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Abstract: This paper presents a model for determining fuzzy evaluations of partial indicators of
the availability of continuous systems at coal open pits using a neuro-fuzzy inference system. The
system itself is a combination of fuzzy logic and artificial neural networks. The system availability is
divided into partial indicators. By combining the fuzzy logic and artificial neural networks, a model is
obtained that has the ability to learn and uses expert judgment for that learning. This paper deals with
the ECC system (bucket wheel excavator-conveyor-crushing plant) of the open pit Drmno-Kostolac,
which operates within the Electric Power Company of Serbia. The advantage of a model of this type
is that it does not rely on the historical experiences of experts and usual predicted values for the
fuzzy evaluation of partial indicators, which are based on the assumption that similar systems affect
availability in a similar way. The fuzzy evaluation of partial indicators is based on historical data
for the specific system for which the model was created. As such, it can more accurately predict
continuous systems availability on the basis of expert evaluations in the appropriate time period.
Another advantage of this model is that the availability is estimated on a quarterly basis, which gives
a more accurate view because it uses a smaller time period with more similar characteristics and, thus,
includes certain external influences which are related to the quarterly meteorological conditions.

Keywords: systems; ECC system (bucket wheel excavator-conveyor-crushing plant); mining;
availability; soft computing; fuzzy logic; ANN; ANFIS

1. Introduction

Coal is an important energy fuel in electricity production. Coal exploitation in the
Kostolac Basin began in 1870. The open pit Drmno is the only active mine in the Kostolac
Basin with production of 25% of coal (lignite) in Serbia (see Bugarić et al. [1]). High-capacity
continuous systems are used for coal mining at the open pit Drmno-Kostolac surface mine,
which operates within the Electric Power Company of Serbia. The operation of continuous
systems is very important for the stable coal supply of thermal power plants. In this
paper, a model is constructed for the prediction of fuzzy evaluations of availability and
the ECC system (bucket wheel excavator-conveyor-crushing plant) using a neuro-fuzzy
inference system.

Availability is the most commonly used term in maintenance engineering. Djenadic
et al. note that, in making decisions on the life cycle of a machine, availability represents
the quality of the service of the engineering system or its components with analysis of weak
points (see [2]).

The application of soft computing methods is increasingly important in mining. In
recent years, there has been an increasing number of studies that consider the application
of soft computing methods (fuzzy logic, artificial neural network, ANFIS . . . ) in mining
(see [3]).
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2. Literature Review

The ANFIS methodology is widely used in many branches of technology. In the field
of mining, the authors applied it to address the problem of the slope stability of surface
mines, the process of drilling and blasting, and the production of oil and gas.

In [4], an analysis of the slope stability of a surface mine was performed using the
ANFIS model with one value based on neutrosophic numbers (SVNN-ANFIS). The stability
of the surface mine slope has an important impact on the safe operation and economic
benefits of the mining company. The results of applying the proposed methodology showed
that the accuracy of the training was 99.20%, while the accuracy of the testing process
was 97.62%. This approach provides an innovative way to assess the slope stability of a
surface mine.

In [5], the size of pieces after the blasting process was performed was predicted using
the ANFIS model. The main contribution of the paper was the optimization of the premises
and consequent parameters of ANFIS using the frefy algorithm (FFA) and the genetic
algorithm (GA). This methodological approach is completely innovative in the field of
drilling and blasting.

In [6], the ANFIS model was applied to predict backbreak, which is one of the unde-
sirable effects of the blasting process. Backbreak can cause pit-room instability, uneven
fragmentation and reduced drilling efficiency. The performance of the ANFIS model
was evaluated based on the root mean squared error (RMSE), the variance accounted for
(VAF), and the correlation coefficient (R2) computed from the measured backbreak and
model-predicted values of the dependent variables. The RMSE, VAF, and R2 indices were
calculated to be 0.6, 0.94 and 0.95, respectively, for the ANFIS model. These indices suggest
that the ANFIS model shows excellent prediction performance.

In [7], a hybrid model was developed based on the application of the ANFIS technique
and the new optimization algorithm, the Aquila Optimizer (AO). The aim of the analysis
was to predict oil production in two oil fields in China and Yemen. The developed model,
called AO-ANFIS, was evaluated using real data sets collected during exploitation. Com-
parisons with the traditional ANFIS model and several modified models were performed.
The numerical results and statistics confirmed the superiority of the AO-ANFIS model
compared to the traditional ANFIS and several modified variants.

Examples in the literature of the application of soft computing methods related to
continuous systems and mechanization in open pit lignite mines are given below.

In the paper, “Determining the Availability of Continuous Systems at the Open Pits
Applying the Fuzzy Logic” [8], Gomilanovic et al. provide solutions for the modeling of
the availability of open-pit continuous systems using fuzzy logic. The model described was
formed by synthesis of partial indicators of availability. The evaluation of the availability of
continuous systems is based on an expert system. In this paper, the concept of availability is
deconstructed into the partial indicators of reliability and maintainability. The applied fuzzy
compositions in the analysis are the max-min and min-max composition. The consideration
of partial indicators of availability in relation to conventional models for determining
availability does not require long-term monitoring of system behavior in order to predict
the state of the system.

Ivezic et al., in the paper, “A Fuzzy Expert Model for Availability Evaluation” [9],
performed an analysis of the availability concept in mining machines applying fuzzy logic.
The objects of the formed fuzzy model were three types of bulldozers that work in coal
mines. The model integrated the reliability, maintainability and functionality of this type of
auxiliary machine. On the basis of expert analysis the selected bulldozers were ranked. It
was stated that the outcomes of the analysis contributed to improved maintenance, logistics
and selection of bulldozer type.

The authors of the paper, “Development of the Availability Concept Using Fuzzy
Theory with Ahp Correction, A Case Study: Bulldozers at the Open-Pit Lignite Mine”
(see [2]), constructed a model for defining the availability of bulldozers that relied on
fuzzy theory and the multi-criteria method for evaluating the AHP. The availability was



Energies 2023, 16, 2958 3 of 18

defined by the selected partial indicators; for each of these, an expert evaluation was given.
The assessment included three indicators which directly affected availability: reliability,
sustainability and support. The experts evaluated the behavior of certain types of bulldozers
based on a description of their condition. Two conditions of the machines were compared,
one after two years of use and the other after seven years. In this model, the max-min
composition was used. In addition to the use of fuzzy logic, a multi-criteria decision-
making method (AHP method) was used in order to rank the partial indicators according
to the criterion of their degree of influence on the availability for the type of bulldozer and
the age of the equipment.

Milos Tanasijevic et al., in the paper, “Study of Dependability Evaluation for Multi-
hierarchical Systems Based on MaxMin Composition” [10], presented a safety model of
the functioning of complex technical systems, including the partial indicators of reliability,
maintainability and logistic support for maintenance. In this work, the max-min compo-
sition was applied to determine the safety of functioning. The concept of performance
synthesis of the safety of functioning of common components of complex technical systems
was proposed.

Miletic et al., in the paper, “Adaptive Neuro-Fuzzy Prediction of the Bucket Wheel
Drive Operation Based on Wear of Cutting Elements” [11], presented a model based on a
combination of artificial neural networks and fuzzy logic—the ANFIS (Adaptive Neuro
Fuzzy Inference System). The impact of the wear of the cutting elements on the overall
behavior of the bucket-wheel excavator during operation was the main topic of this paper.

Gomilanovic and other authors, in the paper, “Predicting the Availability of Continu-
ous Mining Systems Using LSTM Neural Network” [12], developed a model for predicting
the availability of continuous systems at the surface mine using artificial neural networks.
The main idea of this paper was the improvement of the analytical approach, the starting
assumption of which was that the distribution of the time length of the system in failure
has an exponential distribution. In this work, data related to the I ECC system of the
open pit Drmno Kostolac were used. The aim of this work was to improve the model for
predicting the availability of continuous systems at open pits. Based on the RMSE, MAE
and R2 values presented in this paper, it was concluded that the model obtained using the
neural network had higher predictive power compared to the analytical approach. On the
basis of the obtained model, a corresponding simulation was created showing the range of
system availability. Based on the simulation, a more accurate picture of the availability of
continuous systems at the open pits was provided.

The advantages of the model presented in this paper in relation to the above-mentioned
works are described below.

In this work, when determining the fuzzy evaluation of partial indicators for the
availability of continuous systems, the experience of experts is not used. Instead, the
assessment of fuzzy evaluation is based on historical data for the specific ECC system for
a period of three years; in this way a better prediction of the availability of the system
itself is enabled. Furthermore, the presented model evaluates availability on a quarterly
basis and, thus, includes external influences (e.g., meteorological conditions) affecting the
system itself.

Availability is generally not a time-dependent function, but is an umbrella term.
Availability is a term that comprises a number of indicators, including reliability and
maintainability. Availability can be mathematically expressed as a coefficient, but this does
not provide an in-depth picture of the behavior of the engineering system. The model
developed in this paper offers exactly that possibility.

For the first time, through this work, the possibility of realizing the conditional-
consequential relationship of the availability and meteorological conditions for machines
working outdoors is provided.

In the field of the exploitation and maintenance of technical systems used in mining,
models are mainly based on the application of the theory of fuzzy logic and neural net-
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works. The model presented in this paper has an innovative character and represents an
overarching framework based on previous scientific achievements.

3. Case Study: I ECC System of the Coal Open Pit Drmno Kostolac

Continuous surface mining systems are systems where the flow of material is contin-
uous. They are characterized by excavating during the entire work cycle, in contrast to
discontinuous ones, where excavating only takes place for part of the time of one cycle.
This enables them to achieve high capacity, which is why they are often used in the energy
sector in surface coal mines because they can meet the large fuel needs of thermal power
plants. Apart from coal mining, they are widely used in overburden mining due to their
capacity and the low unit costs of mining, transporting and disposal of tailings (waste).

The mechanization that is applied is very complex and most often designed accord-
ing to special requirements because continuous systems must be adapted to the specific
conditions of the working environment and the technological requirements regarding the
quantity and quality of mineral raw materials [13].

Continuous surface mining systems usually consist of a bucket wheel excavator, a belt
conveyor and a spreader, in the case of tailings systems, or a stacker-reclaimer, in the case
of coal [14].

The main objective of continuous systems in coal production is the realization of stable
and reliable production of a suitable capacity. These systems are connected in a series, as
shown in Figure 1 [12].
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Figure 1. Overview of the ECC system [12].

This paper presents a case study for determination of the fuzzy evaluation of the
partial availability indicators of the continuous coal system (I ECC system) of the open pit
Drmno Kostolac, which consists of the following elements (subsystems):

• Bucket wheel excavator SRs 400.14/1.5
• Beltwagon BRs 2400
• Belt conveyors
• Crushing plant

Figure 2 shows the equipment that makes up the I ECC System at the coal open pit
Drmno Kostolac.
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4. Methods

The time state picture is the basis for calculating the availability, in which the times
when the system is up alternate with the times when the system is down. Figure 3 shows
the time picture of the system state. The time when the system is in a correct state can be
divided into the inactive time, that is, the time when the system is waiting for operation
(stand-by) (t11), and the time when the system is in operation (t12). The time when the
system is in failure is divided into the organizational time (t21), the logistic time (t22), and
the active repair time (t23), which can be the time for corrective repairs (t231) and the time
for preventive repairs (t232), see [2,12].
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In [2,12], it is noted that “The availability is determined as the quotient of the total
time during which the system is in a correct state and total time that makes up the time in
the correct state and time in failure (operational availability)”.

A(t) = ∑ t11, t12

∑ t11, t12, t21, t22t231, t232
(1)

Development of the Adaptive Neuro-Fuzzy Inference System for Determining the
Fuzzy Evaluations of Partial Indicators of the Availability of Continuous Systems

The ANFIS (Adaptive Neuro-Fuzzy Inference System) represents a synthesis of arti-
ficial neural networks and fuzzy logic. These systems were developed in the early 1990s,
(see [15,16]). The advantages of these systems are reflected in the combination of positive
properties of the artificial neural network, which primarily includes the ability to learn,
and use of fuzzy logic, which involves expert knowledge assessments.

The structure of the ANFIS system is similar to the structure of artificial neural net-
works in which an appropriate fuzzy inference system is formed based on the input-output
data set and the parameters of the membership functions that define the fuzzy numbers.

The training process is based on determination of the parameter values, adjusted
according to the training data [17]. The back-propagation method is the basic means of
system training that is used. This algorithm tries to minimize the error between the network
and the desired output. The disadvantages of this algorithm are the somewhat longer time
required for training and the tendency to “forget” in the local minimum [15]. In order to
eliminate the disadvantages of the back-propagation algorithm, a hybrid learning model
was developed based on a combination of the back-propagation algorithm with the method
of least squares [16]. The ANFIS structure has five layers.

The first layer of the ANFIS system implies the transformation of evaluations obtained
by expert assessment into the corresponding fuzzy system where the membership functions
are defined by certain continuous functions. It is usual to define the membership functions
with the bell-shaped membership function:

µA(x) =
1

1 +
[( x−a

b
)]2 , (2)

Gaussian membership function:

µA(x) = exp

[
−
(

x− a
b

)2
]

, (3)

or the Sigmf (sigmoid) membership function:

µA(x) =
1

1 + exp(−ax + b)
, (4)

where a and b are the real parametric and b 6= 0 that need to be estimated. Accordingly, the
output data of the first layer are determined by:

O1d,i = µAd,i (x), i = 1, 2, 3 (5)

where x is the input parameters of the first layer and (Ad1, Ad2, Ad3) are the corresponding
linguistic variables corresponding to the partial indicator d.

The next layer of the ANFIS model combines the output arguments of the previous
layer; so, the output data are determined by:

O2,d1,d2,i,j = ω2,d1,d2,i,j = µAd1, i
(x) ∗ µAd2, j(y), i, j = 1, 2, 3 (6)

The above operation represents the AND operator in the fuzzification process.
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The next layer includes the process of normalization of the values obtained in the
second layer; so, the output data are determined by:

O3,d1,d2,i,j = ωd1,d2,i,j =
ωd1,d2,i,j

∑d1 6=d2
∑3

k=1 ∑3
l=1 ωd1,d2,i,j

, i, j = 1, 2, 3 (7)

The next layer is a layer that combines the normalized values from the previous layer
and the first-order polynomials. Namely,

O4,d1,d2,i,j = ωd1,d2,i,j fd1,d2,i,j = ωd1,d2,i,j

(
pd1,d2,i,jx + qd1,d2,i,jy + rd1,d2,i,j

)
, i, j = 1, 2, 3 (8)

In the last layer, the normalized values of the previous layer are added using the
following formula:

O5d1,d2,i,j = ∑
i,j,d1,d2,

ωd1,d2,i,j fd1,d2,i,j =
∑d1,d2,i,j ωd1,d2,i,j fd1,d2,i,j

∑d1,d2,i,j ωd1,d2,i,j
(9)

Figures 4–6 show the functions used in the model. Figure 7 shows the ANFIS layers.
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The neuro-fuzzy system training is best performed using a hybrid algorithm (Figure 9).
The essence of this approach is the extension forward to the fourth layer, where the esti-
mation of the resulting parameters is carried out using the method of least squares. When
spreading back to the first layer, data on the size of the error are transferred, which updates
the premise parameters using the gradient descent method. When the input membership
function parameters are set, the output from the ANFIS model is calculated as follows:

f = w1
w1+w2

· f1 +
w2

w1+w2
· f2 = w1 · f1 + w2 · f2

f = (w1 · x) · p1 + (w1 · y) · q1 + (w1) · r1 + (w2 · x) · p2 + (w2 · y) · q2 + (w2) · r2
(10)

The assessment of unknown parameters that configure in the described model is made
with certain corrections in order to match the actual and estimated value of the desired
parameter to the greatest extent. The RMSE (root mean square error) and MAE (mean
absolute error) statistics, defined by:

RMSE =

√
1
n

n

∑
i=1

(ya
i − yp

i )
2
, MAE =

1
n

n

∑
i=1

∣∣∣ya
i − yp

i

∣∣∣ , (11)

where ya
1, ya

2, . . . , ya
n are real values, and yp

1 , yp
2 , . . . , yp

n are values predicted by the model.
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5. Results of Expert Assessment

In the literature, most often the availability as a measure of system functioning security
is decomposed into the partial indicators, reliability and maintainability. Maintainability
is also a complex term that can be described by partial indicators, among which the most
important are the following: E-tools and equipment, D-diagnosis, M-manipulability, S-
standardization and unification.

Reliability represents the probability that the system will successfully perform the
function for which it is intended in a given time interval.

The maintainability depends significantly on the tools and equipment that provide
high quality maintenance if they are well chosen. Adequate diagnostics reduce the time it
takes to identify and locate the failure, which shortens the total time the system is in failure.

Manipulability is a characteristic of technical systems that describes their ability to be
quickly and efficiently transported to a service point, either as a whole or in parts (see [19]).

Standardization and unification include a wide range of system maintenance mea-
sures that enable reduction in downtime, and the definition of procedures, technical and
organizational measures. In addition to reducing downtime, they improve the quality of
maintenance.

Determination of the availability of the continuous system and its partial indicators
was derived from the results obtained in a questionnaire related to the expert assessment
of the partial indicators of availability. In this model, the availability is divided into the
following partial indicators (Figure 10).
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Figure 10. Partial indicators of the availability of continuous systems.

The partial indicators were described in detail in the questionnaire. A total of five
experts with long experience in surface mines with a continuous system were included. The
expert evaluations referred to the mentioned partial indicators of availability in a certain
quarter and cover the period from 2016 to 2018. In the questionnaire, the experts offered
ratings ranging from 1 (the worst rating) to 10 (the best rating). The layout of the survey
for one partial indicator (R-reliability for 1 Quarter) is shown in Figure 11.
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Table 1 gives the expert evaluations for partial indicators of system availability in the
period from 2016–2018.
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Table 1. Expert evaluations for partial indicators of system availability in the period from 2016–2018.

Year Quarter R E D M S Experts Year Quarter R E D M S Experts Year Quarter R E D M S Experts

2016

1

8 4 6 9 10 1

2017

1

6 5 7 9 10 1

2018

1

5 6 7 8 8 1

8 4 6 8 10 2 5 6 8 10 9 2 6 8 6 7 8 2

8 5 7 8 9 3 5 6 8 9 9 3 5 8 7 8 8 3

9 5 7 8 9 4 4 6 8 9 10 4 6 7 6 7 9 4

9 4 7 10 8 5 6 5 6 9 10 5 4 7 6 9 9 5

2

8 5 7 10 10 1

2

4 6 8 9 9 1

2

6 7 6 8 8 1

9 5 7 9 10 2 5 5 7 8 9 2 5 7 6 8 9 2

9 4 7 9 10 3 5 4 8 9 10 3 5 7 6 8 8 3

8 5 7 10 9 4 6 5 7 9 9 4 4 6 7 8 9 4

9 4 6 9 10 5 5 6 7 8 9 5 5 6 7 9 8 5

3

8 4 7 8 10 1

3

5 4 8 9 9 1

3

3 6 6 7 8 1

6 5 7 9 9 2 5 4 9 9 9 2 4 6 6 6 7 2

8 4 7 9 10 3 4 5 7 8 9 3 4 6 6 7 8 3

8 4 8 7 10 4 4 3 8 9 10 4 3 7 7 6 7 4

7 5 6 9 9 5 5 5 7 9 9 5 3 6 7 6 8 5

4

6 4 7 9 8 1

4

3 5 9 8 8 1

4

6 4 7 9 9 1

7 5 6 9 8 2 3 5 8 8 8 2 7 5 6 9 8 2

7 5 6 9 9 3 5 4 6 9 9 3 7 5 6 9 9 3

6 4 7 9 10 4 3 7 7 7 9 4 6 5 7 8 10 4

6 5 8 8 9 5 4 6 8 7 8 5 6 4 8 9 8 5

Before conducting analysis, a database was created related to the duration of the
mechanical, electrical and other failures and ECC system performance over a period of three
years (2016, 2017, 2018). Data from this database were used to determine the availability
and to compare it with the results obtained based on the ANFIS model. Table 2 shows a
part of the database. The data was taken from the Electric Power Company of Serbia and
contained 85,698 pieces of information about failures in the specified time period.

Table 2. Database form (a part of database).

Date Months Year System Object Failure Start of
Failure

End of
Failure Downtime

Total
Downtime in

Minutes
Notes Shift

1.1.2016 January 2016 I ECC BWE
SRs-400 Electrical 10:00:00 10:50:00 00:50 50 / 1

1.1.2016 January 2016 I ECC Crushing
Plant Other 13:00:00 14:30:00 01:30 90 / 1

1.1.2016 January 2016 I ECC BWE
SRs-400 Electrical 19:00:00 19:10:00 00:10 10 / 2

Based on the available data, the system availability was determined on a quarterly
basis; the obtained values are shown in the next table. Table 3 contains the obtained values
for the system availability.

Table 3. Obtained values for the system availability.

Year Quarter Availability Year Quarter Availability Year Quarter Availability

2016

1 0.76747

2017

1 0.74064

2018

1 0.69444

2 0.79212 2 0.71587 2 0.69151

3 0.76305 3 0.68101 3 0.59121

4 0.71043 4 0.65674 4 0.70301
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Table 4 shows the evaluation parameters for the Gaussian function and Table 5 shows
the evaluation parameters for the bell-shaped function. Table 6 shows the evaluation
parameters for the sigmoid function.

Table 4. Evaluation parameters of partial indicators for the Gaussian function.

Gaussian Function

Partial Availability Indicators a b

R—reliability
A11 2.0005 1.0010

A12 5.0951 1.0900

A13 8.9980 1.0018

E—tools and equipment

A21 0.0000 0.9999

A22 4.9873 1.0296

A23 9.0000 0.9999

D—diagnostics

A31 1.9999 0.9999

A32 4.9929 0.9930

A33 9.0001 1.0000

M—manipulativeness

A41 2.0000 1.0000

A42 5.0000 1.0000

A43 8.9963 1.0036

S—standardization and unification

A51 2.0000 1.0000

A52 5.0000 0.9999

A53 9.0000 1.0000

Table 5. Evaluation parameters of partial indicators for the bell-shaped function.

Bell-Shaped Function

Partial Availability Indicators a b

R—reliability
A11 2.0000 1.0000

A12 5.0000 1.0000

A13 8.8131 1.0000

E—tools and equipment

A21 2.7494 1.0000

A22 5.0000 1.0000

A23 8.9996 1.0000

D—diagnostics

A31 2.0000 1.0000

A32 5.0000 1.0000

A33 8.9941 1.0000

M—manipulativeness

A41 2.0000 1.0000

A42 5.0000 1.0000

A43 9.0030 1.0000

S—standardization and unification

A51 2.0000 1.0000

A52 5.0000 1.0000

A53 9.0000 1.0000
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Table 6. Evaluation parameters of partial indicators for the Sigmf function.

Sigmf Function

Partial Availability Indicators a b

R—reliability
A11 2.0000 1.0000

A12 5.0000 1.0000

A13 8.8199 1.0000

E—tools and equipment
A21 0.0000 1.0000

A22 5.0000 1.0000

A23 8.9995 1.0000

D—diagnostics
A31 2.0000 1.0000

A32 5.0000 1.0000

A33 8.9937 1.0000

M—manipulativeness
A41 2.0000 1.0000

A42 5.0000 1.0000

A43 9.0013 1.0000

S—standardization and unification

A51 2.0000 1.0000

A52 5.0000 1.0000

A53 8.9953 1.0000

A summary of the considered models for predicting the evaluation of partial system
availability indicators is given in Table 7.

Table 7. Summary of the considered models for predicting the evaluation of partial indicators
of availability.

ANFIS Parameter Type ANFIS (1) ANFIS (2) ANFIS (3)

Number of Inputs 5 5 5

Membership Functions Type Gaussian function Bell-shaped function Sigmf function

Number of Membership Functions 3 × 3 × 3 × 3 × 3 3 × 3 × 3 × 3 × 3 3 × 3 × 3 × 3 × 3

Training Data Set 60 60 60

Epoch Number 20 20 20

Number of Fuzzy Rules 243 243 243

RMSE 0.0013 0.0020 0.00159

MAE 0.0058 0.0127 0.0127

Figures 12–14 show the actual values compared to the values predicted by the AN-
FIS model.
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6. Discussion and Conclusions

Bearing in mind the quantity of data on which the model was developed, it is necessary
to provide a larger amount of data in the future in order to apply the described technique
to them and to further improve the performance of the obtained model. It is necessary to
obtain historical data on system downtimes for the period ahead of the period discussed in
this paper and, thus, to improve the model itself. Another type of improvement would be
increase in the number of experts who, based on their many years of experience, could give
estimates for the indicated indicators. By simply increasing the number of observations on
which the model was developed, some new indicators could be included, which would
create an additional view of the dependence of the availability in relation to indicators for
the described model.

Based on the values of the MAE and RMSE statistics shown in Table 7, it is concluded
that the model which uses the Gaussian function for partial indicator evaluations provides
better prediction ability than the other models which use the Sigmf and bell-shaped func-
tions for the partial indicator evaluations. The advantage of models of this type is that
they do not rely on the historical experience of experts and the usual predicted values
for the fuzzy evaluation of partial indicators, which are based on the assumption that, in
similar systems, similar influences have a similar effect on availability. The evaluation of
the fuzzy evaluation of partial indicators is an indicator based on historical data for the
specific system for which the model was created. As such, it can more accurately predict
the availability of continuous systems based on expert evaluations in the appropriate time
period. In this model, the availability is estimated on a quarterly basis giving a more
accurate picture because it uses a smaller time period with more similar characteristics,
and, thus, includes certain external influences related to the quarterly meteorological con-
ditions. In this model, for the first time, a conditionally consequential connection between
the availability and meteorological conditions is provided. The model presented in this
paper has an innovative character and represents an overarching framework for previous
scientific achievements.

The results of the model can be used in the process of planning, designing and
controlling the functioning of continuous systems in surface mines. Based on these, an
appropriate maintenance strategy can be developed, with the aim of both increasing the
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time utilization and reducing maintenance costs. The model is applicable to continuous
systems in other areas where appropriate corrections need to be made in accordance with
the natural functioning of those systems.
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