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Abstract: The single pole-to-ground (SPG) fault is one of critical failures which will have a serious
impact on the stable operation of the multi-terminal DC distribution network based on the modular
multilevel converter (MMC). It is very significant to analyze fault characteristics for detecting faults
and protection design. This paper established the DC SPG fault model, which showed that in
the presence of a reactor, the short-circuit current was reduced from 2.3 kA to 1 kA at 6 ms after
the fault. Then, a novel SPG fault protection strategy was proposed, which detected the current
derivative in connection transformer grounding branch. When the value increases past the threshold
of current derivative, small resistance was switched on to increase fault current. Thus, the reliability
of differential protection was enhanced. Compared with the traditional protection method, the
proposed method does not need communication, and improved the speed of protection. Finally, the
simulation model was established in PSCAD/EMTDC. The model included three converter stations:
T1, T2 and T3. Among them, T1 outputs power, and T2 and T3 receive power. The results of RTDS
showed that the DC circuit breaker operated within 3 ms, the three-port circuit breaker worked within
50 ms, which proves that the proposed strategy was effective. At this time, the system switched from
the T1–T2–T3 three-terminal networking operation mode to the T1–T2 two-terminal hand-in-hand
operation mode. Since the T3 terminal no longer received power, the transmission power of the T1
terminal decreased, and the received power of the T2 terminal remained unchanged.

Keywords: distribution network; single pole-to-ground (SPG) fault; multi-terminal DC; MMC;
protection strategy; current derivative

1. Introduction

With the maturity of flexible DC transmission technology and the continuous im-
provement of urban multi-load demand, multi-terminal DC (MTDC) distribution network
became a research hotspot in the field of distribution network. The MTDC distribution
network based on modular multilevel converter (MMC) has the advantages of higher
reliability and economy, and it can adjust the power flow more flexibly, such as increasing
power supply capacity, controlling active power and reactive power independently, reduc-
ing energy loss and operation cost. It became an important form of future energy [1,2].
However, the DC distribution network system has small damping and no natural zero-
crossing point. Once a fault occurs on the DC side, the fault current will have a high peak
value and a fast-rising speed, which will quickly spread to the entire power grid [3–5].
For a multi-terminal system, the superposition of short-circuit currents will bring further
damage to the system, which puts forward higher requirements for the quickness of the
protection scheme. Therefore, the protection of MTDC distribution network is one of the
core technologies to be solved urgently.

In order to realize the operation safety of DC distribution, the protection technology is
very important in researching DC distribution. The SPG fault is the most common fault,

Energies 2023, 16, 2921. https://doi.org/10.3390/en16062921 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16062921
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7669-2080
https://doi.org/10.3390/en16062921
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16062921?type=check_update&version=1


Energies 2023, 16, 2921 2 of 16

which will lead the DC voltage unbalance. It will result in instability of DC distribution,
which needs to be researched technically, such as fault detection and fault location.

On fault detection: fault detection methods can be divided into time-domain fault
detection methods and frequency fault detection methods.

The time-domain fault detection method mainly judges whether a short-circuit fault
occurs in the line by collecting and analyzing the voltage signal and the current signal of
the DC line. On the one hand, referring to methods in traditional AC distribution networks,
fault detection can be achieved by monitoring changes in current, voltage amplitude, or rate
of change [6,7]. Although using the rate of change for fault detection can better distinguish
the faulty line than directly using the current value, the fault detection using the rate of
change is easily interfered by the sampling noise signal.

In addition to the fault detection based online sampling current and voltage, fault
detection based on the difference of fault transient characteristics of line boundary elements
is a unique fault detection method in the DC power grid [8].

In recent years, frequency-domain fault detection methods were proposed. Short-time
Fourier transform and wavelet transform are two special forms of Fourier transform [9–12].
Although the frequency domain fault detection methods have high judgment accuracy
and no threshold selection problem, the frequency domain fault detection methods need
to convert the time domain signal into a frequency domain signal before data analysis.
The frequency domain fault detection method requires a large amount of calculation, and
the fault detection time interval is higher than that of the time domain fault detection
method. To sum up, the time domain fault detection method is simple in calculation, it
has extremely fast detection speed and the protection is also relatively sensitive. However,
the time-domain fault detection method generally has the problem of threshold selection.
Inappropriate threshold selection can easily lead to missed faults.

On the fault location, the methods can be divided into passive fault location methods
and active fault location methods. The traveling wave method is a passive fault location
method widely used in flexible HVDC transmission systems. However, the DC lines in the
DC distribution network are much shorter than the lines in the DC transmission system.
Thus, the transient traveling wave signal is weak. Therefore, the applicability of using
the traveling wave method to fault location in the DC distribution network needs to be
further demonstrated.

Compared with the passive fault location method, the active fault location method
uses an additional circuit to inject electrical signals into the fault line and obtains the fault
location by analyzing the change of the electrical signal in the fault line. In [13], the authors
proposed a non-iterative fault location method using power detection units. The power
detection unit injected detection power into the faulty line after the faulty line was cut off
and inferred the location of the fault by analyzing the changes in the collected electrical
signals. Additionally, this probe power can also be used for pilot testing prior to reclosing
the main DCCB to avoid possible system problems when re-closing fails due to a permanent
fault. Since the DCCB is close to the fault line, it has the location advantage required for
injecting and detecting electrical signals in fault location. Therefore, the authors of [14]
improved the DCCB to add a fault location function on the basis of the original fault
interruption function. The improved DCCB can use its energy stored in advance to inject
electrical signals into the fault line to realize the function of fault location. Compared with
other active fault location methods, this method does not require an additional power
supply, thereby reducing the cost and scale of fault location. In the ungrounded DC traction
power system (asymmetric uni-polar wiring), the system can still operate normally when a
single-phase ground fault occurs. If the fault is not detected and repaired in time, the fault
type will change when the second ground fault occurs on the other pole. It is a short-circuit
fault between poles, which seriously endangers the safe operation of the system. In order
to solve this problem, the researchers in [15] proposed a method using a new type of power
detection unit to detect and locate the ground fault. Compared with the traditional power
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detection unit, the power detection unit in the literature can detect whether a short to
ground fault occurred in the line in a timely manner.

Due to the short length of the DC line in the flexible DC distribution network, the fault
circuit model can be equivalent to a lumped parameter circuit, and an active fault location
method by injecting electrical signals and analyzing the RLC oscillation changes of the
electrical signals was also proposed. Since the DC lines of the DC microgrid mostly use
underground cables, the requirements for fault location accuracy are higher than those of
the flexible DC transmission system using overhead lines. But for now, there is still no fault
location method that considers both accuracy and economy in DC microgrids; so, the fault
location method still needs further research and optimization.

Literature [4] proposed a handshake method to solute fault isolation and location
in MTDC. Although DC circuit breaks are saved, lower action speed and worse action
reliability of relays protection cannot satisfy the requirements. Literature [16] extracted
the transient voltage oscillation characteristic-based Poly algorithm. By this method,
although the fault distance can be calculated in several seconds, there is a dead zone.
Literature [17] proposed a fault location method based on the active injection method,
which can distinguish the fault zone by high frequency singles. However, this method
requires much computation, and it is difficult to satisfy the requirements of fault isolation
and location.

It follows that there are still many deficiencies in the existing protection schemes of
flexible DC distribution network. In recent years, some scholars proposed a protection
scheme for active control of the system after failure by utilizing the cooperation between
the converter’s own protection control function and protection strategy. In [18], the authors
proposed a novel protection strategy to identify and locate SPG fault. In this method, a small
resistor in parallel is used to increase the fault current. By detecting the current derivative in
the connection transformer grounding branch, this method can quickly switch on a parallel
resistor and eliminate the time of communication control, which greatly improves the speed
of protection. Referring to the Zhuhai “Internet+” smart energy demonstration project [19],
the system configuration and fault characteristics of MTDC were analyzed in detail. Finally,
through the real-time digital simulator (RTDS), the feasibility of the proposed protection
strategy was verified.

2. System Structure
2.1. MTDC Distribution Network Structure

In this paper, the MTDC distribution system was used, which is shown in Figure 1.
T1–T3 are AC/DC converters based on MMC; T4 is the DC transformer; DCCBn (n = 1,
2, . . . , 7) represents the DC circuit breaker; ACCBn (n = 1, 2, 3) represents the AC circuit
breaker; and f is the fault point. The system adopted the master–slave control mode, which
has high control convenience [8], and T1 adopted the fixed DC voltage and reactive power
control mode (VdcQ); T2–T3 adopted the constant power control mode (PQ). The system
had a communication system to change control mode according to the situation.

2.2. Topology of MMC

The MMC included three parallel phase units: a, b, and c. Each phase unit consisted of
upper and lower bridge arms. Each bridge arm contained n sub-modules and a reactor Larm.
In each sub-module, when SR was turned on and SF was turned off, the output voltage of
the sub-module was the capacitor voltage; when SR was turned off, SF was turned on, the
output voltage of the sub-module was 0; when both SR and SF were turned off, they were
in blocking state.

The current control strategy of MMC generally adopted the D-Q decoupling control
strategy in engineering. In the strategy, the modulation ratio M and the phase shift angle δ
were controlled. Through modulation, the switching instructions of each sub-module were
obtained with capacitor voltage equalization and circulating current suppression controller.
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Through the turn-on and turn-off of the sub-module, the output voltage was obtained,
which approached the modulation wave.
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In a typical symmetrical bipolar MMC-HVDC system, in order to maintain the positive
and negative symmetry of the DC bus voltage, it is necessary to set a grounding point on
the DC side or converter transformer secondary side. Generally speaking, it can be divided
into DC side grounding and AC side grounding. The grounding of the DC side is mainly
grounded by clamping resistors in series between the DC positive and negative busbars,
and the grounding of the AC side mainly includes the neutral point of the converter
transformer being grounded through the resistor and the star-shaped reactance of the AC
secondary side through the resistor, as seen in Figure 2. In this paper, the neutral point of
the converter transformer being grounded through resistance in AC side was researched.

2.3. SPG Fault Model of MMC

Taking T3 as an example, the SPG fault model of MMC was established, as shown in
Figure 1. After a single-pole ground fault occurs, due to the grounding of the AC side of
the system, the capacitors of each faulty pole bridge arm will form a capacitive discharge
path through the fault ground point and the AC side ground point. Taking the ground fault
of the negative busbar as an example, the discharge path is indicated by red lines, which is
shown in the Figure 2.

When a pole-to-pole fault occurs, the equivalent capacitance of the MMC can be
deduced according to the law of energy conservation [7]. When a single pole ground fault
occurs, the energy of the equivalent capacitance of the lower part of the three bridge arms
should be equal to 1/2 DC bus voltage.
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Assuming all SMs have the same voltage [7], the equivalent capacitor can be
derived from

EMMC = 3 ∗ 1
2

CSM∑n
k=1 v2

Ck
=

1
2

C′e

(
1
2

Vdc

)2
(1)

3 ∗ 1
2

CSMn
(

Vdc
n

)2
=

1
2

C′e

(
1
2

Vdc

)2
(2)

C′e =
12CSM

n
(3)

It was seen that the equivalent capacitor of each bridge in pole-to-pole fault mode is
2CSM

n [20], then equivalent capacitor of each bridge in SPG fault mode is 4CSM
n ; finally, the

equivalent capacitor of three bridges in parallel is 12CSM
n . Three resistance and inductance

are also in parallel, and so, the equivalent resistance and inductance are

R′e =
1
3

Rarm; L′e =
1
3

Larm

The equivalent parameters in the fault circuit are as follows:
Re = R′e =

1
3 Rarm + Rgs

Le = L′e + LT = 1
3 Larm + LT

Ce = C′e =
12CSM

n

(4)

In the formula: R′e is the equivalent resistance of MMC, L′e is the equivalent inductance
of MMC, C′e is the equivalent capacitance of MMC; Rarm is the bridge arm equivalent
resistance; Larm is the bridge arm inductance; LT is the DC reactor; Rgs which represents
the parallel connection of Rg and Rs is the equivalent resistance of the neutral point of the
connected transformer. The equivalent capacitor of each bridge and all bridges are 4CSM

n
and 12CSM

n , respectively.

i(t) = −∑j=a,b,c
4
n

d
(

vlowj

)
dt

(5)

That is

I0 = −12CSM
dvc(t)

dt
(6)

The voltage is both ends of the capacitor.

d2i
dt2 +

Re

Le

di
dt

+
1

LeRe
i = 0 (7)

Through Laplace transform, the discharge current of the converter station in Figure 2 is:

(t) = − i(0−)√
1−ξ2

e−ξωntsin(ωn
√

1− ξ2t− ϕ)

+Cuc(0−) ωn√
1−ξ2

e−ξωntsin(ωn
√

1− ξ2t)
(8)

i(8)


ωn = 1√

LC

ξ = R
2

√
C
L

ϕL = arctan
√

1
ξ2 − 1

(9)

where i(t) is the fault current; uc(0−) and i(0−) are the DC voltage and DC current of the
converter station, respectively; t is the duration of the fault.

The number of sub-modules n of a single bridge arm of MMC is 25, the sub-module
capacitance CSM = 15 mF, the bridge arm inductance Larm = 7 mH, the DC voltage
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udc = 10 kV, bridge arm equivalent resistance Rarm = 1 Ω, neutral grounding resistance
Rg = 2.5 kΩ, Rs = 625 Ω. Dyn11 wiring mode can be used to connect the transformer here
to meet the DC side grounding requirements.

When Rg = 0, and Rs is cut off, the fault current is only suppressed by the DC reactor.
According to the parameters of the converter station, the changing trend of the fault current
with LT is shown in Figure 3. When LT = 0, Rgs = 0, the maximum fault current reaches
2.3 kA at 6 ms, which will reduce the reliability of the DCCB. The DC reactor can reduce
the peak value and slope of the fault current. When LT = 0.0035 H, the fault current is
reduced to approximately 1 kA at 6 ms. In order to protect the safety of personnel and
equipment, a large grounding resistance is usually set, and Rg = 2.5 kΩ can be set here.
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3. Fault Criterion and Protection Scheme
3.1. Start Criterion of SPG Fault

At the beginning of the SPG short-circuit fault, due to the large resistance of the neutral
point grounding, the short-circuit current is limited, the current flowing through the neutral
point is less than 10 A. The DC pole voltage becomes unbalanced. DC voltage unbalance is
used as main protection; the fault criterion is as follows:

|UdP(t) + UdN(t)| > Uset (10)

In the formula, UdP(t) is the DC positive bus voltage; UdN(t) is the DC negative bus
voltage; Uset is the constant value of the DC voltage unbalance protection setting, where
Uset = 0.2udc. The protection is carried out under asymmetric fault, and it will not act
under normal operation and symmetrical faults. Considering the reliability, 20% of rated
DC voltage is selected as the value of action threshold.

3.2. Location Method of SPG Fault

Since the connection transformation was grounded by a high resistance, the fault
current was small under SPG fault. Under this condition, differential protection cannot
satisfy the requirements of protection action and reliability. This means that detection
and location of fault cannot be obtained by differential protection. This paper proposed
a fast fault location method. Current derivative at grounding resistance of connection
transformer was monitored. When SPG fault occurs, the value of current derivative will
rise remarkably. Therefore, when the value of current derivative increases to above the
threshold, the small resistance will be switched on, which will lead to raise fault current
value to satisfy the requirement of differential protection. The method above determines
the fault location and classification in concert with voltage unbalance protection. Current
derivative reduces the detection of fault current, and it does not require communication.
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3.2.1. Differential Protection Action Criterion

Different from the DC voltage unbalance protection, the differential protection can
determine the fault location in principle. In order to improve sensitivity, this paper applied
the differential protection based on the zero-mode current.

Assuming that the fault occurs in DC side of Jishan II station, both ends are M, N,
respectively, iM0, iN0 are zero-mode current.{

iM0 =
√

2
2
(
iMp + iMn

)
iN0 =

√
2

2
(
iNp + iNn

) (11)

where iMp, iMn are positive current and negative current at M side, respectively, iNp,iNn are
positive current and negative current at N side, respectively.

The differential protection criterion is as follows,

|iM0 + iN0| > max(IC,set.L, kset,L Ires,L) (12)

where the threshold value of differential current IC,set.L = 0.02IDC.Base; breaking current
Ires,L = max(iM0, iN0); breaking coefficient kset,L = 0.02.

3.2.2. The Threshold Value of Current Derivative

The fault current derivative can be obtained from the (7).

dI =
di
dt

=
Vdc
2Le

e−
Re
Le t (13)

So, the value threshold of current derivative can be presented:

dIset = ksetmax
(∣∣∣∣Vdc

2Le
e−

Re
Le t
∣∣∣∣) (14)

where kset is coefficient of current derivative.

3.3. Protection Strategy

The protection scheme is as follows:

(1) The DC power distribution control and protection system detects the change of the
DC voltage according to the Formula (4). Whether the voltage unbalance occurs will
be judged in the system. Meanwhile, the current derivative is detected according the
Formula (13);

(2) If voltage unbalance is detected, the system reduces the power output. If the value of
current derivative exceeds the threshold, the neutral point grounding small resistance
Rs is switched on to increase the fault current rapidly;

(3) If Formulas (10) and (14) are satisfied at the same time, it is judged that a SPG fault has
occurred. After that the small resistance is switched off, and then, the fault isolation
and system operation state transition procedures are entered.

The flow chart of SPG fault protection strategy Scheme 1 for DC lines is as follows:
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4. Experiment and Simulation

The MTDC distribution network studied here had five operating modes, including
three-terminal networking, two-terminal hand in hand, two-terminal isolated, single-
terminal supply, STATCOM, etc. The direction and magnitude of the DC transmission
power can be adjusted according to the flow of the AC power grid, realizing the unified
coordinated control of the active and reactive power of the ±10 kV DC power grid and the
10 kV AC power grid.

According to the topology in Figure 1, the model of multi-terminal DC distribution
network was built based on PSCAD/EMTDC, in which the MMC converter was composed
of six bridge arm components and bridge arm reactance, as shown in Figure 4. These
were the three-port DC circuit breaker, which was composed of three fast mechanical
switches, DCCB1, DCCB2, and DCCB3, two bidirectional power electronic switches, U1
and U2, and two energy absorption branches, R1 and R2. Among them, arbitrarily DC lines
were, respectively, connected to two adjacent DC lines through the two fast mechanical
switches in the hybrid DC circuit breaker to carry normal current, arbitrarily DC lines
were connected to the bidirectional power electronic switch in the DC circuit breaker for
bidirectional carrying and cutting off the fault current, each bidirectional power electronic
switch was connected in parallel with the energy absorbing branch to absorb the energy
stored in the fault line and limited the overvoltage when the bidirectional power electronic
switch operated. The main circuit model is shown in Figure 4, where T1 was connected
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to port A, T2 was connected to port B, and T3 was connected to port C. In Table 1, the
parameters of T1–T3 are shown. The results of RTDS are shown in Figures 5–8.
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Table 1. Parameters of the three-terminal VSC converter.

VSC No. T1 T2 T3

Rated Power (MW) 20 10 10
AC grid voltage (kV) 10 10 10
DC bus voltage (kV) ±10 ±10 ±10
Submodule topology half bridge half bridge half bridge

Number of single-arm submodules 25 25 25
Submodule Capacitance (mF) 30 15 15

Bridge arm reactance (mH) 3.5 7 7
Transformer capacity (MVA) 24 12 12

Short circuit impedance ratio (%) 10 10 10
Winding Type Dyn11 Dyn11 Dyn11

DC reactor (mH) 8 8 8

When the system operated normally, the three-terminal AC side supplied power to
the DC distribution network by the ring network and realized flexible power transfer. At
this time, the system worked in the three-terminal networking mode. T1 worked with fixed
DC voltage control (VDCQ) mode, and T2 and T3 used power control (PQ) mode. The
initial states of T1, T2, T3 are shown in Table 2.

Table 2. Initial states of T1–T3.

VSC No. T1 T2 T3

AC system capacity 2 MVA 1 MVA 1 MVA
AC voltage level 10 kV 10 kV 10 kV

control mode VdcQ PQ PQ
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Before the fault occurred, iT3P = 40 A, iT3N = −40 A, iT3NP = 0 A. When t = 6.61 s, a
ground fault occurred at the DC negative pole of T3. The system detected an imbalance
between positive voltage and negative voltage. At this time, the minimum value of iT3P
reached −30 A, the minimum value of iT3N reached −200 A, and the peak value of the
neutral point current was 5.2 A, which was far less than the short-circuit current of 1.5 kA in
the related research [10]. It can be considered that the negative ground fault had a greater
impact on the negative current than on the positive current. After 3 ms, the system turned
on the small resistance Rs= 650 Ω, and confirmed that it was a SPG fault. When t = 6.613 s,
the DC positive and negative poles tripped the DC circuit breaker, iT3P = 0 A, iT3N = 0 A.
The three-port DC circuit breakers DCCB2 and DCCB3 connected to T3 were tripped at
the moment of 6.662 s, and T3 was isolated. Figure 5 shows the DC positive current, DC
negative current, and neutral point current of T3.

When t = 6.61 s, ACCB3 and DCCB6 were tripped to break the AC line and isolate T3.
When t = 6.662 s, DCCB2 and DCCB3 were tripped to isolate T3, T4. Figure 6 shows the
action sequence of the AC circuit breaker, DC circuit breaker, and three-port circuit breaker.
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Before the fault occurred, uT1P = 10 kV, uT1N = −10 kV, iT1P = −100 A, iT1N = 100 A.
Affected by the SPG fault of T3, the DC positive and negative voltages increased by 10 kV at
the same time due to fault disturbance. However, the power output from T1 became small.
The DCCB2 and DCCB3 tripped at t = 6.662 s, uT1P and uT1N returned to normal levels
at t = 6.8 s, and the current became small, iT1P = −50 A, iT1N = 50 A. Each parameter’s
waveform of T1 is shown in Figure 7.

T2 was also affected by T3. The DC positive and negative voltages increased by 10 kV
at the same time. After the three-port circuit breaker trips, the T2 voltage returned to the
normal level at t = 6.8 s. The positive and negative currents had an evident jitter at 6.615 s,
but the steady-state amplitude changed little. Each parameter’s waveform of T2 is shown
in Figure 8.
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5. Conclusions

1. The comprehensive use of DC reactor and neutral point grounding resistance of
connection transformer is an effective means to reduce the cost of fault removal and
improve the economy of the system;

2. The criterion proposed can quickly detect the DC SPG fault. Voltage unbalance
protection is used as main protection. In order to locate the fault, the method of
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switching the small resistance by detecting current derivative is proposed. The value
of fault current rises rapidly so that reliability of differential protection can be satisfied;

3. The fault of T2 had a momentous effect on the power supply quality of other converter
stations during SPG fault. The results proved that T2 can be isolated in time by three
port DCCB. The operating mode of system was switched from the three-terminal
network to two-terminal hand-in-hand. In future research, it will be necessary to
study the influence of other faults on the MTDC distribution network. In addition,
the voltage control mode of the converter station is also an important research field.
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