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Abstract: This paper aims to review one of the least used, but no less important, approaches in the 

assessment of the environmental implications of electricity generation: the Economic Input-Output 

Life Cycle Assessment (EIO-LCA). This methodology is a top-down approach intertwined with the 

environmental satellite accounts provided by the national statistical office. Through the use of eco-

nomic input-output (IO) tables and industrial sector-level environmental and energy data, the EIO-

LCA analysis allows for broad impact coverage of all sectors directly and indirectly involved with 

electricity generation. In this study, a brief overview of this methodology and the corresponding 

assumptions is presented, as well as an updated review of the different applications of the EIO-LCA 

approach in electricity generation, suggesting a possible classification of the many studies devel-

oped in this context. The different ways of overcoming the problem of disaggregation in the elec-

tricity sector are also addressed, namely by considering different IO table formats (i.e., symmetric 

or rectangular tables). This is a particularly relevant feature of our review, as the way in which elec-

tricity generation is modeled can result in different calculations of the costs and benefits of environ-

mental policies. In this context, this paper further contributes to the literature by explaining and 

providing examples of distinct approaches to modeling the electricity sector in IO models on a de-

tailed level. 

Keywords: economic input-output analysis; life cycle assessment; environmental impacts;  

electricity generation 

 

1. Introduction 

There is one less commonly used approach to quantifying the environmental impacts 

of electricity generation: the Economic Input-Output Life Cycle Assessment (EIO-LCA). It 

is a top-down technique that explicitly considers the transactions as well as the associated 

environmental impacts taking place across the entire economy [1–5]. 

EIO-LCA is a methodology that strives to overcome some of the limitations inherent 

to the use of the Life Cycle Assessment (LCA) approach. It is built on an input-output (IO) 

table with transactions across distinct economic sectors that may be supplemented with 

environmental data, including extra columns and rows that depict the emissions per each 

activity sector. Because the emissions and flows of all activity sectors are incorporated in 

the assessment, the EIO-LCA approach overcomes the two key concerns created by Pro-

cess LCA (P-LCA): the boundary limits are easily established since its boundaries are 
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broad-ranging and comprehensive; and the circularity impacts are considered, because 

transactions within each activity sector are also contemplated [2–4]. 

The EIO-LCA approach, while not suffering from truncation like P-LCA, tends to 

have a higher level of sectoral aggregation [6,7]. This can make it difficult to clearly dis-

tinguish between different sectors and understand their specific contributions and inter-

dependencies [2–4]. 

Table 1 provides a summary of the information that allows for the contrasting of the 

main features of each approach in the framework of electricity generation, highlighting 

some of the problems and expected limitations or uncertainties identified. 

Table 1. Contrasting EIO-LCA with P-LCA in the framework of electricity generation. 

P-LCA EIO–LCA 

Engineering approach 

Bottom-up approach 

Entails the processes associated with electricity genera-

tion, including infrastructures, transmission and distribu-

tion of the electricity generated per source. 

Macroeconomic approach 

Top-down approach 

Involves the upstream and downstream assessment of the activity sec-

tors engaged with electricity power generation sectors. 

While the connection of each electricity power generation technology to 

the national electricity grid is tackled, the transmission and distribution 

of electricity after connection to the grid are not considered in the analy-

sis. 

Main issues: 

 Establishing the boundary limits of the analysis and 

the circularity effects. 

 Inputs required based on the selected processes and 

inventory systems considered. 

 Results based on the reference year of the analysis 

where no technology changes are accounted for. 

 Considers average processes. 

 Considers physical flows. 

 Technological changes involve an update of pro-

cesses and inventory systems. 

 Time dependence of data. 

 Underestimated values due to the cut-off required 

(Truncation error) 

 Focus on manufacturing and equipment. 

 Electricity consumption is measured at the electrical 

socket. 

 Waste management, reuse, recycle and remanufac-

ture can be embedded into P-LCA. 

Main issues: 

 The electricity sector is not disaggregated in published IO tables 

and therefore additional information is required from different 

sources. 

 Uses satellite accounts and IO tables for the base year of the analy-

sis and technology changes are not accounted for.  

 Considers sector averaging technologies. 

 Requires value-based description of material flows. 

 Technological changes involve the comparison of IO tables across 

different years. 

 Time dependence of data and time lag for availability of data. 

 The activity sectors within the IO table may diverge from the sec-

tors considered in P-LCA. 

 Direct information to build an imports matrix is very difficult to 

obtain.  

 Capital investments are usually not included as inputs and are 

usually considered as a part of final demand. 

 Household electricity consumption is an exogenous variable con-

sidered as final demand. 

 Waste management, reuse, recycle and remanufacture are not ap-

prehended by IO tables. 

As a result, using the EIO-LCA approach to analyze the environmental impacts of 

electricity generation can be challenging because published IO tables do not typically pro-

vide sufficient detail to distinguish between the impacts of increased demand for renew-

able energy sources (RES-E) and conventional electricity (CE). Instead, these tables only 

evaluate the impacts of an overall increase in demand for global electricity generation [8]. 

In fact, published IO tables incorporate the entire supply chain of electricity generation 

and use into a single electricity sector, i.e., generation, transmission, distribution, and sup-

ply-related activities [9]. 

However, disaggregating the electricity sector in IO tables is rather important, par-

ticularly for policymakers and researchers who are seeking to understand the impacts of 

changes in the electricity sector on the overall economy. This is especially relevant in light 

of the significant technological advancements in the electricity sector, including new fuels 

and generation technologies, as well as environmental policies targeting specific 
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generation technologies (e.g., nuclear [10] and coal [11] phase-out policies, the unbundling 

of the electricity sector [12], the carbon tax on prices and emissions of carbon-intensive 

industries [13], and tax credits for renewables [14]). Overall, the ability to disaggregate the 

electricity sector in IO tables provides valuable insights into the economic dynamics of the 

sector and can help policymakers make informed decisions about the sector. 

In this context, the disaggregation of the electricity sector is not straightforward, re-

quiring the explicit use of supplementary data exogenous to the information provided in 

the currently available IO tables [15]. Even if data from official surveys with electricity-

related businesses are publicly available, the following two issues might arise [9]: On the 

one hand, firms directly engaged in electricity generation usually also have other non-

generation electricity activities, which biases the conclusions that might be drawn from 

the survey outcomes since it becomes hard to distinguish what might be assigned to gen-

eration activities only; on the other hand, the major firms related to electricity generation 

normally possess a bundle of different generating technologies. As a result, official pub-

lished IO data do not clearly identify generating technologies, necessitating alternative 

approaches. In this context, developing hybrid methodologies that combine the broad 

stance of an EIO-LCA with the specificity of information for a single product or process 

of a P-LCA is frequently beneficial [16–18]. However, these types of hybrid models mainly 

rely on the method of hybridization considered and the quality of the data used and, 

therefore, may offer restricted help for assessing material flows across product systems 

[16,18,19]. Finally, as suggested by Han et al. [20], Limmeechokchai and Suksuntornsiri 

[21], and Lindner et al. [15], there might be a lack of information available on this subject 

due to the implementation of ad hoc methods. 

To sum up, discriminating between different electricity technologies in IO analysis 

requires specific data that are often unavailable, incomplete, uncertain, or inconsistent 

[22]. The assumptions and procedures used in such an analysis can vary significantly be-

tween research groups, and much of the “educated guesswork” involved in these analyses 

is not always properly documented or made publicly available [22]. As a result, it can be 

difficult to compare the results of different IO models that have been developed to analyze 

the electricity sector, and it can be challenging to identify the most reliable and accurate 

methods for achieving a detailed understanding of the economic relationships within the 

sector. 

With the foregoing in mind, this paper aims to provide an overview of the use of the 

EIO-LCA approach in the analysis of the environmental impacts of electricity generation 

and to review the main studies that have focused on this topic. It also aims to classify these 

studies and discuss the major challenges associated with their application, as well as to 

suggest possible ways to overcome these challenges, particularly addressing the disaggre-

gation of the electricity sector within the framework of the EIO-LCA approach. The paper 

unfolds as follows: Section 2 presents an updated review of the scientific literature on the 

use of the EIO-LCA approach for the assessment of electricity generation; Section 3 pro-

vides an overview of the EIO-LCA methodology in the context of electricity generation; 

Section 4 presents and discusses the main findings of this review; and Section 5 presents 

the conclusions and suggests future research directions. 

2. Studies with the Application of EIO-LCA to Electricity Generation 

Energy analysis emerged in the aftermath of the oil crises of the 1970s as a discipline 

aimed at computing the total energy requirements to undertake a given activity. Origi-

nally, it considered the use of process analysis (PCA), which allows obtaining the energy 

required to perform the main production processes as well as a detailed assessment of its 

major supply chain contributors. A drawback that can be found in this approach is the 

choice of the system boundaries, which might lead to systematic truncation errors [23,24]. 

One way to overcome such errors is to combine conventional PCA with IO analysis, re-

sulting in a hybrid method [25]. 
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However, unlike P-LCA studies, there is a lack of literature review regarding the ap-

plication of hybrid and IO approaches to the electricity sector.  

Traditional IO analysis can also be used to assess economy-wide direct, indirect, and 

induced employment effects [8,26–31], economic effects [10,12,20,31–40], energy require-

ments and pollutant emissions from electricity generation [1,9,21,41], and biodiversity 

[42]. 

A hybrid analysis combines process data and IO data into a variety of formats. A 

possible characterization of such approaches is given below. 

2.1. Complement Some Parts of the Life Cycle Lacking Data 

Usually, IO analysis is pooled with P-LCA to complement some parts of the life cycle 

that lack data. In this context, the IO method can either be applied for evaluating materials 

and non-materials-related processes, or for assessing emissions or energy use. As stressed 

by Ma�ila [43], IO is a key tool for complementing the traditionally performed P-LCA 

with macroeconomic data from the background systems, and, if properly used, it may 

result in more accurate LCA. 

For instance, Voorspools et al. [44] combined PCA with IO analysis to compute green-

house gas (GHG) emissions and energy use for the different economic sectors engaged in 

the construction of a power plant. For the operations and maintenance (O&M) of the plant, 

a hybrid approach is used, though the energy related to the decommissioning stage is 

obtained by means of a PCA. Their results are significantly different for nuclear plants but 

are effectively the same for wind farms. This study concluded that the IO-LCA gives an 

overestimate, since the components of nuclear power plants are more expensive than av-

erage products from the other sectors. 

Nomura et al. [45] used the IO framework to calculate indirect oxidizing gas emis-

sions from material production for several electricity generation technologies. 

Varun et al. [46] used the IO model for assessing the energy requirement for manu-

facturing steel and aluminum sheet production involved in the life cycle GHG emissions 

estimation for small hydropower schemes in India.  

White and Kulcinski [47] applied the IO method to assess non-materials-related pro-

cesses regarding coal, fission, wind, and fusion electrical power plants. 

Lenzen and Wachsmann [48] used a tiered hybrid LCA, and their results demon-

strated the importance of effectively embedding the background system of the local econ-

omy in the assessment. 

Hondo [49] suggested a PCA analysis for the assessment of carbon dioxide (CO2) 

emissions from material production, while IO analysis was considered for the estimation 

of CO2 emissions from several manufacturing processes (e.g., the manufacturing of com-

ponents and assembly).  

White [50] used the IO approach for assessing the energy use of the construction and 

O&M phases of wind farms. 

Liu et al. [51] coupled IO analysis with LCA to evaluate the total direct and indirect 

environmental impacts of the electricity sector in Taiwan. The IO model was used to esti-

mate the environmental impacts generated throughout the upstream supply chain of the 

electricity sector. 

Kumar et al. [52] estimated the GHG emissions throughout the life cycle of wind en-

ergy farms by means of the EIO-LCA methodology in the United States. This work incor-

porates the installation, O&M, and decommissioning stages into the EIO-LCA framework 

and presents the expected life cycle GHG emissions from O&M activities, identifying un-

certainty in the emissions intensity estimates and contributing to the discussion of its 

causes. The study concludes that, if all costs and a life cycle perspective are incorporated 

into the analysis, wind energy production is not completely GHG emission-free. In 

Muangthai and Lin [53], the EIO-LCA approach is applied to estimate the direct and in-

direct impacts from the power generation sector in Thailand for the years 2005 and 2010. 

The domestic IO table, excluding the import values, was used to have a more accurate 
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perception of the actual environmental impacts generated by the industrial sectors en-

gaged with the electricity sector. In general, these studies suggest that when using IO in-

stead of P-LCA for the corresponding life cycle phase, the corresponding energy use of 

that LCA stage becomes larger. 

2.2. Express Some IO Sectors in More Detail 

P-LCA data can also be tied to IO tables to further decompose some IO sectors [54]. 

In this framework, Wiedmann et al. [17] used the Ecoinvent database to disaggregate the 

wind power subsector from the electricity sector in the UK. Crawford [55] disaggregated 

an IO model into 100 activity sectors, into which available process data was incorporated. 

By considering this approach, the overall comprehensiveness of the IO model is guaran-

teed, while more consistent process data can also be integrated whenever it is feasible. In 

addition to solving the problem of upstream truncation, this also prevents the possibility 

of obtaining the downstream truncation errors already mentioned. 

Nagashima et al. [56] introduced new sectors in the IO table based on data from the 

production processes of wind turbines, including sectors for manufacturing towers, na-

celles, rotors, cables, transformers, and construction. They also used the EIO-LCA analysis 

method to evaluate the induced production and value-added of all sectors involved in the 

wind power generation system. Later, Nagashima et al. [57] used the IO approach to study 

the environment, energy, and economic impacts of a wind power generation system in 

Japan. The study also evaluated the resulting production and value-added impacts for all 

sectors related to wind power generation, concluding that these overcompensate the neg-

ative effects of replacing conventionally generated electricity with electricity from wind 

power. In a similar vein, Wolfram et al. [58] used the EIO-LCA approach to assess carbon 

footprint scenarios for RES-E in Australia. This hybrid approach combined the strengths 

of both methods, extending the analytical IO framework while preserving the accuracy of 

P-LCA for crucial processes. 

One of the major limitations found regarding the use of this approach is the subjective 

choice of the data that requires replacement with process data in IO tables, potentially 

biasing the results obtained. Nevertheless, Lenzen and Munksgaard [59] stated that the 

use of IO-based hybrid techniques should be preferred whenever system completeness 

regarding the assessment of the energy content of RES-E systems is to be a�ained.  

An up-to-date and comprehensive review of the most relevant scientific literature 

regarding the application of the EIO-LCA approach in electricity generation was carried 

out. Table A1 in the Appendix A provides an overview of the specific features covered by 

some of these studies. 

From the literature review conducted, it can be established that the journals with the 

highest number of publications on this subject are Energy, Energy Policy, Applied Energy, 

Energy Economics and Renewable and Sustainable Energy Reviews, which total nearly half of 

the reviewed papers (see Figure 1). 



Energies 2023, 16, 2930 6 of 29 
 

 

 

Figure 1. Number of studies per journal. 

The interest in this subject has also increased across the time horizon considered, i.e., 

from 2000 to 2023 (see Figure 2). 

 

Figure 2. Number of studies for distinct time frames. 
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The study of electricity’s environmental and energy impacts has been a constant 

throughout the entire time horizon, with an increase in the study of economic and em-

ployment impacts, particularly since 2007 (see Figure 3). 

 

Figure 3. Number of studies per subject addressed. 
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Use matrices include both imported 

and domestic commodities. 

To obtain domestic flow tables, it is necessary to 

build an imports matrix, which is very difficult 

to obtain. 

Import matrices are built merely by resorting to plausible 

suppositions. 

All products are identified as an av-

erage product of the covering sector. 

A sector contains many products for which the 

ratio price/energy-input is not necessarily the 

same. 

Employ the Supply and Use Table (SUT) framework. 

A possible classification and characterization of such approaches is provided below. 

3.1. Combining P-LCA Data with IO Tables  

Heijungs and Suh [54] suggested a methodology in which P-LCA data is tied with IO 

tables to express some sectors in more detail. This hybrid LCA approach overcomes the 

truncation errors of the P-LCA and enhances the sector detail of the EIO-LCA. In this con-

text, Wiedmann et al. [17] followed this approach and used the Ecoinvent database to dis-

aggregate the wind power subsector from the electricity sector in the UK. Furthermore, 

Wolfram et al. [58] studied 16 technology-based power generation technologies for Aus-

tralia, considering the whole life cycle of power generation from raw material mining to 

decommissioning. Their work included transportation and energy requirements, con-

struction, O&M, and the end of life. Nagashima et al. [56,57] also combined the strengths 

of both methods, extending the analytical IO framework while preserving the accuracy of 

P-LCA for crucial processes. 

One of the main disadvantages of these approaches is the extensive amount of data 

required on the relevant production technologies. 

3.2. Combining IO Tables with Energy Balance Data 

Bullard et al. [66] proposed an approach that involves using data on the primary en-

ergy consumption of different industries. This disaggregation method has also been used 

by [67] and assumes that all electricity generated is sold to the non-generation activities 

of the aggregate electricity industry, so that final demands for the electricity-generating 

sectors are zero by construction. The electricity sector is disaggregated into three sub-sec-

tors: fossil fuel electricity generation, hydroelectricity, and electricity distribution. To per-

form this disaggregation, it is assumed that the two first generating sub-sectors sell all 

their output to the distribution sector; the fuel inputs to electricity are entirely a�ributed 

to fossil fuel generation; all other inputs are split between the two generating sectors in 

proportion to their total output; and all purchases of electricity by the remaining sectors 

and by final demand are supplied by electricity distribution. Allan et al. [9] extend this 

analysis by disaggregating the electricity sector into several generating sectors. The ap-

proach adopted first identifies the IO entries for each of the generating technologies con-

sidered by using information from various sources. These estimates are then removed 

from the original electricity sector in the IO accounts, leaving a residual sector that is con-

sidered to capture transmission, distribution, and supply, or non-generation activities. A 

similar approach is also followed by [51]. In the approaches followed by [21,68], non-gen-

eration activities are allocated to generation technologies even though the former, which 

include transmission, distribution, and supply, would be necessary even in the limiting 

case of an economy that generates no electricity itself. As a result, this approach to elec-

tricity sector disaggregation would be valid only if each generating technology had its 

own network [9]. 

3.3. Combining Surveys/Technical Data with the IO Table 

Vendries Algarin et al. [1] consider the rectangular version of the IO model and split 

up the electricity sector into several additional sectors, each representing a specific portion 

of the electricity industry. Each of these disaggregated sectors includes a supply chain. 

Since the Use table corresponds to the supply chains for all the industrial sectors in the 

economy, for every disaggregated sector to be modeled, a listing of the commodities and 
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corresponding monetary values needed to produce the output of the new sector must be 

created. Moreover, the existing supply chains for every other sector in the model that uses 

electricity need to be modified as well. Instead of purchasing electricity from a single sec-

tor, these activity sectors now purchase from a mix of generation sectors. On the other 

hand, the Supply table needs to be adjusted for the disaggregated power generation sec-

tors. In the existing Supply tables, the electricity sector provides other commodities be-

sides electricity power generation in the form of delivered steam heat from combined heat 

and power (CHP) units. However, there are other industries supplying the commodity 

“electricity power generation” as well. Thus, the monetary values and commodities need 

to be put into a proper disaggregated sector within the Supply table. Finally, to connect 

the physical quantities normally associated with electricity, such as kWh, with the mone-

tary units in the IO model, it is important to have good estimates of the costs per kWh. 

These are the O&M costs that are needed for each type of electricity generation, consider-

ing the assumption that all capital investment in the power generation sector, such as new 

plant construction, will happen outside the model of the economy built with the SUT 

framework. The author considers construction as an economic activity within the con-

struction sector of the SUT tables, so it is therefore not included in the electricity sector. 

Hence, explicit consideration of the construction of power plants would require the dis-

aggregation of the construction sector as well. A similar approach might also be found in 

Allen et al. [9] for Scotland and in Duarte et al. [12] for Spain. In this la�er study, data 

from the Iberian Balances Analysis System (SABI in its Spanish acronym) was used to 

further disaggregate the electricity sector, obtaining data on wages, social security taxes, 

value-added, and imports. In a similar vein, Keček et al. [38] obtained survey data to ana-

lyze the economic impact of the investments and the O&M costs of RES-E power plants. 

Lehr et al. [69] added a new vector to the IO table, based on detailed empirical data from 

a comprehensive survey. This is done by considering different cost structures for the dif-

ferent renewable generation types. The data from the survey are combined with technical 

data to amend the IO tables. 

Breitschopf et al. [70] consider the symmetric version of the IO model and decompose 

Renewable Electricity Technologies (RETs) into their various activities/components and 

associated costs, and then match these to the sectors identified in the IO table of the econ-

omy under analysis (see Table 3). A similar approach was also followed by [8]. 

Table 3. Methodology application followed by [70]. 

Divide into life cycle phase Manufacturing and Installation; O&M; Fuel (for Biomass). 

Decompose life cycle phases into their activi-

ties/components 

RET activities/components—e.g., large hydropower:  

 Manufacturing and installation—planning; regulatory activities; construction work; steel 

hydro construction; hydro turbine; electromechanics; electronic control; installation; elec-

tric connection to the grid; other.  

 O&M—labor costs; waste management; maintenance; spare parts; insurance; other).  

Calculate total output of each relevant activity/ 

component 

Total expenditure connected to each life cycle phase cost share of each relevant activ-

ity/component as % of life cycle phase. 

Match the domestic output of each relevant activ-

ity/ component of RET/CE to industry in the IO ta-

ble. 

Match the domestic output of each relevant activity/component of RET to the industries 

within the IO table. 

3.4. Disaggregation Solely Based on Electricity Generation Data 

Shrestha and Marapaung [68] and Lindner et al. [71] disaggregated the electricity by 

only relying on electricity generation data. However, one of the major limitations of this 

method refers to the assumption of uniform costs of electricity, disregarding the relevant 

operational characteristics of the electricity sector [72]. 
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3.5. Using Weight Factors 

Lindner et al. [15] proposed a method for breaking down the electricity by consider-

ing weight factors. According to their approach, the consumption of electricity by different 

sectors in a region is proportional to the mix of power generation sources in that region’s 

grid system. This enables them to create sector-specific electricity consumption mixes, 

where every sector in the IO table uses electricity from a particular power mix. Lindner et 

al. [15] derived two sets of weight factors: input weight factors that divide all inputs into 

the new electricity production sectors from the common sectors, and output weight factors 

that distribute the output of the new electricity production sectors among all the other 

sectors, consistent with the regionally weighted industry consumption mixes. They calcu-

lated the input weight factors for each common sector by employing the weighted sum of 

the O&M costs and the annual electricity generation output of the power plants using a 

method described in [1]. To obtain the output weight factors, they used a regionally 

weighted industry coefficient method based on the simple location quotient (SLQ) method 

[73]. The SLQ method is a non-survey technique for regionalizing national coefficients 

using adjustments based on regional employment, income, or output by industry. Lindner 

et al. [15] apply this method by extracting information from regional tables detailing the 

electricity purchased by the common sectors and relating it to the national table. 

Overall, Lindner et al. [15] primarily handle row shares by allocating input costs to 

new technologies based on generation and other basic assumptions, without considering 

the final cost structure of the technologies. In essence, this pro rata distribution-based 

methodology may not provide a reliable, systematic method for adding additional data 

[60]. 

3.6. Using a Mathematical Programming Approach 

Sue Wing [61] developed a positive mathematical programming approach [74] to in-

clude the cost structure and detailed bo�om-up data (e.g., thermal efficiency and power 

generation). Although this model formulation efficiently introduces further detailed in-

formation, it disregards the preservation of input intensities (i.e., row shares) with the new 

technologies [60]. 

Linder et al. [71] used a random walk algorithm [75] to explore the range of feasible 

combinations for the unknown technical coefficients with the purpose of disaggregating 

the IO table. Nevertheless, this approach has the disadvantage of taking a long time to 

build the bo�om-up energy and emissions database by fuel type [15]. 

The rectangular choice-of-technology (RCOT) model [76–78] is another model that is 

particularly developed to account for distinct technologies within an industry that uses a 

mathematical programming approach. It uses rectangular tables with potentially multiple 

columns (i.e., production technologies) per industry and includes constraints on the avail-

ability of primary inputs. The model uses linear programming to find the optimal mix of 

production. In this context, Kätelhön et al. [79] combined the RCOT model with conse-

quential LCA and included stochastic elements in their analysis. 

3.7. The share Preserving Cross-Entropy (SPCE) Approach 

Peters and Hertel [60] consider that in the process of disaggregation of the electricity 

sector, it is necessary to reconcile detailed sub-sector information with the overall sector 

using a matrix balancing method. 

In this context, in a review conducted by Wang et al. [80], the authors concluded that 

the RAS method (this method consists of an iterative scaling and rescaling of the rows and 

columns of an IO table until they equal the new row and column totals) and the improved 

normalized squared differences method (INSD) developed by Friedlander [81] would be 

more suitable for balancing IO tables. In this context, it is worth noting that the GRAS 

method developed by [82] is also a variant of RAS that can be used with the same purpose. 

In a la�er review by [83] on the mainstream methods for projecting SUTs, it was also 
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ascertained that RAS, INSD, and the method developed by Kuroda [84] outperform their 

alternatives. 

Nevertheless, according to Peters and Hertel [60], Kuroda’s method [84] is the only 

one that can effectively handle cases where the total costs are unknown, or that do not 

require the imposition of fixed constraints on total costs. Without a strict constraint on 

total costs, both the RAS and INSD methods become equivalent to the pro rata distribution, 

which only considers the proportion of each row and neglects the cost structure. 

The approach developed by Peters and Hertel [60] guarantees that both the cost struc-

ture and row shares are preserved in the disaggregation of the electricity, particularly 

when the replacement of technologies is at stake (e.g., the phase-out of nuclear power, the 

replacement of coal power and the introduction of RES-E). 

3.8. Using Econometric Methods and Panel Data 

Wimmer et al. [65] proposed the use of econometric methods and panel data to com-

pute future input coefficients for the energy sector. They claimed that their methodology 

has several advantages over other methods, including the fact that it is easily applicable 

to many countries and does not depend on experts’ judgments. Furthermore, their method 

is more adaptable than a single-country trend analysis because it includes information 

about technological changes that have taken place in other countries. It can also be used 

to disaggregate the energy sector and cross-validate and corroborate predictions made by 

other methods. The authors derived input coefficients and the energy mix for their econ-

ometric model using Eurostat data. Their research concentrated on the relative monetary 

shares of inputs and value-added in sector D35, which is officially designated as “electric-

ity, gas, steam and air conditioning supply”. 

4. Discussion of Results 

In summary, it is possible to conclude that most of the studies reviewed are devoted 

to wind power generation technologies, in particular onshore wind farms, while the rarest 

ones are on ocean and biogas generation technologies—see Figure 4. In fact, information 

on the life cycle GHG emissions from wave power is extremely limited (only three studies 

refer to this form of electricity generation—see [45,58,85]). Only seven studies have taken 

into account the transmission and distribution of electricity, which is an additional issue 

that needs to be addressed—see Table A1 in Appendix A. 

 

Figure 4. Number of studies per technology assessed. 

Studies using EIO-LCA methods have focused mostly on the manufacturing and 

O&M phases (22 studies refer the consideration of this stage—see Table A1 in the Appen-

dix A), assuming that most of the emissions occur during those life cycle events, neglecting 

the decommission phase (only eight studies refer the consideration of this stage—see Ta-

ble A1 in the Appendix A) that can be particularly relevant in the phase-out of technolo-

gies (e.g., nuclear power and coal power). 
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Furthermore, it is observed that most studies developed have focused on European 

(with particular focus on Germany and Spain), Asian (specifically, Japan, China, and 

South Korea) and North American countries (with emphasis on the USA)—see Figure 5. 

 

Figure 5. Number of studies by country. 

The literature review also suggests that while the impacts of promoting renewable 

energy have been estimated at the national level using IO models, there is a limited num-

ber of sub-national studies due to the challenges in applying these models to micro-level 

analyses [40]. 

Additionally, the studies reviewed and analyzed also indicate that EIO-LCA assess-

ments provide systematically higher impacts than P-LCA assessments [58]. In fact, when 

using IO instead of P-LCA, studies suggest that the energy use of that LCA stage becomes 

significantly higher (see [50,55]). In effect, relying only on P-LCA outcomes might lead to 

underestimated figures for energy use, but it is also possible that IO analysis overestimates 

energy use. Therefore, several methodological options for the application of IO-based hy-

brid LCA should be further explored by contrasting the use of these methodologies, thus 

obtaining further insights into the availability and robustness of approaches for informing 

energy and environmental policy. 

Several limitations have also been found in the studies that used IO analysis at the 

macroeconomic level. One issue is that the magnitude and extent of each electricity sub-

sector are technically defined by scholars because these sub-sectors have not been openly 

reported from a sectoral standpoint and are not frequently completely separated from 

other industry sectors in IO tables. Because the IO analysis involves the consideration of 

complex interactions among industry sectors, the outcomes of the direct and indirect spill-

over assessments may vary. Due to the disparities in data and evaluation methods used 

by different researchers, there is also a limitation in clarifying the identification of the dis-

tinct technologies. Out of the 68 papers examined (as shown in Table A1 in Appendix A), 

11 studies did not include the disaggregation of the electricity sector in their assessments, 

as illustrated in Figure 4. These studies treated the electricity sector as a final demand 

sector. Even studies that utilized IO analysis to supplement the PCA missing data and 

conducted separate evaluations of various electricity technologies did not disaggregate 

the electricity sector in the IO table. 

In addition, there are several methodologies available to handle the disaggregation 

of the electricity sectors, all of which have their merits and demerits. The disaggregation 

can be performed by obtaining the input coefficients for the distinct technologies accord-

ing to surveys and technical data (the most popular approach with 24 publications), P-

LCA data (with six studies), energy balance data, and experts’ opinions (the third most 

popular approach with 10 studies) [65]—see Figure 6. Nevertheless, to conduct such ap-

proaches, a substantial amount of information is usually required. When the disaggrega-

tion is solely based on electricity generation data, relevant operational characteristics of 
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the electricity sector are usually neglected [72]. The use of mathematical programming 

approaches to account for the detailed cost structure of the electricity sector generally dis-

regards the preservation of the row shares in the new technologies [60]. The RAS method 

and its several variants also have inherent limitations, namely when the total costs are 

unknown [60]. In this context, to overcome these limitations, Peters and Hertel [60] sug-

gested an approach that preserves both the cost structure and row shares in the disaggre-

gation of the electricity sector. Finally, more recently, Wimmer et al. [65] suggested the 

use of econometric methods and panel data to further disaggregate the electricity sector, 

which can cross-validate other methods. However, their method concentrated on the 

shares of inputs. 

 

Figure 6. Number of studies by disaggregation methodology. 

In effect, tailored surveys and IO tables are the sole reliable sources of information; 

however, they are constrained by the fast-paced developments in the sector, implying that 

frequent updates are imperative despite the method’s reliability. 

Finally, studies frequently only consider one year of data for the IO estimations; how-

ever, the replacement of electricity technologies will have a significant impact on the over-

all industrial structure of the economy, not only when the replacement takes place, but 

also in the future. As a result, it is also necessary to perform prospective assessments of 

the electricity industry from a macroeconomic point of view that can offer relevant guide-

lines to energy policymakers. 

5. Conclusions 

The evaluation of the environmental impacts associated with different electricity gen-

eration technologies is particularly relevant for supporting energy and environmental pol-

icy. P-LCA and EIO-LCA are two techniques that can be used in this regard. A significant 

number of LCA analyses of electricity generation technologies can be found in the scien-

tific literature. However, published LCA studies present a wide variability of results, and 

some methodological challenges persist regarding the application of P-LCA and EIO-

LCA. To overcome their corresponding shortcomings on final assessments, different 

methods have been suggested to hybridize these two techniques. In the present paper, a 

selected and critical review of more than a hundred papers that consider the application 

of the EIO-LCA approach to wind power, solar PV, hydropower, geothermal, ocean, bio-

mass, coal-fired, oil-fired, natural gas, and nuclear power was performed, which clearly 

highlights data variability and its causes. 

Our paper contributes to the literature on the study of a broad range impacts of elec-

tricity generation in different ways. First, it provides a classification and characterization 

of the main studies devoted to the assessment of the impacts of the electricity sector in the 

framework of the EIO-LCA framework, hence, contributing to the theoretical understand-

ing of electricity modelling in the IO framework. Second, the paper presents several 
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methods for disaggregating the input and output structure of the electricity sector in IO 

tables to account for technological diversity. 

In summary, the reviewed studies focused mainly on wind power generation tech-

nologies, particularly onshore wind farms, while ocean and biogas generation technolo-

gies received li�le a�ention. Information on the life cycle GHG emissions from wave 

power is particularly limited, with only three studies considering it. Studies using EIO-

LCA methods have mostly focused on the manufacturing and O&M phases, neglecting 

the decommissioning phase that can be relevant in the phase-out of technologies. Moreo-

ver, most studies were conducted in Europe, Asia, and North America. 

The literature review also indicates that IO models have been used to estimate the 

impacts of promoting renewable energy at the national level, but there are limited sub-

national studies due to the challenges of applying these models to micro-level analyses. 

Additionally, EIO-LCA assessments provide systematically higher impacts than P-LCA 

assessments. However, relying solely on P-LCA outcomes might lead to underestimated 

figures for energy use, and IO analysis might overestimate energy use. Thus, several meth-

odological options for the application of IO-based hybrid LCA should be further explored 

to inform energy and environmental policy. 

Several limitations were found in the studies that used IO analysis at the macroeco-

nomic level. The magnitude and extent of each electricity sub-sector are not always re-

ported, and there is a limitation in identifying distinct technologies. Additionally, there 

are several methodologies available to handle the disaggregation of the electricity sector, 

all of which have their merits and demerits. Tailored surveys and IO tables are the most 

reliable sources of information, but they are constrained by the fast-paced developments 

in the sector. Moreover, studies often only consider one year of data for the IO estimations, 

while the replacement of electricity technologies will have a significant impact on the over-

all industrial structure of the economy, making prospective assessments necessary. 

In conclusion, there is a need for further studies that consider a broader range of 

renewable energy generation technologies, particularly those that have received li�le at-

tention, such as ocean and biogas generation technologies. Moreover, more studies at the 

sub-national level are necessary to inform local energy policy. Finally, the use of IO-based 

hybrid LCAs should be further explored, and tailored surveys and IO tables should be 

updated frequently to reflect the fast-paced developments in the sector. 

Finally, the scope with regards to environmental impacts should also be broadened, 

encompassing more detailed explorations of social and human health impacts.  
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through Projects UID/MULTI/00308/2020 and UIDB/05037/2020. 

Data Availability Statement: Data is entirely available in Appendix A. 
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Appendix A 

Table A1. Studies with the application of IO analysis to electricity generation. 

Objectives 
Country/ 

Region 

Years 

Covered 

Technologies  

Assessed 
LCA Stages 

Disaggregation Ap-

proach 
Methodologies Reference 

GHG emissions and 

energy inputs of the 

different economic 

sectors engaged in 

the construction of 

power plants 

Belgium, Neth-

erland, North-

ern France, 

and Northern 

Germany 

1996 
Nuclear, Wind 

and PV 

Fuel, construction, op-

eration and mainte-

nance (O&M) and de-

commission  

The electricity sector 

is not disaggregated 

in the IO matrix 

IO and PCA tech-

niques 

(IO used to comple-

ment some parts of 

the life cycle that lack 

data) 

[44] 

Assessment of non-

materials related pro-

cesses 

United States 

of America 

(USA) 

Not 

specified 

Coal, Wind and 

Nuclear 

Fuel, construction, 

O&M, decommission 

and waste disposal  

The electricity sector 

is not disaggregated 

in the IO matrix 

IO and PCA tech-

niques 

(IO used to comple-

ment some parts of 

[47] 
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the life cycle that lack 

data) 

Net employment ef-

fects  

Federal Repub-

lic of Germany 
1999–2017 

Coal, Natural Gas 

and Oil vs RES-E 
Not available 

The electricity 

sector is treated as fi-

nal demand 

Symmetric IO frame-

work 
[26] 

NOx and SO2 emis-

sions for materials 

production 

Japan 1985 

Natural Gas, 

Coal,  Hydro, 

PV, Wind, and 

Ocean 

Fuel, construction and 

O&M 

The electricity sector 

is not disaggregated 

in the IO matrix 

IO and PCA tech-

niques 

(IO used to comple-

ment some parts of 

the life cycle that lack 

data) 

[45] 

Energy and CO2 

LCAs 

Germany, Ar-

gentina, Bel-

gium, UK, 

USA, Den-

mark, Switzer-

land, and Ja-

pan 

1980–2001 Wind Not available Not applicable 

Review that includes 

hybrid IO life cycle 

assessment 

[59] 

Role of electricity sec-

tor in economy 
South Korea 

1985, 1990, 

1995, 1998 

Hydro, Coal, Oil, 

Natural Gas and, 

Nuclear 

Not available 

The electricity 

sector is treated as fi-

nal demand 

Input-output Sym-

metric framework, 

Demand-driven 

model, and supply-

driven model and Le-

ontief price model 

[20] 

Energy and CO2 em-

bodied in a particular 

wind turbine manu-

factured 

Brazil and Ger-

many 
1999 Wind 

Material extraction, 

Manufacture and O&M 

The electricity sector 

is not disaggregated 

in the IO matrix 

IO and PCA tech-

niques 

(IO used to comple-

ment some parts of 

the life cycle that lack 

data) 

[48] 

CO2 emissions from 

various manufactur-

ing processes in-

volved in power gen-

eration  

Japan 1990s 

Coal, Oil, Natural 

Gas, Nuclear, Hy-

dro, Geothermal, 

Wind and PV  

Fuel (extraction, manu-

facture and transporta-

tion), O&M and waste 

disposal  

The electricity sector 

is not disaggregated 

in the IO matrix 

IO and PCA tech-

niques 

(IO used to comple-

ment some parts of 

the life cycle that lack 

data) 

[49] 

Economic and envi-

ronmental impacts of 

integrated resource 

planning in the 

power sector 

Java, Madura, 

Bali, Indonesia 
2000 

Thermal and Hy-

dro 
Not available 

Combining IO tables 

with energy balance 

data 

and disaggregation 

solely based on elec-

tricity generation 

data 

Decomposition IO 

Analysis (structural 

change, fuel mix, fi-

nal demand, and joint 

impacts) 

[68] 

Economic conse-

quences and CO2 

emissions of changes 

in electricity generat-

ing capacity and mix 

Scotland 2000 

Electricity distri-

bution transmis-

sion and Nuclear, 

coal, Hydro, Nat-

ural Gas, Bio-

mass, Wind, Bio-

gas and Marine 

Not available 

Combining IO tables 

with energy balance 

data and combining 

surveys/technical 

data with the IO table 

IO Symmetric frame-

work 
[9] 

CO2 emissions af-

fected by the substi-

tution of the conven-

tional coal technol-

ogy with cleaner 

technologies  

Thailand 

IO Table of 

1998, years 

covered  

2006–2016 

Coal, Natural 

Gas, Oil, Bio-

mass, Hydro, 

Small Hydro, 

Wind, PV, and 

solar thermal 

Not available 

Combining IO tables 

with energy balance 

data 

IO Symmetric frame-

work 
[21] 

Energy requirements USA 
Not 

specified 
Wind energy 

Construction, O&M 

and decommission  

The electricity sector 

is not disaggregated 

in the IO matrix 

IO and PCA tech-

niques 

(IO used to comple-

ment some parts of 

the life cycle that lack 

data) 

[50] 



Energies 2023, 16, 2930 16 of 29 
 

 

Employment impacts Germany 2004–2030 

Wind, PV, Hy-

dro, Geothermal 

and Biomass 

Not available 

Combining sur-

veys/technical data 

with the IO table 

Scenarios for future 

development of RES-

E and macro-econo-

metric model PANTA 

RHEI 

[69] 

Review of life cycle 

energy and GHG 

emissions 

World 1975–2006 Nuclear power Not applicable (review) 
Not applicable (re-

view) 

Review that includes 

hybrid IO life cycle 

assessment 

[86] 

Allocation of the in-

puts to the electricity 

sector in a social ac-

counting matrix 

USA 2000 

Coal,  Natural 

Gas, Oil, Hydro, 

Nuclear, Wind, 

Biomass, Geo-

thermal and PV 

Not available 

Using a mathematical 

programming ap-

proach 

Social Accounting 

Matrix (SAM) IO 

framework 

[61] 

Pollution emission 

from electric power 

industries  

Malaysia 

1991–2000 

(projections 

for 2020) 

Oil, Coal, Natural 

Gas and Hydro 
Not available 

Combining IO tables 

with energy balance 

data 

IO Symmetric frame-

work 
[41] 

Direct employment 

of wind power  
EU 2008 Wind 

Manufacture, construc-

tion and O&M 

Combining sur-

veys/technical data 

with the IO table 

IO Symmetric frame-

work 
[87] 

Embodied energy 

values of the wind 

turbines  

Australia 
1996–1997 

(2000–2001) 
Wind  

Fuel, construction, 

O&M, decommission 

and waste disposal 

Combining P-LCA 

data with IO tables 

IO and PCA tech-

niques 
[55] 

Economy, energy, 

and environment im-

pacts 

Portugal 1992 

Fossil fuel (coal, 

oil and natural 

gas), Hydro and 

electricity distri-

bution 

Not available 

Combining IO tables 

with energy balance 

data 

IO symmetric frame-

work 
[67] 

Employment benefits 

of power-generation 

technologies  

Greece 2000–2006 
Coal and Natural 

Gas 
Construction and O&M 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work  
[28] 

Role of nuclear 

power generation in 

the economy 

South Korea 2003 
Nuclear and non-

nuclear 
Not available 

Combining sur-

veys/technical data 

with the IO table 

Demand-driven 

model, inter-industry 

linkage effect analy-

sis, supply-driven 

model, and Leontief 

price model 

[32] 

Identify sectors that 

contribute most to 

electricity consump-

tion 

Spain 2004 

The electricity 

sector is not dis-

aggregated 

Not available 

The electricity 

sector is treated as fi-

nal demand 

IO symmetric frame-

work and backward 

and forward effects 

[88] 

Estimate the effects 

of a carbon tax on 

prices and emissions 

of carbon-intensive 

industries  

USA 2002 

Hydro, Coal, 

Natural Gas, Oil, 

Nuclear and oth-

ers 

Not available 

Combining sur-

veys/technical data 

with the IO table 

IO SUT framework. 

Introduces the con-

cept of price elasticity 

of demand into IO 

analysis to capture 

the effect of a price 

change on consumer 

demand 

[13] 

Electricity demand  China 2002 

The electricity 

sector is not dis-

aggregated 

Not available 

The electricity 

sector is treated as fi-

nal demand 

IO symmetric frame-

work  
[89] 

Employment benefits 

of RES-E 
Greece 2005 

Wind, PV, Hy-

dro, Geothermal 

and Biomass 

Manufacturing, Fuel 

extraction, Construc-

tion and O&M 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work  
[27] 

Indirect GHG emis-

sions of energy tech-

nologies using wind 

power generation 

UK 2004 

Wind power and 

Transmission of 

electricity 

Construction, grid-con-

necting and decommis-

sion 

Combining P-LCA 

with IO to express 

some sectors in more 

detail 

IO based hybrid LCA 

(SUT framework) and 

Integrated Hybrid 

LCA 

[17] 

Forward and back-

ward linkage effects 

of the electricity sec-

tor  

Taiwan 2004–2006 

The electricity 

sector is not dis-

aggregated. 

Not available 

Combining IO tables 

with energy balance 

data 

Forward and back-

ward linkage effects 

obtained from analy-

sis of sensibility in-

dex of dispersion and  

[90] 
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power index of dis-

persion 

Disaggregate the IO 

table 
China 2007 

Hydro, Nuclear, 

Wind, Biomass, 

Coal and Natural 

Gas 

Not available 

Using a mathematical 

programming ap-

proach and disaggre-

gation solely based 

on electricity genera-

tion data 

IO Symmetric frame-

work combined with 

a random walk algo-

rithm 

[71] 

Environmental im-

pacts of electricity 

sector 

Taiwan 
2001, 2004 

and 2006 

The electricity 

sector is not dis-

aggregated 

Cradle to gate 

Combining IO tables 

with energy balance 

data 

Simillar to Carnegie 

Mellon EIO-LCA 

model 

[51] 

Energy requirements 

of manufacturing 

materials for small 

hydropower plants 

India 2004–2005 Small Hydro Construction, O&M  

Combining sur-

veys/technical data 

with the IO table 

Carnegie Mellon EIO-

LCA model 
[46] 

Technological re-

sponsibility of pro-

ductive structures in 

electricity consump-

tion 

Spain 2005 

The electricity 

sector is not dis-

aggregated 

Not available 

The electricity 

is treated as 

final demand 

Structural Decompo-

sition Analysis (SDA) 

and IO symmetric 

framework  

[91] 

Disaggregating the 

electricity sector in 

the IO table 

China 2007 

Transmission and 

distribution, 

Coal, Wind, PV, 

Nuclear, Hydro 

and Natural Gas 

Not available Using weight factors 
IO symmetric frame-

work 
[15] 

Macroeconomic ef-

fects associated with 

several energy con-

servation measures  

Greece 2010–2020 

Wind offshore 

and onshore, PV, 

Small Hydro, Ge-

othermal and Bi-

omass 

Not available 

The electricity 

sector is treated as fi-

nal demand 

IO symmetric frame-

work 
[33] 

Identify key sectors 

that promote energy 

savings in the pro-

duction and distribu-

tion of electricity  

Spain 2007 

The electricity 

sector is not dis-

aggregated 

Not available 

The electricity 

sector is treated as fi-

nal demand 

IO symmetric frame-

work, Classical Mul-

tiplier Method, and 

Hypothetical Extrac-

tion Method 

[92] 

Amount of solar en-

ergy embodied in 

trade 

Top ten 

wealthiest 

economies 

1995–2009 Solar energy Not available 

The electricity 

sector is treated as fi-

nal demand 

IO symmetric frame-

work 
[93] 

Socio-economic im-

pacts of geothermal 

power generation  

Japan 2005 
Geothermal 

power generation 
Not available 

The electricity 

sector is treated as fi-

nal demand 

IO Symmetric frame-

work 
[29] 

Economic, energy 

and environment im-

pacts 

Japan 2005 Wind 

Manufacturing, con-

struction and  installa-

tion 

Combining P-LCA 

with IO to express 

some sectors in more 

detail 

IO Symmetric frame-

work combined with 

PCA  

[56] 

Economic evaluation 

of small hydroelectric 

generation project 

with citizen partici-

pation  

Iida City, Ja-

pan 
2010 Small Hydro Not available 

Combining sur-

veys/technical data 

with the IO table 

Regional IO analysis 

in which willingness 

to work is incorpo-

rated. 

[34] 

CO2 emissions for 

conventional and 

RES-E for several re-

gions  

USA 2002 

Coal, Natural 

Gas, Oil, Nuclear, 

Hydro, Geother-

mal, Biomass, 

Wind and PV 

power; transmis-

sion and distribu-

tion 

O&M 

Combining sur-

veys/technical data 

with the IO table 

SUT framework [1] 

Evaluate the impacts 

of coal-to-gas switch-

ing in electricity gen-

eration 

China 
Not availa-

ble 

Coal, Oil, Natural 

Gas, Nuclear, Hy-

dro, Wind, PV, 

and Other 

Not available Not available 
Symmetric IO frame-

work, GTAP 
[11] 
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Employment impacts 

of electricity sector  
Portugal 2008–2020 

Wind, PV, Hy-

dro, Geothermal, 

Biomass, Coal, 

and Natural Gas 

Manufacturing, Instal-

lation and O&M 

Combining sur-

veys/technical data 

with the IO table 

IO Symmetric frame-

work (quantity and 

price models) 

[8] 

HiDisaggregate the 

electricity sector 
USA 2007 

Nuclear, Coal, 

Gas Natural, Oil, 

Hydro, Wind and 

PV 

Not available SPCE 
IO Symmetric frame-

work 
[60] 

GHG emissions of 

wind energy farms 
USA 2010 Wind power 

Manufacturing, Instal-

lation, O&M, and de-

commission 

Combining sur-

veys/technical data 

with the IO table 

Carnegie Mellon EIO-

LCA model and 

Monte Carlo simula-

tion 

[52] 

Carbon footprint of 

renewable electricity 

generation  

Australia 
2008 and 

2009 

Wind onshore, 

Wind offshore, 

PV, Geothermal, 

Hydro, Coal, 

Natural Gas, Oil, 

Biomass and 

Ocean 

From raw material min-

ing to decommission 

(no recycling) 

Combining P-LCA 

with IO to express 

some sectors in more 

detail 

Consequential LCA, 

SUT framework and 

Multi-Regional IO 

(MRIO) tables 

[58] 

Embodied energy 

analysis for coal-

based power genera-

tion  

China 
2005 and 

2007 
Coal  Construction and O&M 

Combining P-LCA 

with IO to express 

some sectors in more 

detail 

IO and PCA tech-

niques 

(IO used to comple-

ment some parts of 

the life cycle that lack 

data) 

[94] 

Economic impacts of 

wind and PV power 
China 2012 Wind and PV  Not available 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[95] 

Analysis of the en-

ergy return on in-

vestment 

UK 1997–2012 

Coal, Oil, Natural 

Gas, Nuclear, Hy-

dro, PV, Biomass 

and Wind 

Not available 

The electricity 

sector is treated as fi-

nal demand 

MRIO symmetric 

framework 
[36] 

Regional employ-

ment generated by 

investments in elec-

tricity-generation  

Wales 2007 

Coal, Natural 

Gas, Nuclear, 

Wind, PV, Tidal 

and Wave power 

Not available 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[85] 

Structure analysis of 

the 

electricity sector  

Spain 2013 

Wind, Nuclear, 

Conventional 

Thermal, Hydro, 

PV 

and other power 

generation, 

Not available 

Combining sur-

veys/technical data 

with the IO table 

Uses the SAM IO 

symmetric frame-

work departing from 

the SUT framework, 

[12] 

Comparison of em-

ployment impacts be-

tween RES-E, CE and 

energy efficiency 

USA 2013 

Wind, PV, Bio-

mass, Geother-

mal, Hydro, Oil, 

Natural Gas, and 

Coal  

Manufacturing, con-

struction, Installation 

and O&M 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[30] 

Environment, energy 

and economic im-

pacts  

Japan 2005 Wind power  
Manufacturing, con-

struction, and O&M 

Combining P-LCA 

with IO to express 

some sectors in more 

detail 

IO SUT framework 

and PCA techniques 
[57] 

Economic impacts 

and the feed-in tariff 

system 

Japan 2005 

Nuclear, Ther-

mal, Hydro, and 

Transmission and 

Distribution  

Not available 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[14] 

Net energy analysis Australia 
1998/99 to 

2006/07 

Transmission, 

Distribution, On-

selling and Gen-

eration 

Construction, O&M, 

and decommission 

Combining IO tables 

with energy balance 

data 

IO symmetric frame-

work 

and Energy Return 

on Investment (EROI) 

[96] 

Economic and envi-

ronmental impacts of 

increasing indige-

nous coal  

Turkey 

1990, 2000, 

2010 and 

2015 

Coal, Natural 

Gas, Oil, Hydro, 

Wind, and other, 

Not available 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[97] 
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transmission and 

distribution 

Exergy LCA of elec-

tricity generation 
Milan, Italy 2010 

The electricity 

sector is not dis-

aggregated 

Construction, O&M 

and disposal 

The electricity 

sector is treated as fi-

nal demand 

Carnegie Mellon EIO-

LCA model and Ex-

ergy Return on In-

vestment 

[98] 

Analysis of energy 

policy  
Canada 2013 

Renewable en-

ergy 
Not available 

Combining IO tables 

with energy balance 

data 

Multi-factor IO analy-

sis  
[37] 

Influence on terres-

trial biodiversity 
USA 2010 

Coal, Oil, Natural 

Gas, Nuclear, Hy-

dro, PV, wind, 

and other 

Not available 

Combining sur-

veys/technical data 

with the IO table 

Uses MRIO tables 

from GTAP 
[42] 

Economic spillover 

effects of investment 

in RES-E 

Croatia 2010 

Wind, PV, bio-

mass, biogas, and 

small-scale hydro 

Installation and O&M 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[38] 

Environmental 

impacts  
Thailand 2005–2010 

The electricity 

sector is not dis-

aggregated 

Not available 

The electricity 

sector is treated as fi-

nal demand 

Similar to Carnegie 

Mellon EIO-LCA 
[53] 

Gross employment 

(direct and indirect 

employment)  

Germany 
2000 and 

2018 

Wind, PV, Hy-

dropower, Geo-

thermal, Biogas 

and Biomass 

Fuels, Manufacturing, 

Installation and O&M 

Combining sur-

veys/technical data 

with the IO table 

Data based on sur-

veys and O&M data 

based on question-

naire-interviews with 

experts 

[99] 

Macroeconomic ef-

fects of investments 

in RES-E  

Croatia 

2015 (projec-

tions 2021–

2030) 

Hydro, Wind, 

PV, Geothermal, 

Biomass, Natural 

Gas 

Not available 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[35] 

Economic effects of 

replacing nuclear 

power with RES-E  

South Korea 2015 

Nuclear, PV, and 

onshore/ offshore 

wind  

Not available 

Data publicly availa-

ble in the 384 IO Ta-

ble 

IO symmetric frame-

work 
[10] 

RES-E consumption 

policy 
Turkey 2014 

The electricity 

sector is not dis-

aggregated 

Not available 

The electricity 

sector is treated as fi-

nal demand 

IO symmetric frame-

work  
[100] 

Economic spillover 

effects  
South Korea 

2010, 2015 

and 2020 
RES-E Not available 

Data publicly availa-

ble in the 384 IO Ta-

ble 

IO symmetric frame-

work 
[39] 

Economic effects  
Island of Tsu-

shima in Japan 
2011–2020 PV and Wind  Construction and O&M 

Combining sur-

veys/technical data 

with the IO table 

IO symmetric frame-

work 
[40] 

Explore the temporal 

dynamics of energy 

and emission  

embodiments 

China 2018 

The electricity 

sector is not dis-

aggregated 

Not available 

Combining sur-

veys/technical data 

with the IO table 

SDA and IO symmet-

ric framework (an-

nual electricity con-

sumption disaggre-

gated into monthly 

consumption) 

[101] 

Evaluate energy con-

sumption and inten-

sity 

Shanxi Prov-

ince, China 
2002–2017 

The electricity 

sector is not dis-

aggregated 

Not available 

The electricity 

sector is treated as fi-

nal demand 

SDA and IO symmet-

ric framework 
[102] 

Predicting Structural 

Changes  
Austria 2010 to 2020 

Coal, Natural 

Gas, Oil, PV, 

Wind, Hydro 

power, Biomass, 

Biogas, Nuclear 

and Other 

Not available 

Using econometric 

methods and panel 

data 

Combine econometric 

methods and panel 

data with the SUT 

framework 

[65] 

Appendix B 

Appendix B.1. P-LCA Conceptual Basis 

LCA is a methodological approach which aims at evaluating the environmental im-

pacts, all stages of the life cycle of a product, service, or sector from “cradle to grave” [103]: 

from resource extraction and processing, through construction, manufacturing and retail, 
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transportation and use, repair, and maintenance, and disposal/decommissioning and re-

use/recycling. LCA procedures are usually based on environmental management stand-

ards (ISO 14040/14044) and are conducted in four steps:  

(1) Goal and scope definition—the goal and scope definition comprise the purpose of 

the study, the aimed application, and the intended audience (ISO 14040). At this stage 

the system boundaries of the study are established and the functional unit is defined. 

The functional unit is a quantitative measure of the tasks that the goods (or service) 

provide.  

(2) Life Cycle Inventory (LCI)—the outcomes of the LCI are a compilation of the inputs 

(resources) and the outputs (emissions) from the product over its life cycle regarding 

its functional unit. According to ISO 14044, electricity inventories shall consider elec-

tricity mixes, fuel efficiencies, as well as transmission and distribution losses. 

(3) Life cycle impact assessment—the P-LCA is aimed at understanding and assessing 

the extent and implications of the potential environmental impacts of the studied 

system (ISO 14040). 

(4) Interpretation—in the interpretation phase, the results from the previous steps are 

evaluated regarding the goal and scope to achieve conclusions and recommendations 

(ISO 14044). 

As already noted, the system boundary identification has great influence on the emis-

sion factors estimation in the LCA process, and it is an important task of the first step of 

this approach. Therefore, a standard system boundary must be used to guarantee the com-

parability of the results obtained. The LCA system boundaries of different electricity gen-

eration technologies usually include impacts from extraction, processing, and the trans-

portation of fuels, the building of power plants and the generation of electricity, and are 

briefly described in Table A2. 

Table A2. LCA system boundaries of different electricity generation technologies. 

Electricity Tech-

nology 
Upstream Operation Downstream Reference 

Thermal power  

Coal—open cut mining operations, deep mining operations, 

preparation plant for all mines includes crushing, screening, 

sizing, washing, blending, and loading onto trucks and convey-

ors and spontaneous combustion.  

Natural gas/oil—exploration and test drilling; gas/water separa-

tion, condensate separation, dehydration, compression, and 

other initial processing on offshore platforms; stripping of CO2 

and other impurities from raw gas pipeline transmission to the 

onshore processing plant; construction phase—building mate-

rial production, such as steel and cement; facilities installation 

Fuel combustion; fuel 

provision 

Power plant decommission-

ing process 
[104–106] 

Hydropower 
Building material production processes, such as steel and ce-

ment, equipment installation 

Reservoir emissions, 

period of drought and 

maintenance 

Power plant decommission-

ing process 
[5,106] 

Nuclear 
Supply of materials (production of steel, cement, copper, and 

aluminium) and facility construction 

Uranium mining, mill-

ing, conversion, enrich-

ment, fuel rod fabrica-

tion, transportation, fa-

cility O&M, and repro-

cessing 

Facility decommissioning; 

nonradioactive waste dis-

posal/recycling; and tempo-

rary, long-term, and perma-

nent radioactive waste stor-

age after electricity genera-

tion and facility lifetime 

[86,106–108] 

Wind 

Raw materials extraction, materials manufacturing, component 

manufacturing, transportation from the manufacturing facility 

to the construction site, and on-site construction and related 

machinery, concrete, iron, and steel 

Maintenance activities 

such as replacement of 

worn parts and lubri-

cating oils, and trans-

portation to and from 

the turbines during ser-

vicing 

Turbine and site decommis-

sioning, disassembly, trans-

portation to the waste site, 

and ultimate disposal 

and/or recycling of the tur-

bines and other site materi-

als 

[106,109] 

Biomass 
Processes of planting, harvesting, and transportation, the manu-

facture of equipment, the building material production 

Fuel combustion pro-

cess 

Equipment recycling and 

scrapping process 
[106] 



Energies 2023, 16, 2930 21 of 29 
 

 

Solar PV 

Mining, refining and purification all of the silicon and/or other 

required metals and minerals for the cells, glass, frame, invert-

ers, and other required electronics; petroleum extraction for 

plastics, natural gas extraction used for heating, and effectively 

any other material extraction and processing needed to create 

the PV module and finished electronics; wiring, encapsulation 

and any other processes by which the modules and electronics 

are fabricated and finished (up until the point of transportation 

to the site of operation); on-site construction of the generator 

and transportation of materials to the site 

Maintenance and clean-

ing 

Equipment recycling and 

scrapping process 
[106,110,111] 

Geothermal 
Exploration, drilling, well installation, surface plant construc-

tion with all buildings 
O&M, cooling facilities 

Plant decommissioning and 

recycling 
[112] 

Currently, LCA is an entrenched framework, established on internationally agreed 

environmental management standards and supported by international initiatives (ISO 

14040/14044). The outcomes of P-LCA may be obtainable as inventories of individual 

stressors, or as environmental impact category indicators at ‘midpoint’ or ‘endpoint’ lev-

els of aggregation. The midpoint indicators (e.g., substance emissions) allow for environ-

mental effects of several individual stressors to be integrated into a single impact type 

(e.g., Global Warming Potential, Acidifying Potential, and Photochemical Ozone Creation 

Potential). Endpoint indicators quantify impact potentials by endpoints in the effect chain. 

Ecosystem (e.g., atmosphere, water, and land), natural resources, solid waste and human 

health are usually considered as such endpoints, but occasionally even one single indica-

tor of environmental impact is used [5]. 

Several studies are aimed at exploring the main challenges and opportunities at stake 

in applying LCA to electricity generation technologies (see, for example, [5,104,113–115]). 

We briefly refer to some of these challenges below. 

Appendix B.1.1. Data  

Data representativeness is an important aspect when conducting an LCA because of 

the heterogeneity of electricity LCI data.  

(1) Geographic Coverage  

a. Sometimes no regionalized electricity data is available—gaps in LCI data still 

exist and are usually more evident in non-OECD countries. 

b. Grid delimitation—it is difficult to know where the electricity is coming from.  

(2) Temporal Aspects of Electricity 

Predicting and capturing changes in time—a relevant task in consequential LCA—is 

a challenging task for both temporal scopes: the short-term and long-term horizon. 

a. Short-Term: Price bids are not always publicly available. Additionally, not all 

electricity markets have the same extent of de-regulation.  

b. Long-Term: Additional capacity would need to be installed to cover increases in 

demand. Changes in the electricity sector depend on political, environmental, 

and economic considerations that are substantially uncertain and country spe-

cific.  

(3) Technology Coverage 

The main challenges in technology data coverage concern currently used technolo-

gies and those which will be installed in the future and are not yet commercially available. 

a. Current Technologies: There is a wide variation among generation stations in 

terms of emissions and inputs per unit generation across and even within fuel 

types. 

b. Prospective Technologies: Modelling how technology performance will change 

over time is particularly difficult for nascent technologies such as organic PV 

panels or carbon capture and storage. Moreover, disruptive technologies can 
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bring improvements in efficiency, but also have implied changes in infrastruc-

ture and user behavior, which are more difficult to predict. 

Appendix B.1.2. Using Electricity LCI Data 

LCI data should represent the actual local or regional/national power supply as close 

as possible to be useful for LCA practitioners.  

In Table A3, some of the problems and expected limitations/uncertainties identified 

in regarding the application of P-LCA to electricity generation and corresponding possible 

solutions are identified. 

Table A3. Problems and limitations of LCAs applied to electricity generation technologies. 

Problem Limitations/Uncertainties Possible Solutions 

Mainstream literature based on “attributional” 

LCA, with average product or technology lifecy-

cle. 

LCA cannot capture the dynamics of changing 

electricity markets and technologies. 

Consequential LCA would allow the full effects 

of electricity generation technologies to be as-

sessed simultaneously. 

LCA usually considers a static nature and ad-

dressing individual power plants. 

Assumptions and changing characteristics of the 

background energy system  

Use scenario-consistent assumptions of technical 

improvements in key energy and material pro-

duction technologies. 

LCA usually does not consider a number of im-

portant criteria such as social aspects, acceptabil-

ity, or security of supply. 

Attempts to incorporate those elements in turn 

lead to other limitations and uncertainties. 

To foster such aspects in the LCA guidelines, 

theSocial LCA of products were developed in 

2009 by UNEP. 

LCA is often considered a long and onerous pro-

cess and focuses on existing installations. Model-

ling a new product or process is difficult and ex-

pensive.  

Outdated values are often used that fail to reflect 

evolutions in the power sector.  

LCA can also be prospective. LCAs may include 

future scenarios. 

Defining system boundaries for LCA is arbitrary 

and controversial.  
Incomplete assessments or expensive costs.  

Hybrid LCA methodologies should be employed 

in order to achieve system completeness. 

There is lack of comprehensive data for LCA.  
Equally credible analyses can produce different 

results 

Make process-level inventory input data availa-

ble together with LCA publications. 

Lack of harmonization and transparency and 

eventually to a wide variety of results. 

Not possible to make comparisons across differ-

ent studies. 

Conduct regular and continuous meta-analysis 

with the normalization of results. 

Electricity grids are increasingly becoming inter-

connected, and selecting a grid mix boundary 

becomes a complex task. 

There is potential for double counting when as-

sessing large, interconnected energy systems 

Use national electricity mixes and accounting for 

imports from the neighbouring jurisdictions. 

Create clusters of data according to the conges-

tion status and its location. 

Appendix C 

EIO-LCA Conceptual Basis 

IO analysis is a method for analyzing the interlinkages between distinct activity sec-

tors within an economy that can be employed to compute total factor multipliers, which 

can be used to evaluate the economic spillover effects inherent to the investment in RES-

E, for example, while also accounting for the corresponding energy and environmental 

impacts [39]. It considers the use of tables that show the flows of goods and services be-

tween different sectors of the economy, including both the production and consumption 

of each sector. These tables can have various formats depending on three main criteria 

[116]: symmetric or rectangular formats; total or domestic-use flows; and basic or pur-

chaser’s prices. 

The symmetric format of IO tables represents industries or commodities in both the 

rows and columns and considers that each industry produces a single commodity. This 

format shows industry-by-industry or commodity-by-commodity interrelations [116]. 

Nevertheless, as each industry may produce multiple secondary commodities, the rectan-

gular format, also called the supply and use tables (SUT) format, is more appropriate [73]. 

In this format, the rows of the supply table represent the various industries and their con-

tributions to the output of different commodities, while the columns of the use table show 

the consumption of different commodities by industries and final users. The SUT format 
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is particularly useful, as it allows for the inclusion of a larger number of commodities than 

industries in the model. 

The symmetric IO framework given in (A1) depicts the distribution of the total out-

put of each sector at basic prices: 

�� = ∑ ��� + ∑ ���
�
���

�
���   (A1)

where �� is the output of sector i, ���  is the sales from sector i to sector j, and ��� is the 

sales of sector i to final demand sector f (households, government, firms, and foreign coun-

tries). 

Considering the constant returns to scale hypothesis, Equation (A1) becomes: 

�� = ∑ ����� + ∑ ���
�
���

�
���   (A2)

in which ���  is the sales of input i to sector j per unit of sector j’s output (or direct coeffi-

cients). 

From (A2), and aggregating final demand into a vector, the basic IO system of equa-

tions is obtained in its matrix form (A3): 

x = Ax + y,  (A3)

where A is the technological coefficients matrix, y is the final demand vector, and x is the 

output vector. 

To compute the output multipliers, the Leontief inverse matrix needs to be obtained 

as: 

x = (I – A)−1 y,  (A4)

where I is an identity matrix and (I – A)−1 is the Leontief inverse. Each element of (I – A)−1 

corresponds to the total amount of good or service i directly and indirectly required to 

produce a unit of final demand of good or service j [73]. Therefore, this matrix is also called 

the multiplier matrix. 

The concept of multipliers is based on the difference between the initial impact of an 

exogenous change (final demand) and the overall impact of that change. Direct effects 

refer to the response of a particular industry to a change in final demand for that industry 

[73]. Indirect effects represent the response of all the industries that supply to a particular 

industry to a change in final demand for that industry [73]. Induced effects refer to the 

response of all industries to increased (or decreased) household spending and inter-in-

dustry transfers that result from the direct and indirect effects of a change in final demand 

for a particular industry [73]. To calculate the pollution resulting from inter-industry ac-

tivity, we can use a matrix of pollution output or direct impact coefficients, R, where each 

element, rkj, represents the amount of pollutant type k produced per unit of output from 

industry j [2–4]. This allows us to express the level of pollution associated with a given 

vector of total outputs as: 

r = Rx,  (A5)

where r is the pollution vector. Hence, from (A4) and (A5), we can compute vector r as the 

total pollution of each type directly and indirectly produced for providing a given final 

demand: 

r = R (I – A)−1 y,  (A6)

Finally, from (A6) we can establish that R (I – A)−1 is a matrix of total environmental 

impact coefficients, i.e., an element of this matrix is the total pollution impact generated 

per monetary unit of final demand. 

According to the SUT framework, the total demand of product i at purchaser’s prices 

is: 



Energies 2023, 16, 2930 24 of 29 
 

 

�� =  � ��� + � ��� =

�

���

� ��� + �� + ��

�

���

+ ��, � = 1, … , �

�

���

 (A7)

where �� is the total demand of commodity i; ��� (each element of the Use table) is the 

amount of commodity i used to generate the output of industry j (intermediate consump-

tion of commodities); ���  is the input of product i to final demand f; ��� (each element of 

the Supply table) is the amount of commodity i produced by industry j in a given year 

(both primary and secondary commodities); �� is the amount of imports of commodity i; 

�� is the amount of margins of commodity i and �� is the amount of net taxes of commod-

ity i. 

On the other hand, the total output of industry j at basic prices is: 

�� =  � ��� = � ��� + � ���, � = 1, … , �

�

���

�

���

�

���

 (A8)

where �� is the total output of industry j and ��� is the primary input q to industry j; 

Analogously to the traditional IO model, the basic IO system of equations is also ob-

tained in its matrix form, providing the industrial balance as: 

g = Me1 = U’e1 + Z’e2, (A9)

where e1 and e2 are column vectors filled with ones with convenient dimensions, g is the 

vector of the total output per industrial sector at basic prices, M is the supply table, U is 

the Use table, and ’ designates the transpose and Z is the matrix of value-added inputs. At 

the product level, the balance can be expressed as: 

q = U e3 + Y e4 = M’ e3 + i’ + d’ + l’, (A10)

where e3 and e4 are column vectors filled with ones with convenient dimensions, Y is the 

matrix of final demand, i is the vector of imports, d is the vector of margins, and l is the 

vector of net taxes. 

The SUT framework offers two options for technology assumptions: industry tech-

nology and product technology. In the industry technology assumption, the input struc-

ture of an industry is kept constant regardless of its product mix, and all secondary prod-

ucts of the industry are produced using the technology used for the primary product. This 

assumption requires that each industry has a fixed share in the production of a given 

product. The product technology assumption, on the other hand, states that a given prod-

uct always has the same input structure, irrespective of the industry in which it is pro-

duced. There is no agreement on which assumption is more appropriate, but the com-

modity technology assumption is generally favored from an axiomatic point of view [117]. 

Nevertheless, this assumption can lead to negative values, which are not allowed concep-

tually [117]. As a result, the industry technology assumption may be preferred in some 

cases. 

Thus, for practical reasons we consider the industry technology assumption (for fur-

ther developments on the product technology model please see [116]) by dividing all the 

elements of U and M by the corresponding column totals of industrial output and the 

demanded products, respectively. Subsequently, we obtain the following partitioned ma-

trix, composed by the matrices Q and S and two zero-filled matrices: 

D = �
0 Q
S 0

�, where each element of Q is given by 
���

��
 (amount of product i consumed 

by industry j per unit of output of industry j) and each element of S is obtained by 
���

��
 

(amount of product i produced by industry j per unit of total demand of product i). 

From D and considering final demand aggregated into a single vector, it is possible 

to write the following matrix system: 
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When applying the general formulas for computing the inverse of a partitioned ma-

trix, we obtain (for further details see [64]): 

�
I −Q

−S I
�

��

= �
(I − QS)�� (I − QS)��Q

S(I − QS)�� I + S(I − QS)��Q
� (A12)

or 

�
I −Q

−S I
�

��

= �
I + Q(I − QS)�� Q(I − QS)��

(I − QS)��S (I − QS)�� � (A13)

From the rectangular IO model, it is possible to derive expression (A14), which is 

analogous to expression (A6), since it allows for the measuring of the impact on an indus-

try’s output due to changes in final demand. Therefore, if we consider the rectangular 

version of the IO model instead of expression (A6), we obtain: 

r = R [S(I – QS)−1] y,  (A14)
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