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Abstract: In micro-grids (MGs), renewable energy resources (RESs) supply a major portion of the
consumer demand. The intermittent nature of these RESs and the stochastic characteristics of the
loads cause a frequency stabilization issue in MGs. Owing to this, in the present manuscript, the
authors try to uncover the frequency stabilization/regulation issue (FRI) in a two-area MG system
comprising wind turbines (WTs), an aqua-electrolyzer, a fuel cell, a bio-gas plant, a bio-diesel
plant, diesel generation (DG), ship DG, electric vehicles and their energy storage devices, flywheels,
and batteries in each control area. With these sources, the assessment of the FRI is carried out
using different classical controllers, namely, the integral (I), proportional plus I (PI), and PI plus
derivative (PID) controllers. The gain values of these I, PI, and PID controllers are tuned using
the recently proposed smell agent optimization (SAO) algorithm. The simulation studies reveal
the outstanding performance of the later controller compared with the former ones in view of the
minimum settling period and peak amplitude deviations (overshoots and undershoots). The SAO
algorithm shows superior convergence behavior when tested against particle swarm optimization
and the firefly algorithm. The SAO-PID controller effectively performs in continuously changing and
increased demand situations. The SAO-PID controller designed in nominal conditions was found to
be insensitive to wide deviations in load demands and WT time constants.

Keywords: electric vehicles; frequency regulation; micro-grid; PID controller; smell agent optimization;
wind turbine

1. Introduction

The continuous utilization of fossil-fuel-based energy sources over the past few
decades has not only depleted their available levels but also raised environmental concerns
about, for example, global warming, air pollution, the greenhouse gas effect, etc. Owing to
this, in recent years, renewable energy resources (RESs) have been promoted in place of
fossil fuels for the generation of power. A micro-grid (MG) can supply power to remote
areas that are difficult to feed from conventional coal-based sources due to geographical
conditions. An MG mainly comprises RESs, resulting in cleaner power production and a
reduction in power losses. Despite the cleaner energy production using RESs, their inter-
mittent nature and associated uncertainties make the operation of a micro-grid difficult,
particularly due to the oscillations in frequency and power that require proper regula-
tion [1]. Storage devices act as the supplement solution for the frequency regulation issue
(FRI) in the event of a mismatch between the load demand and generation, including
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the intermittent nature of RESs [2,3]. A micro-grid comprises various distributed energy
resources (DERs) that include RESs such as solar photovoltaic systems and wind turbines,
storage devices, and connected loads.

Electric vehicles (EVs) play an important role in the future automotive industry as they
facilitate environmentally friendly technology with significant reductions in hazardous
greenhouse gas emissions and energy-saving features. Furthermore, EVs can be used for
energy storage (ES) in power grids that can exchange power with the grid bi-directionally,
i.e., during charging, an EV functions as a consumer in the grid, while during discharging,
as a power producer. Hence, EVs play an important role in enhancing the operation of
micro-grids. The main challenge in a micro-grid is that it accumulates intermittent RESs
whose behavior is unpredictable and creates continuous frequency fluctuations, which
needs to be addressed.

A critical literature survey reveals that a considerable amount of research work on ad-
dressing micro-grid frequency regulation has been reported [2–24]. Frequency stabilization
in isolated micro-grids is addressed in [2,4–13,24], and that in interconnected environments
is explored in [3,14–23]. The investigation in [4] took wind turbines (WTs), bio-diesel (BD),
solar-thermal (ST) plants, fuel cells (FCs), and water heaters (WHs) into consideration.
In [5–9], the studies considered photovoltaics (PV), diesel generators (DGs), WTs, FCs,
and/or AEs, along with battery and flywheel storage. The investigation in [10] explored
the micro-grid stability issue with an ST plant, WTs, DG, an AE, an FC, and battery storage.
With electric vehicles (EVs), DG, and WTs, the micro-grid frequency problem is addressed
in [11,12]. WTs, DG, and battery storage were studied in [13]. A two-zone MG system
interconnected with DG, WTs, an FC, PV, and EVs was studied in [3]. A two-area-based
WT, PV, DG, and battery storage MG system was investigated by Lal et al. [14]. Bio-diesel,
micro-hydro turbines, and ST plants in an interconnected environment were considered by
the authors of [15]. WTs, PV, and DG with a storage system interconnected micro-grid is
considered in [16]. Ranjan et al. [17] studied a three-zone interconnected micro-grid with
WT, ST, bio-gas, and PV units. Latif et al. [18] applied a strategy to stabilize the dynamics in
a two-zone micro-grid with a WT, DG, a heat pump, and a freezer. A two-zone micro-grid
with ST, WP, AE, FC, and battery storage units was studied in [19]. A multi-micro-grid
with WP, PV, and DG plants is considered in [20]. In [21] and [22], a two-zone micro-grid
with DG, WP, and PV plants and a storage system was studied. Bhuyan et al. [23] investi-
gated a two-zone micro-grid system with ST, BD, battery, and super-conducting magnetic
storage units.

Energy storage devices play an important role in frequency stabilization in micro-grids.
They store the excess power generated in off-peak hours while releasing energy during peak
demand hours. Owing to these advantages, the studies in [5–9] utilized both flywheel and
battery storage, whereas the authors of [10,13] considered a battery storage system alone.

To stabilize fluctuations due to the randomized behavior of RESs and loads, a suitable
controller is necessary for a micro-grid system. Owing to this, in the literature, different
controllers have been applied to the FRI pertaining to MGs [2,4–6,8,10,12–19,21–23]. The
studies in [5,8,13,16,17,19,21] addressed the FRI using a proportional–integral–derivative
(PID) controller. A dual-degree PID (DD-PID or 2DOF-PID) controller was implemented
in [10]. The utilization of non-integer controllers, i.e., fractional-order controllers, is ob-
served in [18,22]. A cascade control mechanism with master and slave controllers was
applied to solve the FRI in micro-grids by the researchers in [6,15,23]. PI controllers have
been applied in investigations [13,24]. Intelligent-based fuzzy logic controllers were used
in [12,14,15]. A two-stage controller was also implemented in the investigations carried out
in [4]. The PID controller is versatile and popularly used owing to its superior dynamic and
robust performance [8]. It is simple in structure, easy in tuning, reliable, requires minimal
expertise, and offers a balance between performance and cost [1].
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Once the controller is selected, it is expected that the controller adapts itself to varied
system conditions, particularly in a micro-grid with intermittent RESs. To achieve the ro-
bust and adaptive nature of the controller, its knobs (gains or parameters) should be gained
through a global optimization algorithm. In literature, the techniques such as genetic
algorithm (GA) [25], particle swarm optimization (PSO)-based robust optimization [26],
the firefly algorithm (FA) [8], cuckoo search (CS) methods [13], social spider optimiza-
tion (SSA) [16], mine blast algorithm (MBA) [17], teaching–learning-based optimization
(TLBO) [21], hybrid PSO–gravitational search algorithm [5], etc., have been applied to
obtain the optimal knobs of the controller.

By critically analyzing the literature survey, the following research gaps have
been identified:

i. Frequency stabilization for a micro-grid system comprising bio-gas [17] and a ship
diesel generator (SDG) [27] is in infancy and needs further investigations.

ii. The comparative analysis of classical controllers, namely, the integral (I), proportional
plus I (PI), and PI plus derivative (PID) controllers, has not been performed for a micro-
grid system with BD, a SDG, WTs, an AE, an FC, DG, EVs, and storage (BES and FES).

iii. The recently proposed smell agent optimization (SAO) algorithm offers advantages
in finding the global optimum for 76% of benchmark functions and the cost-effective
design of a hybrid renewable energy system [28]. The SAO algorithm has not
been applied for tuning different controller knobs, which guarantees better micro-
grid performance.

iv. The effectiveness of the SAO algorithm has not been tested against particle swarm opti-
mization (PSO) and firefly algorithm (FA) for the stabilization of micro-grid oscillations.

Based on the findings of the research gaps and literature survey, the major contribu-
tions of this manuscript are as follows:

i. We model the dual-area interconnected small-signal analysis model of a micro-grid
system comprising wind turbines (WTs), an aqua-electrolyzer (AE), fuel cell (FC), bio-
gas (BG) plant, bio-diesel (BD) plant, diesel generation (DG), ship DG, electric vehicles
(EVs) and their energy storage devices, flywheels, and batteries in each control area.

ii. We apply various classical controllers, namely, the integral (I), proportional plus I
(PI), and PI plus derivative (PID) controllers, to regulate the frequency of the micro-
grid system.

iii. We apply the smell agent optimization (SAO) algorithm for the first time to optimize
the above controller parameters to regulate oscillations in the MG system consid-
ered in i.

iv. We study the comparative behavior of these classical controllers to decide the best
among them.

v. We show the effectiveness of the SAO algorithm compared with the commonly em-
ployed particle swarm optimization (PSO) and firefly algorithm (FA).

vi. We observe the SAO-tuned PID controller performance compared with the I and PI
controllers for randomized load demand patterns.

vii. We observe the toughness of the SAO-tuned PID controller parameters with a larger
load demand and deviations in the time constant values of WTs.

The rest of the manuscript is described as follows. In Section 2, the system considered
for evaluation is described. The various controllers are explained in Section 3. The detailed
SAO algorithm is discussed in Section 4. In Section 5, the analysis of the obtained results is
discussed. Finally, the conclusions are described in Section 6.
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2. System under Investigation

In the present manuscript, a multi-source interconnected micro-grid system is consid-
ered for investigation that has a biodiesel generator (BDG), a ship diesel generator (SDG),
wind turbines (WTs), an aqua-electrolyzer, a fuel cell, a diesel generator (DG), electric
vehicles (EVs), a biogas (BG) plant, and a storage system (battery energy storage (BES)
and flywheel energy storage (FES)) in both areas. The effectiveness of various classical
controllers (I, PI, and PID) in stabilizing/regulating the frequency and power is addressed.
The nominal gain and time constant values of the various components considered are
mentioned in Appendix A.

2.1. Electric Vehicle

There are basically three principal states of an EV, namely, driving, charging, and
controllable states. After plugging in an EV, it enters into the driving state, and its state
transitions from the controllable to the driving state. Each EV has a battery of 3 kW/15 kWh
(CkW = 3 and CkWh = 15). After the trip, when the EV is plugged into a charging mode to
charge its battery, this is referred to as the charging state of the EV. During this state of the
EV, it is uncontrollable, i.e., it does not respond to frequency regulation (FR) signals. In
the controllable state, the EV responds to FR signals, whereby the SOC of the EV fluctuates
depending on the FR signal. The control-in rate is calculated using a random function
so that the average of the driving period and energy loss from plug-out can be found.
The charge and discharge of controllable EVs are limited by their MW (±CkW) and MWh
(80–90% of the SOC) limits. Each EV informs its local control center about its state of control,
whether they are controlled-in or plugged-out. The model for the FR of EVs is given in
Figure 1 [11]. This model replicates the behavior of one EV battery. This EV model can be
used to calculate the total charging or discharging power in a controllable state. In Figure 1,
The terms T, µe, and δe denote the time constant, inverter capacity, and power ramp rate
constraints, respectively, of an EV. EMAX and EMIN denote the maximum and minimum
controllable energy of the EV battery. ∆PEV shows the amount of charging/discharging
power. When ∆PEV = 0, the EV is said to be in idle mode; if ∆PEV > 0, the EV stays in
discharging mode; and ∆PEV < 0 means the EV is in charging mode. EVs can be charged
and discharged within the limits of ±µe. However, it should be noted that when the stored
energy of the EV exceeds the upper limit (EMAX), the EV may no longer be charged, and,
thus, it can only be discharged within the range of 0 to µe. Similarly, if the stored energy
of the EV is less than the lower limit (EMIN), the EV can only be charged within the range
of −µe to 0. The terms K1 and K2 denote the difference between the limited energy and
current energy of the EV battery, respectively, which can be estimated as K1 = E − EMAX
and K2 = E − EMIN, respectively, where, E is the current energy of the EV battery.
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Several EVs are used in a charging station; therefore, there is a need for consider-
ing an aggregate equivalent EV model that considers each EV with dissimilar inverter
capacities, which is called the total energy model (TEM) of an EV. The TEM used for
frequency regulation is shown in Figure 2 [3,29]. In the present study, a TEM with 50,000
EVs is assumed, in which 10% of them are treated as being in the vehicle-to-grid (V2G)
controllable state. The EVs have a bidirectional nature and can be connected in either a
series or parallel arrangement. If the EVs are charged, they respond to the load frequency
control (LFC), i.e., frequency regulation (FR) signals within the energy capacity limits, i.e.,
the MWh limits expressed as EMIN

CONTROL ≤ ECONTROL ≤ EMAX
CONTROL. The energy of the

controllable EVs is denoted as ECONTROL. The lower and upper energy capacity limits are
represented by EMIN

CONTROL and EMAX
CONTROL, respectively. These limits are estimated from

Equations (1) and (2) and depend on the SOC, i.e., the control strategy [29].

EMIN
CONTROL =

NCONTROL ∗ CkWh
1000

∗ 0.8 (1)

EMAX
CONTROL =

NCONTROL ∗ CkWh
1000

∗ 0.95 (2)
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The entire energy stored in all EVs, ECONTROL, can be obtained from Equation (3),
which shows the relation between the control-in energy (ECONTROL-IN), plug-out energy
(EPLUG-OUT), initial energy (E0), and energy associated with frequency regulation (EFR).

ECONTROL = −EFR + ECONTROL-IN + E0 + EPLUG-OUT (3)

The number of plug-out EVs is taken as 10,000 and that of the control-in EVs is taken
as 40,000, and the initial SOC of the EVs in the TEM is considered as 0.8. The number of
controllable EVs can be calculated with the help of the control-in rate (RCONTROL-IN), the
plug-out rate (RPLUG-OUT) that denotes the number of EVs entering the controllable state,
and the number of initial controllable EVs (N0), as shown in Figure 3.
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2.2. Biodiesel Generator [30]

Biodiesel is an esterified product, which can be obtained from biofuel basics (sugar,
starch, or vegetable oil). It is an environmentally friendly and sustainable source of energy,
and, hence, it does not affect the environment in a negative manner. The first-order transfer
function of a biodiesel generator is given using Equation (4).

Biodiesel Generator : GBDG =
KVA·KBE

(1 + sTVA)(1 + sTBE)
(4)

2.3. Storage System [9]

A battery energy storage system (BESS) is used to manage short-term power fluctu-
ations, which can occur in a micro-grid due to various unavoidable reasons. The BESS
effectively handles these situations to keep the frequency variation within suitable limits.
The time constants of a BESS are limited to several seconds as it takes time to charge.
On the other hand, a flywheel energy storage system (FESS) plays a crucial role in sup-
plying the requisite energy in peak load periods quickly by storing energy in a kinetic
energy form during off-peak periods. The linearized transfer functions are denoted in
Equations (5) and (6).

Battery storage : GBES =
KBESS

1 + sTBESS
(5)

Flywheel storage : GFES =
KFES

1 + sTFES
(6)

2.4. Ship Diesel System [27,31]

Due to several advantages, such as a quick start, high efficiency, and minimum
maintenance, a ship diesel system (SDG) acts as the backup choice for shipboard micro-
grids. Uncontrollable oscillations in a micro-grid system can be effectively controlled using
an SDG [31], whose first-order transfer function is given using Equation (7) [27].

GSDG =
1

(1 + sTg)(1 + sT)
(7)

2.5. Wind Turbine Generator (WTG) [9]

A WTG is a renewable resource, and its power generation depends on the speed of
wind, as expressed in Equation (8).

PWT =
1
2

ρArCPV3
W (8)
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where ρ, Ar, CP, and V3
W are the air density (=1.25 kg/m3), blades’ swept area, power

coefficient, and cube of wind speed, respectively. The linearized WTG model is given using
Equation (9).

GWT =
1

1 + sTWT
(9)

2.6. Aqua-Electrolyzer (AE) and Fuel Cell (FC) [9,32]

An aqua-electrolyzer (AE) uses a part of a WTG to produce hydrogen gas, which is used
for the generation of power in a fuel cell (FC). A fuel cell uses the chemical energy of hydrogen
to generate electricity by combining air with gaseous hydrogen in the absence of combustion.
FCs offer several advantages, such as a low pollution level, high efficiency, etc. [32]. The
small-signal representations of AE and FC are given using Equations (10) and (11).

GAE =
KAE

1 + sTAE
(10)

GFC =
KFC

1 + sTFC
(11)

2.7. Diesel Generator (DG) [11]

A DG produces power on a small scale and has advantages such as a high starting
speed, durability, and higher efficiency. When load demand varies, a DG adjusts its output
and contributes to frequency stabilization through fuel regulation [11], whose linearized
transfer function is given using Equation (12).

GDG =
KDG

1 + sTDG
(12)

2.8. Bio-Gas Generator (BGG) [15]

Biogas is produced by biochemically compositing the organic waste in O2-free envi-
ronments, which can be utilized as a substitute for existing traditional DGs. The small-
signal-based transfer function of a BGG is given in Equation (13).

GBGG = KBG
1 + sXc

(1 + sYc)(1 + sbB)
·1 + sTCR
1 + sTBG

· 1
1 + sTBT

(13)

The micro-grid under study is shown in Figure 4, in which different controllers are
applied to obtain a better system stabilization of oscillations subjected to the minimization
of the figure of merit JMIN given using Equation (14).

JMIN =

Time∫
0

{
∆ f 2

1 + ∆ f 2
2 + ∆P2

tie

}
dt (14)

where ∆ f 2
1 , ∆ f 2

2 , and ∆P2
tie denote the squares of the variations in the frequencies in areas 1,

2, and the tie-line power connecting these areas.
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3. Controllers Utilized

In the present study, to stabilize/regulate the oscillations, the classical controllers
named integral (I), proportional plus I (PI), and PI plus derivative (PID) are applied in both
control areas. The I controller has one tunable parameter (KI), the PI controller has two
parameters, (KI and KP), and the PID controller has three tunable knobs (KI, KP, and KD).
These classical controllers’ structures are shown in Figure 5. The PID control process can be
described in the time domain as Equation (15).

R(t) = KP ACE + KI

∫
ACEdt + KD

d
dt

ACE (15)
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where, ACE denotes the area control error, which is the combination of the changes in the
frequency (∆f ) and tie-line powers (∆Ptie), and R(s) is the output of the controller.

Energies 2023, 16, x  9 of 26 
 

 

Where, ACE denotes the area control error, which is the combination of the changes in the 
frequency (Δf) and tie-line powers (ΔPtie), and R(s) is the output of the controller. 

R(s)ACE
KI

s
 

(a) 

R(s)ACE
KI

s

KP

+

+

 
(b) 

ACE

  +

R(s)  +

  +

KP

KI

s

KDs

 
(c) 

Figure 5. The classical controllers. (a) I controller; (b) PI controller; and (c) PID controller. 

In the Laplace domain, it can be written as Equation (16) or Equation (17). 

( ) I
P D

KR s K ACE ACE sK ACE
s

= + +   (16)

( ) I
P D
KR s K sK

ACE s
= + +   (17)

4. SAO Algorithm 
The SAO algorithm is a recent optimization technique proposed by Salawudeen et 

al. [28]. It is based on the connection between smell agents and the objects that evaporate 
the smell molecules. This SAO algorithm is governed by three modes, namely, sniffing, 
trailing, and random. In the sniffing mode, the agent distinguishes smell molecules, finds 
their positions, and makes the decision to find the source or not. In the trailing mode, 
based on the conclusion from the sniffing mode, the agent follows the smell molecules. 
The random mode helps the agent in avoiding the local optimum solutions. The SAO al-
gorithm flow chart is given in Figure 6, and its processes are given in Figure 7. 

Figure 5. The classical controllers. (a) I controller; (b) PI controller; and (c) PID controller.

In the Laplace domain, it can be written as Equation (16) or Equation (17).

R(s) = KP ACE +
KI
s

ACE + sKD ACE (16)

R(s)
ACE

= KP +
KI
s

+ sKD (17)

4. SAO Algorithm

The SAO algorithm is a recent optimization technique proposed by Salawudeen et al. [28].
It is based on the connection between smell agents and the objects that evaporate the smell
molecules. This SAO algorithm is governed by three modes, namely, sniffing, trailing,
and random. In the sniffing mode, the agent distinguishes smell molecules, finds their
positions, and makes the decision to find the source or not. In the trailing mode, based on
the conclusion from the sniffing mode, the agent follows the smell molecules. The random
mode helps the agent in avoiding the local optimum solutions. The SAO algorithm flow
chart is given in Figure 6, and its processes are given in Figure 7.

4.1. Sniffing Mode

The initialization of smell molecules is given using Equation (18).

X(m)
i =

 x(1,1) x(1,2) x(1,D)
...

...
...

x(N,1) x(N,2) x(N,D)

 (18)

The terms N, D, and m denote the total number of variables, decision variables, and
iteration count, respectively.
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The best position of the agent can be generated using Equation (19).

X(m)
i = LB + r0 × (UBi − LBi) (19)

where LB, UB, and r0 denote the lower and upper bounds and random value ∈ (0,1].
The velocity with which smell molecules diffuse from the origin or source is given

using Equation (20).

v(m)
i =

 v(1,1) v(1,2) v(1,D)
...

...
...

v(N,1) v(N,2) v(N,D)

 (20)

The Brownian-form diffused molecule velocity updating is performed using Equation (21).

xm+1
i = xm

i + vm+1
i × ∆t (21)

where ∆t assumed to be 1.
The velocity update in the smell molecules is evaluated using Equation (22).

vt+1
i = vt

i + v (22)

where the updated component of the velocity, v, is given using (23).

v = r1

√
3kT
M

(23)

where k, M, and T denote the smell constant, the mass of the molecule, and the temperature,
respectively.

4.2. Trailing Mode

This mode models the searching nature of the agents toward smell sources. The agent
motion towards smell sources is given using Equation (24).

xm+1
i = xm

i + r2 × ol f × (xm
agent − xm

i )− r3 × ol f × (xm
worst − xm

i ) (24)

The notations r2 and r3 are random numbers ∈ (0,1] that penalize the influence of the
olfaction capacity (olf ) on xm

agent and the effect of olf on xm
worst.

4.3. Random Mode

The random motion of the smell agent is given using Equation (25).

xm+1
i = xm

i + r4 × SL (25)

where, SL denotes the step length, and r4 is a random value that penalizes r4.
For the optimization of the various parameters of the classical controllers, the SAO

algorithm parameters considered are olf = 0.9, k = 0.6, M = 0.9, T = 0.95, SL = 0.02, the smell
molecule number (N) = 5, and iterations (m) = 100 subjected to obtain JMIN discussed in
Equation (14).

5. Analysis of Results
5.1. Nominal Conditions

This case study is evaluated in the MG system (Figure 4) with consideration of a
2% step-natured disturbance (SND) in both areas. With a 2% SND, the parameters of the
classical controllers, namely, I, PI, and PID, are tuned using the SAO algorithm and are
given in Table 1. With these values, the regulation of frequency and tie-line power changes
are plotted and compared in Figure 8. The various measures of performance such as settling
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duration (SD), highest magnitude (HM) and lowest magnitude (LM) of oscillations are
indicated in Table 2 among these controllers.

Table 1. The SAO-tuned I, PI, and PID controllers’ parameters.

Parameter/Controller I PI PID

KP (Area 1) —– 0.9980 0.9080
KI (Area 1) 0.3644 0.869 0.9200
KD (Area 1) —– —– 0.8170
KP (Area 2) —– 0.2277 0.8660
KI (Area 2) 0.1450 0.9989 0.9912
KD (Area 2) —– —– 0.9500
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Table 2. The settling durations and highest and lowest magnitudes of Figure 8 responses.

Response/Dynamic Measures
Settling Duration Highest Magnitude (10−3) Lowest Magnitude (−10−3)

I PI PID I PI PID I PI PID

Response, ∆f1 15.93 12.45 10.36 18.54 15.59 12.95 13.44 9.89 8.97
Response, ∆f2 8.699 8.272 8.187 34.65 18.52 18.42 16.28 12.91 11.58

Response, ∆Ptie 21.57 20.63 17.66 03.64 02.52 0.73 0.38 0.35 0.16

It is clear from Figure 8 and Table 2 that between the three classical controllers, the PID
controller is superior in terms of the SD, HM, and LM measures. The critical evaluations of
the results for this case are explained herein.

The ∆f (Area 1) graph shows a 53.76% and 20.17% improvement in the SD with
PID in comparison with the I and PI controllers. With the PID controller, a 6.25% and
1.03% superior response in the SD of ∆f (Area 2) is witnessed compared with the I and
PI controllers. Similarly, the settling durations (SDs) are improved by 22.14% and 16.81%
compared with earlier controllers for ∆Ptie.

The highest magnitudes (HMs) of oscillations are reduced by 43.16% and 20.38% in ∆f
(Area 1) and 88.11% and 0.542% in ∆f (Area 2) for the PID controller compared with the I
and PI controllers. The effectiveness of the PID controller is found in the lowest magnitudes
(LMs) of oscillations, measured as 49.83% and 10.25% in ∆f (Area 1) and 40.58% and 11.48%
in ∆f (Area 2) with the other controllers.

A comparative scrutiny is evaluated between these controllers in view of their con-
vergence behavior. In Figure 9, the convergence characteristics are plotted, and it can be
witnessed that the PID controller not only converges quickly but also provides a minimum
objective function value (JMIN) compared with the other controllers. A magnitude analysis
is represented in Figure 10 to support this statement.
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5.2. Varied Load Demand Pattern

In the above Section 5.1, the step-natured disturbance (SND) is considered as the load.
However, in practice, the disturbance in the micro-grid system varies continuously. To
analyze the performance of the I, PI, and PID controllers in the event of a continuously
varied load demand, randomized-nature disturbance (RND), as shown in Figure 11, is
applied as the disturbance in Area 1. With the RND as the load demand, the I, PI, and
PID controllers’ parameters are again tuned with the SAO algorithm and given in Table 3.
With these numerical values, the dynamic responses among these controllers are plotted
and compared in Figure 12. Critical observations of these dynamics prove the efficiency
of the PID controller in view of the HM, LM, and oscillations compared with the I and
PI controllers.
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Figure 12. System responses for randomized nature disturbance. (a) ∆f1; (b) ∆f2; and (c) ∆Ptie.

5.3. Evaluation of Performances of SAO, FA, and PSO Techniques

In all the above studies, the SAO algorithm is used to tune all the parameters of the
controllers. Herein, an attempt is made to compare the SAO algorithm with the recently
used firefly algorithm and particle swarm optimization methods. From the above studies,
the superior PID controller is taken for this purpose, and its parameters are individually
obtained with all these controllers and shown in Table 4 (the SAO-PID values are already
given in Table 1). The convergence nature of PSO [33]-PID and FA [34]-PID are evaluated
against the proposed SAO-PID in Figure 13. The critical evaluation in Figure 13 shows that
SAO-PID provides quick convergence along with a minimized JMIN, which confirms the
efficiency of SAO-PID compared with FA-PID and PSO-PID.
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Table 4. The PSO-PID and FA-PID controller parameters.

Parameter/Algorithm PSO FA

KP (Area 1) 0.9129 0.9995
KI (Area 1) 0.4387 0.9998
KD (Area 1) 0.7006 0.9171
KP (Area 2) 0.6616 0.9998
KI (Area 2) 0.8262 0.4220
KD (Area 2) 0.8553 0.9979
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5.4. Insensitiveness of SAO-PID Parameters

From the above studies, the SAO-PID is found to be superior to all the other controllers.
However, it is expected that the system conditions will change, and in those changed
conditions, whether SAO-PID retains its efficiency or not is tested in this case. For this, in
this section, two types of investigations are performed: firstly, with larger load demands
and later, with variations in the time constant of the WTs.

5.4.1. In Larger Load Demand Condition

In this condition, the PID controller is judged for its insensitiveness with larger load
demands in the control areas. In nominal conditions, the assumed SND is 2% in both
areas. The SND values are raised to 3% and 5% in control areas 1 and 2, separately. With
these larger amplitudes of SND, the PID controller parameters (KP, KI, and KD) are again
tuned using the SAO algorithm, and the values are shown in Table 5. With these numerical
parameters, the obtained dynamics are compared with those responses plotted using the
optimum gains given in Table 1 in Figures 14 and 15.

Table 5. The SAO-PID gains at different magnitudes of SND.

Parameter/SND Magnitude 3% SND 5% SND

KP (Area 1) 0.3700 0.9650
KI (Area 1) 0.9980 0.9800
KD (Area 1) 0.5810 0.8900
KP (Area 2) 0.2660 0.8600
KI (Area 2) 0.2199 0.9760
KD (Area 2) 0.9900 0.9890
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In Figures 14 and 15, it is seen that the responses with the nominal and obtained
parameters are not deviating too much, i.e., they are almost the same, which proves the
insensitiveness (robustness) of the optimal PID parameters obtained at the nominal SND
(2%) for wide variations in SND (3% and 5%).

5.4.2. With Changed Time Constants of WTs

In this study, the time constant (TWT = 1.5 s) of intermittent WTs is changed by ±25%,
i.e., to 1.125 s and 1.875 s, and, again, the PID parameters are tuned with the SAO algorithm,
separately, for 1.125 s and 1.875 s and are shown in Table 6. In these changed conditions,
i.e., TWT = 1.125 s and TWT = 1.875 s, the dynamics are compared with the nominal WT
time constant value (TWT = 1.5 s) using the gains given in Table 1 and are shown in
Figures 16 and 17.

Table 6. The SAO-PID gains for ±25% deviations in TWT.

Parameter/% Change in TWT −25% +25%

KP (Area 1) 0.5800 0.7300
KI (Area 1) 0.8510 0.9900
KD (Area 1) 0.7810 0.8010
KP (Area 2) 0.9200 0.9160
KI (Area 2) 0.6800 0.6200
KD (Area 2) 0.9960 0.8300

Energies 2023, 16, x  21 of 26 
 

 

Table 6. The SAO-PID gains for ±25% deviations in TWT. 

Parameter/% Change in TWT −25% +25% 
KP (Area 1) 0.5800 0.7300 
KI (Area 1) 0.8510 0.9900 
KD (Area 1) 0.7810 0.8010 
KP (Area 2) 0.9200 0.9160 
KI (Area 2) 0.6800 0.6200 
KD (Area 2) 0.9960 0.8300 

 

 
(a) 

 
(b) 

Figure 16. Cont.



Energies 2023, 16, 2913 21 of 25

Energies 2023, 16, x  21 of 26 
 

 

Table 6. The SAO-PID gains for ±25% deviations in TWT. 

Parameter/% Change in TWT −25% +25% 
KP (Area 1) 0.5800 0.7300 
KI (Area 1) 0.8510 0.9900 
KD (Area 1) 0.7810 0.8010 
KP (Area 2) 0.9200 0.9160 
KI (Area 2) 0.6800 0.6200 
KD (Area 2) 0.9960 0.8300 

 

 
(a) 

 
(b) 

Energies 2023, 16, x  22 of 26 
 

 

 
(c) 

Figure 16. Insensitiveness of PID controller with −25% variations in WTs time constant. (a) ∆f1; (b) 
∆f2; and (c) ∆Ptie. 

 
(a) 

Figure 16. Insensitiveness of PID controller with −25% variations in WTs time constant. (a) ∆f1;
(b) ∆f2; and (c) ∆Ptie.

The observations of the comparative dynamics shown in Figures 16 and 17 reveal that
they are almost identical, which proves the stiffness of the SAO-PID parameters against
wind turbine generator time constant (TWT) variations by ±25%.
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6. Conclusions

In this article, the frequency stabilization/regulation issue is performed using a smell
agent optimization (SAO)-algorithm-based PID, i.e., a SAO-PID controller in a micro-grid
system comprising wind turbines, an aqua-electrolyzer, a fuel cell, a biogas plant, a bio-
diesel plant, diesel generation (DG), ship DG, electric vehicles, energy storage devices,
flywheels, and batteries. The prime findings of the present research are as follows:

• The SAO-PID controller performs well when compared with the SAO-PI and SAO-
I controllers in view of the settling duration and highest and lowest magnitudes
of oscillations.

• The minimum cost function value is evidenced with the SAO-PID controller in com-
parison with the SAO-based I and PI controllers.

• The efficacy of the SAO-PID controller is observed for randomized-nature disturbance,
also in view of the minimal highest and lowest magnitudes of deviations.

• The SAO technique performance was found to be efficient compared with the PSO
and FA techniques with the measures of both convergence and minimum cost values.

• The parameters of the SAO-tuned PID controller obtained at nominal conditions are
insensitive for larger amplitudes of step-natured disturbances.

• The SAO-based PID controller parameters were found to be stiff for wide variations in
the time constant values of wind turbines by ±25%.

Future Scope

This study can be extended with the utilization of intelligent controllers such as
fuzzy logic and neural network controllers for further effective frequency regulation in
micro-grids. The various degrees-of-freedom controllers, namely, the two-degrees- and
three-degrees-of-freedom controllers, can also be implemented for the above study. Gener-
alized PID controllers, so-called fractional-order controllers, can be applied for effective
frequency stabilization/regulation in a micro-grid system. The selection of the gains of
these controllers can be performed using other optimization methods that can perform
better than the SAO technique in providing optimal solutions.
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Appendix A

Table A1. System parametric values and nomenclature.

Symbols/Notations Description Numerical Values

Tgs, Td, and Rs Time constants and governor parameters of ship diesel generator (s) 0.5, 0.25, 3
Kg, Kt, Tg, Tt, and R Gain, time constant, and governor parameters of diesel generator 1, 1, 0.1 s, 8 s, 2.5

KVA, KBE, TVA, TBE, and R Gain, time constant, and governor parameters of bio-diesel generator 1, 1, 0.05 s, 0.5 s, 2.4
KBG, XC, YC, TCR, TBG, and TBT Gain, reactance, admittance, and time constants of bio-gas turbine 0.5, 0.6, 1, 0.05, 0.01 s, 0.23 s, 0.2 s

KAE and TAE Gain and time constant of aqua-electrolyzer 1/500, 0.5 s
KFC and TFC Gain and time constant of fuel cell 1/100, 4 s

KBES and TBES Gain and time constant of battery energy storage −1/300, 0.1 s
KFES and TFES Gain and time constant of flywheel energy storage system −1/100, 0.1 s

M and D Inertia and damping constants of MG system. 0.012, 0.2
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Table A1. Cont.

Symbols/Notations Description Numerical Values

T12 Synchronizing power co-efficient 0.0867 s
∆ Deviation ——

f and Ptie Frequency and tie-line power ——
µE Inverter capacity limit 0.025
δE Power ramp rate limit 0.01

Emax Maximum controllable energy of EV 0.95
Emin Minimum controllable energy of EV 0.80

T Time constant of EV 1 s
CkWh Energy capacity of EV battery 15 kWh

KP, KI, and KD Proportional, integral, and derivative gains of I, PI, and PID controllers ———–
ACE Area control error
TWT Wind turbine time constant 1.5 s
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