traditional schemes lack adaptivity, the computational complexity is relatively high,
and the method’s efficiency is low. For example, the user-pairing problem is an exhaustive
problem, and using exhaustive algorithms consumes more time and costs. Therefore we
look for another way to reduce the time complexity. As a potential approach to solve the
above NP-hard challenges, DRL has been widely used in communication scenarios or to
solve optimization problems [20–22]. Ref. [23] evaluated and tested self-partitioning MIMO
cell-free network architecture, performed network segmentation using DRL methods, and
implemented a hybrid beamforming model using a new hybrid DRL convex optimization
method. Three resource-allocation joint frameworks based on discrete and continuous
DQN were proposed to solve the non-convex optimization problem in [24], and deep deter-
ministic policy-gradient (DDPG) network was introduced to overcome the discretization
loss, which effectively improved the learning efficiency and reduced the computing time.
Ref. [25] optimized the user-pairing problem and the power allocation problem in two
steps. First, a confident channel allocation was given to obtain the optimal power allocation
scheme, and then DQN was used to find the optimal user-pairing scheme. The DRL frame-
work was used to realize the allocation of network resources and effectively reduce the
system transmission energy consumption in [26]. In a hybrid network multi-user scenario,
ref. [27] used a distributed DRL algorithm for user power allocation, with fast convergence
and higher user reachable rate. The authors in [28] proposed a DRL method with high
stochasticity and adaptability for adaptive scheduling and processing of large-scale data,
demonstrating the clear advantages of DRL in complex situations.

1.2. Contributions

The channel assignment and user-pairing optimization are combination optimization
problems in multicarrier NOMA scenarios. Since the user could not communicate with
the base station (BS) solely, and the user-pairing problem is a dynamic assignment and
exhaustive problem, the choice of pairing scheme will directly affect the information
reachable rate of all users, and then affect the performance of the whole system. Inspired by
previous research, we propose a new dynamic pairing scheme for a downlink multicarrier
NOMA system, and the summary of this paper is as follows:

• Solving the combinatorial optimization problem in the case of two users in a sub-
channel of multicarrier NOMA, and we obtain a closed-form solution to represent
the optimal resource allocation for users on each subchannel in the corresponding
system scenario.

• In the AC framework, we use temporal difference estimation with the addition of
baseline as the advantage function in the update gradient to improve the convergence
efficiency of the algorithm. Then, we build a NOMA downlink communication scene
and embed the DRL algorithm in this scene.

• For the dynamic user-pairing problem, we use the AC algorithm to obtain the opti-
mal pairing scheme that maximizes the total communication rate of all user equip-
ment (UEs). The DRL method provides a new scheme to solve the traditional user-
pairing optimization problem. Simulation results have shown that our proposed
scheme acquires better performance gains and lower complexity.
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Table 1 declares the specific value of the variable used in the simulation experiment.
The rest of this paper is organized as follows. In Section 2, we introduce a multicarrier
NOMA scenario and derive the combination optimization problem in the case of two users
in a subchannel. In Section 3, we use DRL methods to solve the problem of user pairing.
In Section 4, we give the simulation results. Finally, we draw conclusions in Section 5.

Table 1. Parameter setting.

Parameters Values

Distance between user and BS 20–300 m
Distance between each user <=10 m

Total bandwidth of BS 10 MHz
Total power of the BS 20 W

Path loss 2
Power spectral density −174 dBm/Hz

QoS 2 bps/Hz
Number of hidden layers 2

Number of neurons in hidden layers 128

2. NOMA System and Optimization Problems
2.1. System Model

We consider a single-cell scenario of a downlink multicarrier NOMA system, as
depicted in Figure 2. It is composed of a BS with total bandwidth B and M users distributed
randomly around the BS. The BS is in the center of the cell. We assume that the user has
a single antenna and the SIC is considered perfect. Mk denotes the number of UE on the
k-th subchannel, and UEk

m denotes the m-th UE on the k-th subchannel. At the BS, the
superimposed signal to be sent on the k-th subchannel is expressed as

xk =
Mk

∑
m=1

√
Pk

msm (1)

where Pk
m denotes the power of the m-th UE on the k-th subchannel, and sm is the signal

that needs to be sent to the m-th UE. The superimposed signal received at the receiver is

yk
m =

√
Pk

mhk
msm +

Mk

∑
n=1;n 6=m

√
Pk

nhk
msn + zk

m (2)

hk
m = gk

md−α
m is the channel status information (CSI) from the BS to m-th UE, which gk

m is
the Rayleigh channel coefficient, d is the distance between BS and the m-th UE, α is path
loss exponent. In addition, the zk

m ∼ CN
(
0, σ2

k
)

in (2) denotes the additive white Gaus-

sian noise (AWGN). Let Tk
m =

∣∣∣hk
m

∣∣∣2/σk
2 denote the channel noise ratio (CNR). Without

losing generality, we assume that the CNR of each user on the k-th channel is ordered as
Tk

1 > · · · > Tk
m > · · · > Tk

Mk
. The goal of the system is to maximize fairness, since the

lower the CNR, the worse the channel condition, the more power should be allocated:
pk

1 < · · · < pk
m < · · · < pk

Mk
.

As shown in Figure 3, SIC is used at the receiver side for the NOMA system, for the
m-th UE on the k-th channel, the signal of the user with more power is cancelled by SIC,
and the signal with less power is considered to be noise. Its SINR can be denoted as

SINRk
m =

pk
mTk

m
m−1
∑

n=1
pk

nTk
m + 1

(3)
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Consequently, the idealized reachable communication rate of the user on the k-th
channel can be denoted as

Rk
m = Blog2(1 +

pk
mTk

m
m−1
∑

n=1
pk

nTk
m + 1

) (4)

Figure 2. NOMA system model.

Figure 3. SIC for two users.

Apparently, the more users in the same channel, the higher correlation complexity and
calculation latency. For more efficient research, we restrict the existence of only two users
for each channel and Tk

1 > Tk
2 . Therefore, the rate for two users on the k-th channel are

expressed, respectively, as

Rk
1 = Blog2(1 + pk

1Tk
1 ) (5)

Rk
2 = Blog2(1 +

pk
2Tk

2

1 + pk
1Tk

2
) (6)

2.2. Optimization Problems

In this subsection, we will discuss the performance optimization problems that are
relevant in the downlink multicarrier NOMA system. To enhance the performance of the
NOMA system, we solve the problem of maximizing the total sum rate of all users while
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satisfying the system constraints. The maximum sum rate (MSR) optimization could be
formulated as

max
Tk

1 ,Tk
2 ,pk

1,pk
2

K

∑
k=1

[
Rk

1

(
Tk

1 , pk
1

)
+ Rk

2

(
Tk

2 , pk
1, pk

2

)]
(7)

s.t. Rk
m ≥

(
Rk

m

)
min

(8)

K

∑
k=1

(
pk

1 + pk
2

)
≤ PK (9)

0 ≤ pk
1 ≤ pk

2 (10)

where
(

Rk
m

)
min

= Blog2 Ak
m, and PK is the total power of BS. To facilitate the analysis,

we first investigate the power allocation problem in a single-carrier NOMA scenario, i.e.,
a single-channel two-user scenario. This scenario can be represented as a sub-problem of
(7) and can be formulated as

max
Tk

1 ,Tk
2 ,pk

1,pk
2

[
Rk

1

(
Tk

1 , pk
1

)
+ Rk

2

(
Tk

2 , pk
1, pk

2

)]
(11)

s.t. Rk
2 ≥

(
Rk

2

)
min

(12)

pk
1 + pk

2 = Pk (13)

0 ≤ pk
1 ≤ pk

2 (14)

Pk denotes the total power on the k-th channel and is fully allocated to the two users. Let

R = Rk
1 + Rk

2, its derivative for pk
1 is easily verified as R′ = Tk

1−Tk
2

(1+pk
1Tk

1 )(1+pk
1Tk

2 )
> 0. As ex-

pected, the sum rate R increases with pk
1. According to (6) and (12), in a realistic communica-

tion scenario, user rate also needs to satisfy QoS. Then, we obtain pk
1Tk

2 + pk
2Tk

2 − pk
1Tk

2 Ak
2 >

Ak
2 − 1 and joint (13). Therefore, we obtain pk

1 ≤
PkTk

2−Ak
2+1

Ak
2Tk

2
based on (6) and constraint

(12)–(14), obtain an upper bound on UEk
1 when pk

1 =
PkTk

2−Ak
2+1

Ak
2Tk

2
and pk

2 = Pk − pk
1.

We have discussed the two-user case of downlink single-carrier NOMA, and, in the
following, a multi-user case of multicarrier NOMA will be further studied. We adopt the
closed-form solution for problem (11) and give the results here directly:

pk
1 =

PkTk
2 − Ak

2 + 1
Ak

2Tk
2

(15)

pk
2 = Pk − pk

1 (16)

The total power on the k-th channel Pk proposed by [18] is given in a waterfilling form
as (for more details, in Appendix A)

Pk =

[
B
λ
−

Ak
2

Tk
1
+

Ak
2

Tk
2
− 1

Tk
2

]∞

χ

(17)

where χ =
Ak

2(Ak
1−1)

Tk
1

+
Ak

2−1
Tk

2
, λ is chosen such that

K
∑

k=1
Pk = PK.

We have obtained the closed-form solution on each subchannel. It can be seen from
(15)–(17) that the selection of two users in a single channel is the user-pairing problem,
which directly affects (7). Therefore, based on the above results, we will research the pairing
solution using the DRL method in the following.
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3. Deep-Reinforcement Learning Method for User Pairing

In this scenario, the algorithm convergence time is very short; therefore, we assume
that CSI is stable and constant in the process of algorithm training and user pairing. It is
essential to maximize system sum rate by pairing the user with a proper scheme. For this
exhaustive problem, we use the DRL method to solve it. In the following, we will profile
the user-pairing problem based on a DRL and then use the AC algorithm to solve the
user-pairing problem. AC applies a higher dimension and a simpler network, allowing the
reachable rate of each pairing to be summed and converged towards the policy with the
highest cumulative rate.

3.1. Actor–Critic Framework and Advantage Function

As shown in Figure 4, a combined approach, the AC algorithm is divided into two neu-
ral networks (NN), actor and critic. The actor is a policy-based function that is responsible
for generating actions and interacting with the environment. Policy gradient (PG) as a
classical policy-based algorithm, and its gradient can be expressed as (for more details, in
Appendix B)

1
N

N

∑
n=1

T

∑
t=1

Γ(τn)∇ log pθ(at|st) (18)

Figure 4. Actor–Critic framework.

It follows that the PG algorithm requires a complete trajectory to achieve the update
of the NN parameters, which is based on the Monte Carlo method. The PG is updated in
rounds and not in single steps, so the learning efficiency is small and low. Therefore, the
AC framework adds another NN, critic, as a value-based function. The gradient in the AC
framework is represented as

1
N

N

∑
n=1

T

∑
t=1

Ξ(st, at)∇ log pθ(at|st) (19)

where Ξ(st, at) is generated by the critic, so we do not need to obtain the complete trajectory,
but just pass a batch of actions and states into the critic, and the actor could update it
according to the new gradient in real time. Meanwhile, Ξ(st, at) is also the result of the
critic’s evaluation of this action performed by the actor. The cumulative reward is similar
to an evaluator that evaluates the goodness or badness of the selected action.
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However, AC has a certain shortcoming: the difficulty of convergence of the critic
causes the whole algorithm to be extremely unstable. We introduce the concept of an
advantage function, i.e., adding a baseline Vθ(sn):

1
N

N

∑
n=1

T

∑
t=1

(Ξ(sn, an)−Vθ(sn))∇ log pθ(at|st) (20)

However, the baseline requires another NN, and to make the critic simpler, we use
temporal difference (TD) to estimate the advantage function:

1
N

N

∑
n=1

T

∑
t=1

Âθ∇ log pθ(at|st) (21)

where Âθ = rn
t + γVθ

(
sn

t+1
)
−Vθ(sn

t ). Therefore the AC algorithm using this gradient (21)
is called Advantage Actor–Critic (A2C).

Before the beginning of training, we initialize the state space and environment. Then
we use the configured A2C algorithm to train the NN. The actor is the policy-based function,
and the neural network will choose the action according to the current state. The critic
network will judge the value of the action so that the actor network will be updated, where
the critic uses TD error for the actor value judgment. Then, the critic will update its own
network parameters according to the mean square error of TD error.

3.2. Scene-Building

First, we elaborate on the relevant elements in DRL, as illustrated in Figure 5. The
agent interacts with the environment as a learner and policymaker of the DRL. The function
of the BS in the downlink NOMA system is to coordinate the resource allocation. Therefore,
we choose the BS as the agent. The environment is the target of interaction with the agent,
and the result of changes in the environment after each interaction is called the state.
The agent can only take one action in each step when interacting with the environment.
To make the problem fit into the DRL scenario, we will adopt a user-pairing matrix as
the environment. All users are divided into two groups in the order of CNR from the
smallest to the largest one. We use the first set of rows Ω′ = {UE1, UE2, . . . , UEM/2}, and

the second set of columns Ω′′ =
{

UE(M/2)+1, UE(M/2)+2, . . . , UEM

}
to denote a pairing

matrix. The formed matrix Ω of M/2×M/2 records user pairing in time. The user pairing
matrix is initialized to a zero matrix, and when all user pairings are complete, we call it a
training epoch. Each step t in an epoch is a selection of an action, and after performing that
action, the state changes from the previous state to the next state (st → st+1), i.e., the state
is the current user-pairing matrix. The amount of users is finite, and all the steps in each
training epoch are complied with MDP, where the state at each step t can be denoted as
st ∈ {Ω1, Ω2, . . . , Ωt, . . . , ΩM/2}.

The agent needs to choose the appropriate action in the current state, and different
actions will have different effects on the environment. In addition, the selection of an action
also needs to follow the prescribed policy. So in this DRL scenario, we define the action
as At ∈

{
a(M/2)+1

t , a(M/2)+2
t , a(M/2)+3

t , . . . , aM
t

}
. At step t(t ∈ {1, 2, 3, . . . , M/2}), if UEt selects

user ζ(ζ ∈ {(M/2) + 1, (M/2) + 2, (M/2) + 3, . . . , M}) for pairing, we will set aζ
t = 1

otherwise aζ
t = 0. After performing each action, the state is updated. Therefore, we use the

reward as the performance of that action. In DRL, the purpose of the agent is to discover
the strategy that maximizes the cumulative reward through learning. We define the reward
as the sum rate of two users rt = Rt + Rζ , and the cumulative reward as the total sum
rate of system. If there are more than two UEs in a user pair, the reward is set to 0 and
the training epoch stops. When all users have been paired, we obtain the cumulative total
reward. The following algorithm gives the full process of solving our user-pairing problem
by the DRL method.
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Figure 5. DRL scenario.

4. Simulation

In this section, simulation results are given to verify the feasibility of our proposed
method. Since the DQN algorithm is an advanced version of the Q-learning form, which
can handle high-dimensional action and state spaces such as A2C, for comparison we show
the performance of DQN under the same conditions, and simulate the performance of the
scheme for NOMA random pairing and OMA.

Algorithm 1 is implemented by Pytorch 1.9.1 based on Python 3.7, and users are randomly
distributed in the area around the BS. The rest of parameters are detailed in Table 1.

Algorithm 1 User Pairing A2C Algorithm

Input: Initial matrix Ω0; learning rate α
Output: Optimal pairing result Ω1; The total sum rate R
Initialize: Actor network parameter θ; Critic network parameter λ; Max training
epoch T; step t = 0

for 1, 2, . . . T do
for step t = 1, 2, . . . , M/2 do

Actor takes action at ∼ πθ(at|st) and obtain (st, at, st+1, rt).
Critic output Vλ(st) and Vλ(st+1).
Update Vλ by ((rt + γVλ(st+1))−Vλ(st))

2.
Evaluate advantage function:
Âθ(st, at) = rt + γVλ(st+1)−Vλ(st).
Loss: ∇θ J(θ) = Âθ(st, at)∇ log pθ(at|st).
Update πθ : θt+1 = θt + α∇θ J(θ).

end
Record (s1, a1, r1, s2, a2, r2, · · · , sM/2,aM/2,rM/2).
Calculate the total sum rate of system R = r1 + r2 + · · ·+ rM/2.
Output the optimal pairing matrix Ω1.

end
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When updating the actor parameter θ, we need to set an appropriate learning rate α.
For a better increasing trend of the sum rate, we compare it by setting different learning
rates. We add 10 users to the scenario, as illustrated in Figure 6. Obviously, when the
learning rate is 0.001, the overall learning trend increases steadily with the number of
training epochs and a better result is obtained. When the learning rate is set as 0.01, the
performance begins to worsen until 1000 epochs, and the increasing trend tends to stop.
When the learning rate is set as 0.005, the situation is almost similar to 0.01. Although the
result is better than 0.01, there is no convergence trend. When the learning rate is set to
0.0001, the user sum rate has remained stable. On balance, we choose the learning rate of
0.001, and the amount of user equipment is set to 10 for training. As shown in Figure 7,
it can be seen that the sum rate of the system reaches a maximum of more than 150 Mbps
when the training epoch is around 13,000 times, and the algorithm output results will
remain stable in more training epochs and the training effect is satisfactory. The ultimate
goal of the algorithm is to find the user pairing that maximizes the sum rate. The sudden
drop in the sum rate indicates that the algorithm is still trying other pairing schemes to
prevent falling into the local optimal solution, but eventually converges to the strategy with
the largest cumulative reward.

Figure 6. Training results at different learning rates.

Figure 7. A2C Training result.

The performance of the four algorithms is compared in Figure 8 by increasing the amount
of user equipment in the scenario, and it is clear that the NOMA user-pairing algorithm by
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DRL outperforms the NOMA random-pairing algorithm and the OMA, and achieves higher
performance than DQN with the A2C algorithm. The spectrum efficiency of the NOMA
scheme is higher than that of OMA because only one user is assigned to one subchannel of
the OMA. However, the output of the NOMA user-pairing algorithm by DRL, trained by the
neural network, gradually approaches the optimal user-pairing scheme for that scenario, so the
obtained results are better than the NOMA random-pairing algorithm in terms of algorithm
efficiency and system performance. When the number of users is 10, the total sum rate of the
system for A2C, DQN, NOMA random, OMA are 154.08 Mbps, 130.8 Mbps, 100.74 Mbps and
75.74 Mbps, respectively. The performance of A2C is improved by 17.8% compared to DQN
and 52.9% compared to NOMA random.

Figure 8. Algorithm performance for different number of users.

To further validate the algorithm performance, we also simulate the sum rate of the
system with different algorithms under the scenario with 10 users and 10 Mbps bandwidth
of BS. In Figure 9, the first subplot demonstrates the performance of the different algorithms
with different BS power. The system sum rate of the four algorithms all increases gradually
as the power of BS increments. The NOMA algorithm using DRL still achieves the largest
sum rate. With the same settings as the first subplot and the fixed BS power (20 W), we
examine the impact of the available bandwidth of BS on the total sum rate of the system.
In the second subplot, the bandwidth of BS has a stronger impact than the BS power, and
the NOMA algorithm using DRL is still optimal.

Figure 9. Different BS power and bandwidth.
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In Figure 10, we depict the effect of noise on the algorithm and the system sum rate.
It can be seen that a higher system sum rate is obtained with smaller noise power spectral
density, and, as expected, the effect of SNR on the system performance is significant.
The system sum rate that each algorithm can reach decreases as the noise power spectral
density increases, but the performance of the NOMA algorithm using DRL is still optimal
compared to the other two algorithms.

Figure 10. Performance of different algorithms at different noise power density.

5. Conclusions

In this article, we propose a dynamic user-pairing scheme in a multicarrier downlink
NOMA system. Specifically, depending on the closed-form solution of the subchannel,
we use the A2C algorithm to deal with the dynamic user-pairing problem. The work in
this paper: 1. Deriving the combination optimization problem in the case of two users in
a subchannel of multicarrier NOMA under the conditions of perfect CSI, and obtaining
the closed-form solution of power allocation for subchannel by decomposing this problem.
2. The communication scenario is transformed into a DRL scenario, and the user-pairing
problem is processed using the A2C algorithm to rapidly search for the optimal user-pairing
scheme, which has lower complexity compared to the exhaustive search. The simulation
results show that the A2C algorithm has significant advantages over the traditional NOMA
random-pairing approach and OMA. For DQN, A2C uses a higher dimension, a simpler
neural network, and is superior in terms of performance improvement.
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Appendix A. The Derivation for the Power of the k-th Channel

When the rate of UEk
1 and UEk

2 are both minimum rates,
(

Rk
1

)
min

= Blog2 Ak
1 and(

Rk
2

)
min

= Blog2 Ak
2, joint with (5) and (6) we can obtain the minimum power of the k-th
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channel Pk
min =

Ak
2(Ak

1−1)
Tk

1
+

Ak
2−1
Tk

2
. Therefore the power of the k-th channel optimization

problem is as follows

max
Pk

K

∑
k=1

R
(

Pk
)
= Rk

1

(
pk

1

)
+
(

Rk
2

)
min

(A1)

s.t.
K

∑
k=1

Pk 6 PK (A2)

Pk > Pk
min (A3)

where Rk
1

(
pk

1

)
= Blog2

(
Ak

2Tk
2−Ak

2Tk
1+Tk

1 Tk
2 Pk+Tk

1
Ak

2Tk
2

)
. Obviously, R

(
Pk
)

is a concave function

and this optimization problem is a convex problem. Therefore, the Lagrangian function is
expressed as

L
(

Pk
)
= Rk

1

(
pk

1

)
+
(

Rk
2

)
min

+ λ
(

Pk
min − Pk

)
(A4)

Then

∂L
∂Pk =

BTk
1 Tk

2

Ak
2Tk

2 − Ak
2Tk

1 + Tk
1 Tk

2 Pk + Tk
1
− λ = 0 (A5)

We use the waterfilling form to show the result

Pk =

[
B
λ
−

Ak
2

Tk
1
+

Ak
2

Tk
2
− 1

Tk
2

]∞

χ

(A6)

where χ = Pk
min =

Ak
2(Ak

1−1)
Tk

1
+

Ak
2−1
Tk

2
. Equation (A6) represents the range of values of Pk,

the specific value of Pk depends on λ, and λ is chosen such that
K
∑

k=1
Pk =

K
∑

k=1

(
pk

1 + pk
2

)
= PK.

Appendix B. The Derivation for the Gradient of Policy Gradient

We give an actor πθ(s) with neural network parameter θ, is interacting with the
environment, and start with observation s1. Actor decides to take a1, obtains reward r1.
An episode is considered to be a trajectory τ = {s1, a1, r1, s2, a2, r2 · · · sT , aT , rT}. So the
total reward in this episode is Γ(τ) = ∑T

t=1 rt and we define Γθ as the expected value of Γθ

which evaluates the goodness of an actor πθ(s). Then the probability that we obtain the
same trajectory in the following learning episode can be expressed as

Pθ(τ) = p(s1)pθ(a1|s1)p(r1, s2|s1, a1)pθ(a2|s2) · · ·

= p(s1)
T

∏
t=1

pθ(at|st)p(rt, st+1|st, at) (A7)

where Pθ is the probability of producing a certain action in NN θ and the transition probabil-
ity follows Markov property, i.e., the state transition is only related to the last state. Assume
that we produce a total of N trajectories {τ1, τ2, τ3, · · · τN}, so Γθ can be expressed as

Γθ = ∑
τ

Γ(τ)Pθ(τ) =
1
N

N

∑
n=1

Γ(τn) (A8)

Since our target is to maximize the expected reward value, taking a gradient ascend
for θ, the problem is represented as
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θ∗ = arg max
θ

Γθ (A9)

θnew = θold + α∇Γθold (A10)

where α is the learning rate and the gradient of Γθ :

∇Γθ = ∑
τ

Γ(τ)∇Pθ(τ)

= ∑
τ

Γ(τ)Pθ(τ)
∇Pθ(τ)

Pθ(τ)

= ∑
τ

Γ(τ)Pθ(τ)∇ log Pθ(τ)

=
1
N

N

∑
n=1

Γ(τn)∇ log Pθ(τn)

=
1
N

N

∑
n=1

T

∑
t=1

Γ(τn)∇ log pθ(at|st) (A11)
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