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Abstract: Although a switched reluctance generator (SRG) is not the mainstream wind generator,
it possesses the application potential and is worth developing for its many structural merits and
high developed power ability. This paper presents a wind SRG-based bipolar DC microgrid having
grid-connected and plug-in energy supporting functions. First, a surface-mounted permanent magnet
synchronous motor (SPMSM)-driven wind turbine emulator (WTE) is established. Next, the wind
SRG with an asymmetric bridge converter is developed. Good generating characteristics are obtained
through proper designs of power circuit, commutation mechanism, external excitation source, voltage
and current controllers. Third, a DC/DC boost interface converter and a bipolar voltage balancer
are constructed to establish the 500 V microgrid bipolar DC-bus. To preserve the microgrid power
supplying quality, a battery energy storage system (BESS) with bidirectional DC/DC interface
converter is equipped. A dump load leg is added across the bus to limit the DC-bus voltage under
energy surplus condition. In load side, a three-phase bidirectional load inverter is developed, which
can be operated as a single-phase three-wire (1P3W) inverter or a three-phase three-wire (3P3W)
inverter. Good sinusoidal voltage waveform and regulation characteristics are obtained using the
proportional-resonant (PR) control. The microgrid to load and microgrid to grid operations are
conductible. Finally, to further improve the powering reliability of microgrid, a three-phase T-type
Vienna switch-mode rectifier (SMR) based plug-in energy supporting scheme is developed. When the
microgrid energy shortage occurs, the possible harvested energy can be used to supply the microgrid.

Keywords: wind generator; SRG; bipolar DC microgrid; BESS; grid-connected; plug-in energy
support

1. Introduction

A microgrid [1,2] using renewable energy sources and energy storage devices is helpful
for reducing the fossil fuel consumption and carbon-dioxide emission. A DC microgrid
can adopt unipolar or bipolar DC-bus [3,4]. Compared to the former, bipolar DC microgrid
can provide more voltage levels, larger line power transfer capability, line fault-tolerant
capability, and a simpler load converter schematic. For establishing a high-performance
bipolar microgrid, some affairs must be treated: (i) choosing suitable interface converters
with proper control for the employed renewable source; (ii) using equipment of proper
energy storage devices; (iii) all constituted power stages must be properly controlled and
coordinated [5,6]; and (iv) voltage balancing control.

As is well known, a wind generator is one of the most commonly employed renewable
sources. Basically, a wind generator can be constructed using any kind of electric machines.
Compared to the popularly used induction generator and permanent magnet synchronous
generator, SRG possesses many merits, such as a rigid structure, without conductors and
permanent magnets on rotor, a simple converter, high developed power and having fault-
tolerant capability. Hence, this paper is motivated to develop a wind SRG-based DC
microgrid and perform its performance enhancement control.
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The power generation capability of a SRG is significantly affected by the nonlinear
power developing characteristics and back electromotive force (EMF), which is negative to
increase the winding current during the demagnetizing period. Some existing research [7,8]
concerning the performance improvement of SRG include: (i) commutation control;
(ii) excitation control; and (iii) voltage control. The establishment and control of wind
SRG can be referred to [9,10]. Among these, a suited commutation angle shift is considered
as the most critical issue. With proper commutation, the enhanced current tracking per-
formance, improved energy conversion efficiency, reduced torque ripple and generated
voltage ripple can be possessed.

Since the input sources to microgrid are normally fluctuated, the equipment of en-
ergy storage devices is required [11]. The most commonly used energy storage devices
in medium- and low-scale power systems include a battery [12], super-capacitor [13], fly-
wheel [14], etc. In this paper, the LiFePO4 battery bank (96 V) constructed by two 48 V
battery bank in series is employed.

To establish the DC microgrid, DC/DC converters [15–17] play a crucial role to in-
terface various DC sources, energy storage devices and loads. For a two-level DC/DC
converter, the voltage balancer [18,19] is needed to establish the bipolar DC-bus.

The PWM inverter [20,21] is an essential interface converter in DC microgrid to yield
the AC source for powering loads under microgrid-to-home (M2H) mode or implementing
the microgrid-to-grid (M2G)/grid-to-microgrid (G2M) operations. In the established micro-
grid, the developed 1P3W inverter is used to power the test loads. For obtaining the good
AC voltage waveform and dynamic response characteristics under linear/nonlinear and
unbalanced loads, the PR control [22,23] is applied. As to M2G/G2M [24,25] operations, the
inter-connected operation between microgrid and utility grid can be achieved successfully
with the same inverter.

In addition, a T-type Vienna SMR-based plug-in energy support scheme is developed.
The possible harvested sources to provide extra energy support for the developed microgrid
include three-phase AC, single-phase AC and DC sources. To obtain well-regulated output
voltage and good AC line drawn power quality of the SMR, the one-cycle control (OCC) [26]
is used. Moreover, the voltage balancing control [27] is also made due to the inherent three-
level bipolar voltage structure.

This paper develops a wind SRG-based bipolar DC microgrid battery energy storage,
grid-connected and with plug-in energy supporting functions. Except for this section, this
paper is organized as follows. Section 2 describes the system configuration of the developed
microgrid. The establishment of a SPMSM-driven turbine emulator is presented in Section 3.
Then in Section 4, the proposed bipolar DC microgrid is established. The constituted power
stages a wind SMR, a boost DC-DC converter followed by voltage balancer leg and a BESS.
Section 5 presents the M2H, G2M and M2G operations of the microgrid. In Section 6, the
T-type Vienna SMR-based plug-in energy support scheme is introduced. Finally, Section 7
concludes this paper.

2. System Configuration

The system configuration of the established wind SRG-based DC microgrid system is
presented in Figure 1. The detailed schematic of the microgrid is depicted in Figure 2a. An
inverter-fed SPMSM shown in Figure 2b is employed as a wind turbine emulator.

The experimental wind SRG with a followed asymmetric bridge converter is first
established. A two-level boost converter followed by a voltage balancer is developed to
establish the bipolar DC-bus. Then, the battery energy storage system and the three-leg
1P3W/3P3W inverter are established with proper controls. The battery storage system can
store excessive energy and support the microgrid via the bidirectional one-leg converter.
The microgrid can power the home appliance through the 1P3W inverter. On the other
hand, it can also be operated as a 3P3W inverter to conduct the bidirectional power transfers
between the microgrid and the utility grid.
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Figure 1. Functional block of the developed wind SRG-based DC bipolar microgrid with grid-
connected and plug-in energy support functions.

Finally, a plug-in auxiliary energy support scheme is established. The three-phase
three-level T-type Vienna SMR with one-cycle control (OCC) scheme is developed to obtain
the well-regulated DC-link voltage and the improved current tracking characteristics. The
possible harvested sources include three-phase AC, and single-phase AC and DC sources,
and the DC sources may be photovoltaic, fuel cell, and EV battery, etc.

Due to the limit of scope, the detailed designs of all constituted power circuits and
control schemes can be referred to [28]. Only a brief description is given in this article.
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Figure 2. Power circuits of the developed bipolar DC microgrid: (a) microgrid; (b) WTE. 
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3. PMSM Based Turbine Emulator

For facilitating the development research of a generator system, a faithful turbine
emulator is needed. In the developed microgrid, a PMSM-based turbine emulator as shown
in Figure 2b is established, which can be operated as a traditional fixed-speed turbine or a
variable speed wind turbine. Figure 3 shows the arranged control scheme.
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Figure 3. Control scheme of the developed SPMSM-driven turbine emulator. 
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3.1. Power Circuit

The specifications and major parameters of the employed SPMSM are: (1) 8-pole, 2 kW,
9.6 A, 2000 rpm, 9.8 N-m; (2) armature phase winding resistance Rs = 0.3Ω, arma- ture
phase winding inductance Ls = 2.265mH, permanent magnet flux linkage λ′m = 0.1342Wb.
The SPMSM drive three-leg six-switch inverter is constructed using the IGBT module
CM100DY-12H (VCES = 600V,Ic,avg = 100A IC,peakci = 200A) by Mitsubishi Company,
Tokyo, Japan.

3.2. Control Scheme

The designed controllers in Figure 3 are listed as follows:

(1) Current feedback controller: Gci(s) = 2 + 183.32/s. In the design stage, the P-gain
is first determined using the large-signal stability criterion for the ramp-comparison
current-controlled PWM (RC-CCPWM) scheme. Then, the I-gain is set via a trial-and-
error approach.

(2) Speed feedback controller: Gcω(s) = 1.4 + 0.476/s. The speed loop dynamic model
parameters are first estimated using the step-response method. The desired closed-
loop tracking transfer function is defined to be Hdr(s) = 1/(1 + 0.1s). Then, the
controller Gcω(s) can be derived.
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(3) Torque feedback controller: GcT(s) = 0.4 + 80/s which is chosen trail-error-error.
(4) The observed electromagnetic developed torque is: T′e = 3Pλ′mi′qs.

3.3. Turbine Emulator
System Configuration

The developed turbine emulator can be operated as a conventional turbine emulator
under speed control mode or a WTE under torque mode.

A. Conventional turbine emulator
The mode switch in Figure 3 is placed at the position “A”. The SPMSM drive is
operated in speed mode. The torque current command i∗qs is yielded from the outer
speed loop. Fixed-speed or varied-speed turbine can also be emulated depending on
the specific generator types.

B. Wind turbine emulator
By placing the switch at the position “B”, the motor drive is operated under torque
control. The torque command T∗e is yielded by the wind turbine torque command
generator, which generates the torque–speed curve based on a specific wind turbine
to be emulated.

Generally, the wind turbine torque-speed characteristics can be represented by a
quadratic equation of rotor speed:

Te = aω2
r + bωr = a(ωr +

b
2a

)
2
− b2

4a
(1)

The power can be expressed as:

Pe = aω3
r + bω2

r (2)

From (1), the rotor speed at the maximum torque ωmt = −b/2a can be derived. The
maximum power occurs at the rotor speed ωopt = −2b/3a can be found from (2).

The maximum torque occurred at ωr = ωmt is represented as:

Tmax = Kmaxω2
mt (3)

where Kmax is the maximum torque constant.
From (1) and (3), one can find the coefficients a and b as:

a = −Kmax, b = 2Kmaxωmt (4)

For meeting the specifications of the employed SPMSM, the Kmax is determined using
the rated speed (2000 rpm) and torque (9.8N ·m) as:

Kmax = 9.8/20002 = 2.45× 10
−6

N ·m/(r/min)2 (5)

According to the rated speed of the employed SPMSM and the typical wind speed
range, the relationship between vw and ωmt is set as:

vw =
ωmt

100
− 2, ωmt ≥ 500 rpm (6)

To measure the torque–speed and power–speed curves, the emulator is first driven
in the speed control mode (SW→ ”A”) as shown Figure 3 at a specific speed under no-
load condition. Then the wind turbine emulator is changed to the torque control mode
(SW→ ”B”). The load is gradually changed by increasing the output voltage of SRG until
the emulator cannot be afforded anymore. The measured torque–speed and power–speed
curves are shown in Figures 4 and 5. The measured results are close to the designed results
(not shown here).
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4. Wind SRG-Based Bipolar DC Microgrid

The established wind SRG with asymmetric bridge converter and external excitation
source is shown in Figure 2. Through the boost converter with the voltage balancer, the
bipolar DC-bus is established, and a dump load leg is equipped to avoid the DC-link
over-voltage.
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4.1. Wind SRG
4.1.1. Power Circuit

The power circuit components of the developed SRG-based DC microgrid are summa-
rized as follows:

(1) SRG: 3-phase, 12/8, 220 V, 2000 rpm, 1.5 kW;
(2) Asymmetric bridge converter: it is formed using six IGBT modules CM100DY-12H

(Mitsubishi) (600 V, 200 A);
(3) Excitation source: the single-phase autotransformer with diode rectifier is used to

provide excitation voltage of ve = 10V
(4) Boost converter with voltage balancer: it is consisted of one inductor and three IGBT

modules CM100DY-12H;
(5) Dump load: it is constructed by a one-leg IGBT module CM100DY-12H with a dump-

ing resistor of 50 Ω/300 W.

4.1.2. Control Scheme

The control scheme of the established SRG system shown in Figure 6 comprises the
outer voltage loop and the inner current loop with the hysteresis current PWM controller
(HCCPWM) and commutation shift control scheme. The sampling frequencies of the
current loop and the voltage loop are set as 20 kHz and 2 kHz.
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Figure 6. Control scheme of the developed SRG.

The two operation modes are arranged as follows: (i) as the switch is placed at the
position “C”, the SRG is operated under constant voltage mode for conventional generator;
(ii) by placing the switch at “D”, the MPPT mode is conducted for a wind generator.

(1) Hysteresis current control scheme
The hysteresis current-control PWM (HCCPWM) scheme is robust against the system
disturbances to reduce the effects of back-EMF of SRG. The hysteresis band is set to
be h = 0.01Ic, where Ic denotes the SRG winding current command magnitude.

(2) Voltage control scheme
The voltage feedback controller is augmented with a robust voltage error cancellation
controller (RVECC) to enhance the control performance automatically. The voltage
sensing factor is set as Kv = 0.002V/V, and the designed controller parameters are
set below:

(i) Voltage feedback controller
At a chosen operating point (ωr = 2000 rpm, vd = 400V, Rd = 300Ω), the
voltage loop dynamic model parameters are first estimated by applying the
step-response approach. Then, the desired voltage response due to a step
load power change of ∆Pd = 533.33W (Rd = 300→ 150Ω ) is specified as:
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(maximum dip ∆vdm = 8V, restore time tre = 0.2s). The restore time is defined
as vd(t = tre) =0.05∆vdm. Through careful derivation, the feedback controller
is found as:

Gcv(s) = KPv +
KIv

s
= 4.756 +

64.085
s

(7)

(ii) Robust voltage error cancellation controller (RVECC)
By adding the RVECC, the maximum voltage dip ∆vdm yielded by PI feedback
control can be reduced by a factor of (1 −Wv), where Wv denotes the robust
control weighting factor. However, the resulting control effort will be magni-
fied by 1/(1 −Wv). Taking compromised consideration between the control
performance and the control effort, the robust control weighting function is
set as:

Wv(s) =
Wv

(1 + τvs)
=

0.5
1 + (1/2π × 0.01538)

(8)

4.1.3. Commutation Shift Control Scheme

The generation performance of an SRG is significantly affected by the location of
the excited current related to the winding inductance profile L1(θr). Therefore, a proper
commutation shift scheme is necessary to improve the generating characteristics. The
defined variables and the current commands i∗1 with the synchronous commutation shift
and asynchronous commutation shift of SRG are sketched in Figure 7a,b. The dwell angle
is initially set as θd = 15

◦
and the proposed two shifting approaches are further defined as:

(1) Synchronous commutation shift:

• βon = βo f f = β

• Dwell angle: θ′d = θd = 15◦

(2) Asynchronous commutation shift:

• βon = 0, βo f f = β

• Dwell angle: θ′d = θd + β = 15◦ + β

(3) Dynamic shift controller (DSC)

To improve the voltage regulation characteristics, the dynamic shifting angle β is
determined by regulating the voltage tracking error εv through a controller Gcs(s). The
P-type controller Gcs(s) is adopted here:

Gcs(s) = 0.0166/0.024 = 0.69167 (9)
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4.1.4. Measured Results

Figure 8 shows the measured results of the developed SRG by asynchronous shift
without and with RVECC at (ωr =2000rpm, v∗d = 400V) due to a step load resistance
change of Rd = 300→ 150Ω . The improved regulation response by adding the DSC and
further the RVECC can be clearly seen from the results.
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Figure 8. Measured results of the developed SRG by asynchronous shift without and with adding the
RVECC at (v∗d = 400V, ωr = 2000 rpm) due to a step load resistance change of Rd =300→ 150 Ω .

The generated voltage dynamic characteristics of the developed wind SRG against
varying rotor speed are further assessed. Figure 9 shows the measured (ωr, vd, i1) by the
asynchronous shift with DSC and RVECC at (v∗d = 400V,Rd = 300 Ω) under varying speed
between ωr =2000rpm and 1000 rpm. Well-regulated vd under varying driven speed can
be observed.
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Energies 2023, 16, 2962 11 of 32

Since the back-EMF of an SRG is directly related to the rotor driven speed, the gener-
ated commands are set as: (v∗d = 400V at ωr = 2000rpm), (v∗d = 300V at ωr =1500rpm) and
(v∗d = 200V at ωr = 1000rpm). The measured ωr and vd of the SRG with (DSC + RVECC) at
Rd =300Ω under varying rotor speed are shown in Figure 10.
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Figure 10. Measured ωr and vd of SRG with DSC and RVECC at Rd = 300Ω under
speed-dependent generated voltages with the varying rotor speed ωr = 2000 → 1500 →
1000 → 2000 → 1000 → 1500 → 2000rpm.

4.1.5. MPPT Control of the Wind Turbine Emulator-Driven SRG

By placing the switch SW in Figure 6 at position “D”, the MPPT mode is applied. The
winding current command Ic is determined by applying the perturb and observe (P & O)
control algorithm to yield the maximum power Pd,max. The step size of current command
is based on the change of the sensed DC-link power Pd and the SRG rotor speed ω′r. The
directionality judgment of the MPPT control algorithm is shown in Figure 11.
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Figure 11. The directionality judgment of the MPPT control algorithm.

To verify the dynamic characteristics of the developed WTE-driven SRG under MPPT
control mode, the measured (ω′r, Pe, T′e, vd, Ic, Pd, i1) when the wind speeds are changed
from vw = 7 m/s to vw = 8 m/s and from vw = 8 m/s to vw = 7 m/s are shown in
Figure 12. From the measured results, one can observe that the WTE-driven SRG system
possesses satisfactory regulation ability and good dynamic tracking characteristics, while
changing wind speed can be verified.
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Figure 12. Measured dynamic MPPT algorithm characteristics (ω′r, Pe, T′e, vd, Ic, Pd, i1) of the devel-
oped WTE-driven SRG with an asymmetric bridge converter due to the wind speed change from
(vw =7 m/s to vw =8 m/s) and (vw =8 m/s to vw =7 m/s).

4.2. Two-Level Boost Converter and Three-Level Voltage Balancer
4.2.1. Power Circuit

The boost converter with a voltage balancer shown in Figure 2a consists of two induc-
tors with L1 = Le =3.73mH. The calculated current ripple can be found as
∆iL = 1.072A. The output filtering capacitors are chosen to be Cdc1 = Cdc2 =2200 µF/400V.
Hence, Cdc = (2200/2) µF = 1100 µF, and the three IGBT modules CM100DY-12H are
used to realize its switches.

4.2.2. Control Scheme

The control scheme of the boost converter and voltage balance shown in Figure 13
comprises outer voltage and inner current loops.
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(1) Current control scheme

(i) Boost converter
The designed PI current feedback controller is:

Gci1(s) = KPi +
KIi
s
= 0.937 +

41.547
s

(10)

First, the P-gain is determined using the large-signal stability criterion for
RC- CCPWM scheme. Then, through the computer-aided simulation for the
current loop gain, the controller listed in (10) is found to yield the cross-over
frequency fc and the phase margin (PM) to be ( fc = 2kHz, PM = 89.8

◦
).

(ii) Voltage balancer
Because the current loop possesses an inherent pole at the origin, it is sufficient
to adopt the P-type controller as:

Gci2(s) = 0.936 (11)

It is found that the cross-over frequency fc and phase margin (PM) of current
loop gain are ( fc = 2kHz, PM = 90

◦
).

(2) Voltage control scheme

(i) Boost converter
The voltage feedback controller is chosen to be PI type

Gcv1(s) = 10.75 +
57.52

s
(12)

The corresponding cross-over frequency and phase margin of voltage loop
gain are ( fc = 20Hz, PM = 93.5

◦
).

(ii) Voltage balancer
The voltage controller of the voltage balancer is also chosen as PI type with:

Gcv2(s) = 33.259 +
125.619

s
(13)

The resulting cross-over frequency and phase margin of voltage loop gain are
( fc = 20Hz, PM = 89.4

◦
).

4.2.3. Measured Results

The established whole bipolar DC microgrid system consisting of SRG and followed
boost converter stage is operated and evaluated. Figure 14 shows the measured (vdc, vd, iL )
due to a step load resistance change of Rdc =500→ 250Ω . Good regulation responses of
the two DC-link voltages can be observed from the results.
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To evaluate the performance of the developed wind SRG-based DC microgrid, two
cases are arranged at (vdc = 500V,Rdc = 300Ω): (i) the fixed SRG output voltage (vd = 400V)
is set; (ii) SRG generated voltage is speed-dependent with ratio 0.2 V/rpm from the
lowest speed of 1000 rpm (vd = 200V) to the highest speed of 2000 rpm (vd = 400V).
Figure 15a,b show the measured ωr, vd and vdc of the wind SRG-based DC microgrid
with fixed and varied vd under varied rotor speed ωr = 2000→ 1500→ 1000→ 2000→
1000→ 1500 → 2000rpm. From the results, well-regulated vd can be observed.
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4.3. Battery Energy Storage System 

4.3.1. Power Circuit 
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➢ Nominal voltage: 96 V; nominal capacity: 14 Ah; 
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Figure 15. Measured (ωr, vd, vdc) of wind SRG-based DC microgrid due to varied speed
ωr = 2000→ 1500→ 1000→ 2000→ 1000→ 1500 → 2000rpm at (Vdc =500V, Rdc = 250Ω):
(a) fixed vd(vd = 400V); (b) varied vd(0.2 V/rpm).

4.3. Battery Energy Storage System
4.3.1. Power Circuit

The employed LiFePo4 battery pack (2 × 48 = 96V) manufactured by the PHET
Company has the following key specifications:

â Nominal voltage: 96 V; nominal capacity: 14 Ah;
â Maximum charging voltage: 116.8 V; maximum charging current: 14 A;
â Maximum discharging current: 28 A; minimum charging voltage: 89.6 V.

The power circuit and control scheme of the developed battery one-leg bidirectional in-
terface converter are shown in Figure 16a,b. The specifications are given as: (i) fs = 20kHz;
(ii) Vdc = 500V; and (iii) Pdc = 1.5kW.
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Figure 16. The developed battery one-leg bidirectional DC/DC interface converter: (a) power circuit;
(b) control scheme.

Energy storage inductor: The measured inductance of the used inductor is
Lb = 3.73mH at 20 kHz. The actual inductor current ripple can be found as: ∆iLb =
VbDTs/Lb = 96× 0.808/(20× 3.73) = 1.04A.

4.3.2. Control Scheme

(1) Current controller
The current controllers in the discharging and charging modes are chosen to be
identical, which is designed in discharging mode as:

Gci(s) = 1.888 +
177.978

s
(14)

The P-gain is first determined using the large-signal stability criterion for RC-CCPWM
scheme. Then, through the computer-aided simulation for the current loop gain,
the controller listed in (14) is found to yield the cross-over frequency and the phase
margin to be ( fc = 2kHz, PM = 89.6

◦
).

(2) Voltage controller
The designed controller in discharging mode is:

Gcv(s) = 21.603 +
78.008

s
(15)

The resulting cross-over frequency and phase margin of voltage loop gain are
( fc = 20Hz, PM = 89.9

◦
). The controller listed (15) is also employed in the charg-

ing mode.
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Figure 17 shows the measured (vb, iLb ) in charging operation under constant current
mode (CC mode) and constant voltage mode (CV mode). The battery is charged with
constant current (I∗Lb

= 6.5A), and when the battery voltage reaches 112 V, the constant
voltage mode is applied.
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5. Grid-Connected Operations
5.1. Micrigrid to Home (M2H) Operation
Single-Phase Three-Wire (1P3W) Inverter

The power circuit and control scheme of the developed 1P3W inverter are shown in
Figure 18a,b, which are briefly described as follows.

A. Power circuit

(1) DC-bus voltage: Vdc = 500V;
(2) AC output voltage: VAN = VNB = 110V/60Hz, VAB = 220 V/60 Hz;
(3) 1P3W load inverter: three IGBT modules CM100DY-12H are used with output

LC filter LA = 2.045mH, LB = 2.039mH, LA = 2.043mH, C1 = C2 = C3 = 10µF,
which results in the low-pass cut-off frequency of 1113.76 Hz.

B. Control scheme

The control scheme of the 1P3W in M2H operation is shown in Figure 18b. The DC-
link voltage is established by the SRG via an interfaced boost converter with the voltage
balancer. The 1P3W inverter consists of a differential mode (DM) leg and a common mode
(CM) leg. The former is responsible for controlling the 220 V/60 Hz output voltage vAB
and the latter is in charge of balancing the two 110 V/60 Hz output voltages vAN and vNB.

(a) Current control scheme

The current sensing factor is set as Ki = 0.05V/A. To achieve the zero steady-state error
for the sinusoidal DM voltage command v∗dm, the proportional-resonant (PR) controller
is adopted for all feedback controllers in the proposed control scheme. The controller
parameters are set as follows:

(1) DM controller:

Gcdi(s) = KPi +
2KRiωcs

s2 + 2ωcs + ω2
r
= 1.025 +

(2 × 40× 10)s
s2 + 20s + 3772 (16)
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The resulted cross-over frequency and phase margin of current loop gain are
( fc = 2kHz, PM = 86.4

◦
).

(2) CM controller:

For CM current control, since Lc is equal to 3Lc, the common mode current controller
can be set by simply increasing the P-gain three times larger than that of the differential
mode. Thus:

Gcci(s) = KPi +
2KRiωcs

s2 + 2ωcs + ω2
r
= 3.075 +

(2× 40× 10)s
s2 + 20s + 3772 (17)

(b) Voltage control scheme

The voltage sensing factor is set as Kv = 2.5× 10−3 V/V for both DM and CM, and
controller parameters are set below:

Gcdv(s) = Gccv(s) = 1.25 +
(2 × 40× 10)s
s2 + 20s + 3772 (18)

The results of the cross-over frequency and phase margin of the voltage loop gain are
( fc = 1kHz, PM = 84.2

◦
).
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(2) CM controller: 

For CM current control, since cL  is equal to cL3 , the common mode current con-
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(b) Voltage control scheme 

The voltage sensing factor is set as 3105.2 −=vK  V/V  for both DM and CM, and 

controller parameters are set below: 

Figure 18. The developed 1P3W inverter in M2H operation: (a) power circuit; (b) control scheme.

C. Measured Results

The DM and CM voltage command are set as v∗dm =220V/60Hz and v∗cm = 0. The test
home appliance loads are depicted in Figure 19. The three cases are:
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(1) Case I (unbalanced linear loads): ZA = incandescent lamp of 115V/60W, ZB = the
incandescent lamps of 120V/100W and 110V/250W, ZAB = the incandescent lamps
of 220V/100W;

(2) Case II (nonlinear rectified loads): ZN = incandescent lamp of 110 V/100 W with
CN = 2200 µF, ZA = incandescent lamp of 115 V/60 W, ZB = the incandescent lamps
of 120 V/100 W, ZAB = the incandescent lamps of 220 V/100 W;

(3) Case III (reactive loads): ZA = incandescent lamp of 115 V/60 W, ZB = the incandes-
cent lamps of 110 V/250 W, ZAB = the incandescent lamps of 220 V/100 W and a
single-phase inductor motor at no-load.
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Figure 19. The arranged 1P3W home appliance loads.

Figure 20 shows the measured results of the develop 1P3W inverter under unbalanced
linear loads.

5.2. M2G/G2M Operations via 3P3W Inverter
5.2.1. Power Circuit

The schematic of the established inverter for three-phase M2G/G2M operations is
depicted in Figure 21. Under G2M operation, the inverter is operated as a three-phase
boost SMR to establish the DC-link voltage. As to the M2G operation, the real power and
reactive power can be sent to the utility grid via the inverter by directly controlling the
q-axis current iq and d-axis current id. The specifications of the developed 3P3W inverter
are summarized below:

(a) DC-link voltage: Vdc = 500V;
(b) AC output voltage: Vab = Vbc = Vca = 220V/60Hz;
(c) PWM switching frequency: fs = 20kHz;
(d) DC-link capacitors: Cdc = 1100µF/1000V (DC);
(e) Output filter: (i) inductors: the measured inductances of the employed inductors

under 20 kHz are (LA = 2.045 mH, LB = 2.039 mH, LC = 2.043 mH); (ii) capacitors:
C1 = C2 = C = 47 pF/400V(AC).

5.2.2. 3P3W Inverter in G2M Operation

A. Control scheme

Figure 22 shows the d-q frame-based control scheme of the 3P3W inverter in G2M
operation. The q-axis current iq is generated by the output of the outer loop voltage
controller to regulate the real power component. The d-axis current id is set to zero to
obtain unity power factor. The control scheme of the 3P3W inverter consists of two inner
current loops, one outer voltage loop and a phase-locked loop (PLL).
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Figure 22. Control scheme of the developed 3P3W SMR in G2M operation. 

(a) PI controller in PLL: it is set as: 
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(b) Current feedback controller: it is chosen as: 
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(c) Voltage feedback controller: 

Figure 21. The developed 3P3W inverter in M2G/G2M operations.
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Figure 22. Control scheme of the developed 3P3W SMR in G2M operation. 

(a) PI controller in PLL: it is set as: 

ss
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Ppll
250
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(b) Current feedback controller: it is chosen as: 
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K
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Pici
50
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(c) Voltage feedback controller: 

Figure 22. Control scheme of the developed 3P3W SMR in G2M operation.

(a) PI controller in PLL: it is set as:

Gpll(s) = KP +
KI
s

= 20 +
250

s
(19)

(b) Current feedback controller: it is chosen as:

Gci(s) = KPi +
KIi
s

= 2.5 +
50
s

(20)

(c) Voltage feedback controller:

Gcv(s) = KPv +
KIv

s
= 4.41 + 47.66 (21)

At the chosen operating point (vdc = 500V,Rdc = 500Ω), the PI feedback controller is
quantitatively designed to have the desired voltage response with (∆vdcm = 8V, tre = 0.25s)
due to a step load power change of ∆Pdc = 500W.

B. Measured results

To verify the performance of the developed 3P3W inverter in G2M operation, the
measured (van, iua, iub, iuc) at (v∗dc = 500V, Rdc = 250Ω) and labeled power quality param-
eters are shown in Figure 23. From the results, good AC line drawn power quality can
be observed.

5.2.3. 3P3W Inverter in M2G Operation

A Control scheme

Figure 24 shows the control scheme of the 3P3W inverter in M2G operation. The real
power is controlled by the q-axis current iq, while the reactive power is set by the d-axis
current id. The current controller and PLL controller parameters are set the same as those
in G2M operation.
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To test the dynamic response of the developed 3P3W inverter, the DC-link 

V500=dcv  is established by a DC power supply. Figure 26 shows the measured dy-

namic responses of ( uaan iv , ) due to the step d- and q-axis current command changes. 

From the measured results, the developed 3P3W inverter possesses good load regulation 

responses in M2G operation. 

Figure 24. Control scheme of the developed 3P3W inverter in M2G operation.

B. Measured results

By setting i∗q = 4.45Aand i∗d = 4.45A (Po = 1.2kW and Qo = 1 .2kVAR), the measured
(van, iua, iub, iuc) of the developed 3P3W inverter in M2G operation are shown in Figure 25.
From the results, one can be aware that the M2G operation is successfully conducted with
the preset real and reactive powers being sent back to the utility grid. The behaviors can be
verified from the labeled power factors.

To test the dynamic response of the developed 3P3W inverter, the DC-link vdc = 500V
is established by a DC power supply. Figure 26 shows the measured dynamic responses
of (van, iua) due to the step d- and q-axis current command changes. From the mea-
sured results, the developed 3P3W inverter possesses good load regulation responses in
M2G operation.
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Figure 27. Control scheme of the developed Vienna SMR. 

6.1. Three-Phase Vienna SMR 

6.1.1. Power Circuit 

(1) DC-bus voltage: V500=dcV ; 

(2) Input AC voltage: three-phase V/60Hz220 ; 

(3) Boost inductors: mH,689.1mH,722.1 == BA LL mH/20Hz766.1=CL . 

6.1.2. Control Scheme 

A. Voltage control scheme 

The voltage and current sensing factors are set as =+= vvvv KsKsK ,)1()(   

43 1098.3V/V,10667.1 −− = v . The voltage PI feedback controller in Figure 27 is set as: 

Figure 26. Measured results of the 3P3W inverter under M2G operation due to step current command
changes of i∗q = i∗d = 0→ 4.45A ( Po = 0→ 1.2kW, Qo = 0→1.2kVAR).

6. Plug-In Energy Support Scheme

The power circuit of the developed T-type Vienna SMR based plug-in energy support
scheme is shown in Figures 2a and 27 depicts the control scheme. It mainly consists of the
outer voltage loop and the inner OCC-based PWM scheme.
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Figure 27. Control scheme of the developed Vienna SMR.
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6.1. Three-Phase Vienna SMR
6.1.1. Power Circuit

(1) DC-bus voltage: Vdc = 500V;
(2) Input AC voltage: three-phase 220V/60Hz;
(3) Boost inductors: LA = 1.722mH,LB = 1.689mH, LC = 1.766mH/20Hz.

6.1.2. Control Scheme

A. Voltage control scheme

The voltage and current sensing factors are set as Kv(s) = Kv/(1 + τvs),
Kv = 1.667× 10−3V/V,τv = 3.98× 10−4. The voltage PI feedback controller in Figure 27 is
set as:

Gcv(s) = KPv +
KIv

s
= 3 +

50
s

(22)

A robust voltage controller is further added to enhance the performance by using a PI
controller. The robust control weighting function is set as:

Wv(s) =
Wv

1 + τvs
=

0.5
1 + 3.98× 10−4s

, 0 < Wv < 1 (23)

B. Voltage balancing controller

The voltage balancing error εv is obtained by subtracting the DC-link voltage from the
two times of the lower capacitor voltage. Then, it is regulated by the PI controller Gcb(s) to
yield the voltage balancing control signal vb. The controller is set as:

Gcb(s) = KPb +
KIb

s
= 1 +

30
s

(24)

C. One-cycle control scheme

The OCC scheme for the three-phase Vienna boost SMR is shown in Figure 27. This
technique provides a simple solution of PFC without sensing the input voltage. In addition,
the multiplier is also not needed. For explanation, the schematic and some sketched
waveforms of a one-cycle control scheme are shown in Figure 28a,b.
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Figure 28. One-cycle control scheme: (a) schematic; (b) sketched key waveforms.

The single-phase equivalent circuit depicted in Figure 29 is used to illustrate the
operation principle of one cycle control for the developed Vienna SMR. To achieve unity
power factor, the control goal lies in:∣∣vAg

∣∣ = Req
∣∣iAg

∣∣ (25)
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where vAg = input phase voltage, Req = single-phase equivalent circuit resistance and
iAg = input phase current.
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Figure 29. Single-phase equivalent circuit of three-phase Vienna SMR.

The voltage transfer relationship of a Vienna boost SMR is:

vdc
2
(1− DA) =

∣∣vAg
∣∣ (26)

where DA is the duty ratio of SA.
From (25) and (26), one can obtain:∣∣iAg

∣∣ = vdc
2Req

(1− DA) (27)

Then, (27) is multiplied with current sensing factor Ki to yield:

∣∣iAg
∣∣Ki =

∣∣i′Ag
∣∣vdcKi

2Req
(1− DA)∆ vm(1− DA) (28)

where vm denotes a modulation voltage generated by the voltage controller. Finally,
(28) can be rewritten as:

vm − Ki
∣∣iAg

∣∣ = vmDA (29)

According to (29), the key variables set in the developed Vienna SMR to achieve OCC
control are (v+ =

∫
vmdt) and (v− = vmDA).

6.1.3. Measured Results

Figure 30 shows the measured (vdc, iAg, iBg, iCg) and (vAg, iAg) at Rdc =120.4 Ω.
Figure 31 shows the measured vdc due to a step load change of (∆Pdc = 625W) with
and without robust voltage controller. Significantly improved regulation response can be
observed as the robust control is applied. Figure 32 shows the measured (vdc1, vdc2) with
and without voltage balancing control under the resistive load (vdc = 500V, Rdc = 120.4Ω),
the voltage difference between two capacitor (Cdc1, Cdc2) is quickly eliminated while the
voltage balancing control is applied.
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Figure 31. Measured DC output voltage vdc of the developed three-phase Vienna boost SMR due to
a load resistance change Rdc = 172.25Ω→ 120.4Ω (∆Pdc = 625W) without and with robust control
(Wv = 0, Wv = 0.5).
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6.2. Plug-In Energy Support Scheme with Single-Phase AC Input
6.2.1. Power Circuit

The power circuit of the developed Vienna SMR with single-phase AC input shown
in Figure 33a is yielded by placing the switches SW in Figure 2a at position “B”. Its
control scheme is shown in Figure 33b. The system variables and designed power circuit
components are summarized as follows:

(1) AC input source: single-phase vac =220 V/60 Hz, Vm = 311.127V.
(2) Output rating: Vdc = 500V, Pdc = 1kW.;
(3) Output filtering capacitor: Cdc = 1100µF.;
(4) Switching frequency: fsw = 20kHz.;
(5) Energy storage inductor: As shown in Figure 33a, the measured inductances of the

two wound inductors are LA = 1.722 mH/20kHz and LB = 1.689mH/20kHz.
Hence, the total inductance is LA+LB = 3.411mH at 20 kHz.
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Figure 33. The developed Vienna SMR-based plug-in energy support scheme with single-phase AC
source input: (a) schematic; (b) control scheme.

6.2.2. Control Scheme

In the control scheme Figure 33b, the voltage robust controller and balancing controller
are the same as (23) and (24), and the voltage PI feedback controller is set as:

Gcv(s) = KPv +
KIv

s
= 6 +

120
s

(30)
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6.2.3. Measured Results

The measured (vdc, vac, iac) of the developed Vienna SMR with single-phase AC input
at (Vdc = 500V, Pdc = 1000W) are shown in Figure 34. Figure 35 depicts the output voltage
due to a step load change of ∆Pdc = 500W ( Rdc = 500Ω→ 250Ω ) with and without robust
control. Normal operation with satisfactory steady-state and dynamic performances can be
seen from the results.
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Figure 35. Measured DC output voltage ∆vdc of the developed Vienna SMR with single-phase AC
input due to a step load change of ∆Pdc = 500W ( Rdc = 500Ω→250Ω) without and with robust
control (Wv = 0, Wv = 0.5).

6.3. Plug-In Energy Support Scheme with DC Input
6.3.1. Power Circuit and Control Scheme

The developed single-phase bridgeless SMR with DC source input and its control
scheme are the same as those shown in Figure 33a,b. Only the harvested AC source is
replaced by DC source. The robust feedback controller, balancing controller and voltage
feedback controller are the same as (22), (23) and (24), respectively.

6.3.2. Measured Results

The measured (vdc, vdg , idg) of the established Vienna SMR with DC source input at
(Vdc = 500V, Vdg = 156V, Rdc = 250Ω) are shown in Figure 36, where idg = iAg =−iBg.
From the results, the normal operation of the boost DC/DC converter boosting the voltage
from 156V to 500V is confirmed.
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7. Conclusions

This paper has presented the developed wind SRG-based bipolar DC microgrid having
grid-connected and plug-in energy supporting capabilities. For driving the studied wind
generator, a SPMSM drive-based WTE is first developed. The faithfully emulated wind
turbine output behaviors have been verified by measured results. The developed WTE can
also be operated as a traditional fixed-speed generator turbine.

Then, the wind SRG followed by the asymmetric bridge converter is established.
Through the properly designed power circuit, commutation shifting scheme, current and
voltage control schemes, satisfactory wind SRG output characteristics are achieved and
demonstrated experimentally. The microgrid bipolar DC-bus is established using a boost
DC/DC converter followed by a half-bridge voltage balancer. Well-regulated bipolar
DC-bus voltage and good voltage balancing characteristics are obtained by the designed
control scheme.

To preserve the microgrid power supplying quality, A BESS with properly designed
bidirectional interface converter is equipped. Normal operation of the established BESS has
been verified by some measured results. In addition, a dump load leg is added to avoid the
bus overvoltage as the energy surplus occurs.

In the load side, a three-leg PWM 1P3W inverter with 220 V/110 V AC voltages is
constructed to perform the M2H operation powering the home appliances. The DM/CM
control schemes and the PR feedback controller are employed to have good sinusoidal
voltage waveforms and load regulation characteristics. The same three-leg inverter can
also be operated as a grid-connected 3P3W inverter to conduct the M2G and G2M bidirec-
tional operations.

Moreover, to further improve the reliability of the microgrid and enhance the energy
utilization, a plug-in energy support scheme developed to harvest the possible energies,
including the three-phase AC source, single-phase AC source and DC source. The T-type
Vienna SMR is employed as the infrastructural schematic.

Wind SRG possesses the application potential due to its structural advantages without
conductors and permanent magnets on rotor. Moreover, the SRG may have a highly
developed power ability while under proper control. The presented key performance
enhancement control approaches for SRG are worth mentioning. The suggested further
research includes: (i) a practicability research for an actual wind SRG system with practically
high ratings; (ii) efficiency enhancement under widely varied wind speed and load ranges;
(iii) equipment of the hybrid energy storage system consisting of energy type battery and
power type, super-capacitor or flywheel; (iv) multiple sources including photovoltaic and
fuel cell; and (v) the incorporated operation of the electric vehicle to microgrid to further
enhance the renewable source utilization.
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Glossary

Symbol Unit Description
A, B, Z encoder signals
Cb F battery side filtering capacitor
Cdm F SMR output filtering capacitor
Cd F generator output filtering capacitor
Cdc,Cdc1,Cdc2 F converter output filtering capacitors
fs Hz switching frequency
Gcb(s) voltage feedback controller
Gcci(s) common mode current feedback controller
Gccv(s) common mode voltage feedback controller
Gcdi(s) differential mode current feedback controller
Gcdv(s) differential mode voltage feedback controller
Gci(s),Gci1(s),Gci2(s) current feedback controllers
Gcs(s) dynamic shift controller
GcT(s) torque feedback controller
Gcv(s),Gcv1(s),Gcv2(s) voltage feedback controllers
Gcω(s) speed feedback controller
Gci(s) closed current loop transfer function
h hysteresis band
Ic A current command magnitude
ias, ibs, ics A winding currents of SPMSM
i′as, i′bs, i′cs A sensed winding currents of SPMSM
id A SRG output current
idc A DC-link current
ids A d-axis current
i∗ds A d-axis current command of PMSM
i′ds A sensed d-axis current of PMSM
ii A phase-i winding current
i′ i A sensed phase-i winding current
i∗i A phase-i winding current command
iL A boost converter inductor current
i′L A sensed boost converter inductor current
i∗L A inductor current command
iLb A battery interface converter inductor current
i′Lb A sensed battery interface converter inductor current
i∗Lb A battery interface converter inductor current command
iLe A voltage balancer inductor current
i′Le A sensed voltage balancer inductor current
iqs A q-axis current
i∗qs A q-axis current command
i′qs A sensed q-axis current
iua, iub, iuc A 3P3W mains line currents
iAg, iBg, iCg A Vienna SMR AC input currents
KI ,KIb,KIi integral gains of controllers
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KIv integral gain of voltage loop controller
Ki V/A current sensing factor
KPKPb,KPv,KPi proportional gains of controllers
KPWM PWM scheme transfer ratio
KRi resonant controller gain
Kv voltage sensing factor
L(i, θr) H SRM winding incremental inductance
Ld H d-axis winding inductance
Lmd H d-axis magnetizing inductance
Lmq H q-axis magnetizing inductance
Lq H q-axis winding inductance
Ls H armature phase winding inductance
Pb W battery output power
Pi W inverter output power
Pd W asymmetric bridge converter output power
Pdc W microgrid output power
Pdm W inverter input power
Pe W developed power of wind turbine SPMSM
Pm W wind turbine developed power
Q1 ∼ Q6 converter switches of SRG
q2, q4, q6 SRG commutation signals
Rd Ω generator side load resistance
Rdc Ω microgrid side load resistance
Rdm Ω SMR side load resistance
Rs Ω SPMSM winding resistance
S switch of boost SMR
Sa, Sb, Sc switches of Vienna SMR
Sb1, Sb2 switches of one-leg DC/DC converter
Se1, Se2 switches of voltage balancer
T′e SPMSM electromagnetic developed torque
T∗e torque command
Te SRG total developed torque
Tl1 ∼ Tl6 switches of 1P3W/3P3W inverter
T1 ∼ T6 switches of SPMSM inverter
Vd V average SRG output bus voltage
Vdc V average common DC-bus voltage
Ve V SRG excitation voltage
vAg, vBg, vCg V Vienna SMR AC input phase voltages
vac V AC input voltage
vb V battery voltage
vcont V control signal
vd V SRG output DC-link voltage
vdg V DC source input voltage of plug-in energy support scheme
vdm V inverter input DC-link voltage
v′d V sensed SRG output DC-link voltage
v∗d V SRG output DC-link voltage command
vdc V DC-bus voltage
v′dc V sensed DC-link voltage
v∗dc V DC-link voltage command
v∗dr V compensation voltage command
v∗ds V d-axis voltage command
v∗qs V q-axis voltage command
vo V zero sequence voltage
vsaw V saw-tooth carrier
vtri V triangular carrier
vw m/s wind speed
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Wv robust control weighting factor
Wv(s) robust control weighting function
ZA, ZAB, ZB, Zn Ω 1P3W inverter load impedances
α1, α2 real poles of system dynamic model
β rad SRG commutation shift angle
βo f f rad θ′o f f − θo f f
βon rad θ′on − θon
βp degree blade pitch angle
εi V current tracking error
εv V voltage tracking error
εω V speed tracking error
η % efficiency
λ′m Wb PM flux linkage of PMSM
ωc rad/s cut-off angular frequency
ωmt rpm shaft speed at maximum torque of wind turbine
ωopt rpm optimal shaft speed of wind turbine
ωr rpm SRG shaft speed
τv sec time constant of low-pass filter for voltage sensing
θd degree SRG dwell angle
θo f f degree SRG commutation turn-off angle
θ′o f f degree SRG shifted commutation turn-off angle
θon degree SRG commutation turn-on angle
θ′on degree SRG shifted commutation turn-on angle
θr degree rotor angular position
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