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Abstract: In classical power systems, frequency measurements are transferred via a specialised
communication channel, resulting in time delay. The time delay plays a major role in a power system,
which can reduce the dynamic performance of the load–frequency control (LFC) system and can
destabilise the system. The research to date has tended to focus on developing a new algorithm
to determine the delay margin (DM) rather than looking into a hybrid algorithm which includes a
nature-inspired metaheuristic optimisation technique. This paper introduces a novel method for
computing the DM based on grey wolf optimisation (GWO), specifically for the constant time delay.
In the proposed method, GWO is employed to optimise the minimum error of the spectral radius and
to determine the best design variable of the crossing frequency. With the help of the proposed method,
the sweeping range is no longer required, which improves the accuracy of the result. To evaluate the
proposed method, a two-area network power system is considered as a case study. Furthermore, the
effect of the PI controller gains on the DM is taken into account. The proposed method efficacy is
demonstrated by comparing it with the most recently published methods. The results demonstrate
that the proposed method is remarkably better than the existing methods found in the literature,
where the smallest percentage inaccuracy using the simulation-based DM based on GWO is found to
be 0.000%.

Keywords: communication time delay; delay margin; delay dependent stability; grey wolf optimisation;
two-area load–frequency control

1. Introduction

The real-time synchronisation of loads and demands is essential for the steady oper-
ation of a power system. The LFC technology is used to accomplish this objective. One
of the most fundamental issues in managing power systems involves monitoring the fre-
quency to detect any mismatch between the power generation and load. The three primary
functions of the LFC system are to maintain a steady frequency, distribute the load among
the generators, and manage the schedule for tie-line interchanges [1]. In an LFC system, a
communication channel (i.e., between plant and controller) is typically utilised in the feed-
back loop to transmit and receive signals or information that are used to exercise control,
which introduces temporal delays into the feedback path [2]. The delay is unavoidable,
particularly if the power system adopts open communications [3]. Furthermore, this affects
the performance of the LFC systems, which can cause instability [4,5]. Therefore, a less
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conservative and accurate delay-dependent stability analysis procedure must be used to
compute a maximum DM for the LFC systems for various subsets of controller parameters
so that it can be used as a practical guideline for fine-tuning controller parameters during
implementation, even with only partial knowledge of network delays.

Several studies have recently been conducted to alleviate the issue of temporal delays
in LFC systems. The current state-of-the-art in the literature to determine the DM of the
LFC systems are namely the frequency-domain and the time-domain methods. In the
frequency domain, the time delay of a system can be identified by determining the crossing
frequency of a system, where the roots cross the imaginary axis. Meanwhile, in the time
domain, the Lyapunov–Krasovskii functional (LKF) is employed to derive the stability
condition in the form of a linear matrix inequality (LMIs).

The computational DM specifically for a constant time delay for LFC was developed
by many researchers which will be discussed as follows. In [6], LKF is employed with
truncated second-order Bessel–Legendre (BL) inequality to restrict the time derivatives of
the states for the single-area and multi-area LFC systems with a PI controller. The stability
margin is calculated using LMIs, where a binary search iteration algorithm is used to
accurately determine the DM. In [7], the DM was examined by the generalised modified
Mikhailov criterion in the time domain for a single-area LFC system with fractional order
PI controller. The DM is obtained by solving the fractional polynomial equation and
determining the intersection at the imaginary axis. In [8], the BL inequality and LKF are
utilised to approximate the functional derivative and determine the largest possible lower
bound for the LFC system that incorporates a PID controller. The time delay stability
margin is solved using the MATLAB LMI toolbox. In [9], a novel augmented Lyapunov
functional is constructed with the lower order and the derivative is bounded with the
Wirtinger inequality for multi-area LFC schemes. In [10], LKF is employed with quadratic
generalised free-weighting matrix inequality to tighten the boundary of the time derivatives
for a single-area LFC system. In [11], LKF is employed with single- and double-integral
terms for accurate integral inequalities and a new nonlinear optimisation technology
was employed to solve the problem of nonlinear time-delay inequalities. In [12], LKF is
employed with a triple integral term and using the method of integral inequality for one
area and two area LFC. In [13], a modified LKF with delay-dependent matrices containing
single-integral items and a unique negative definite inequality equivalent transformation
lemma is utilised to translate the nonlinear inequality into LMIs for one and two-area
LFC systems. In [14], a novel LKF is employed with quadratic terms multiplied by first,
second, and third degrees of scalar functions for one and two-area LFC systems with the PI
controller. In [15], a modified LKF is employed, involving the delay-dependent non-integral
items and some augmented single-integral items for a single-area power system. In [16], the
computation of DM is determined by converting the transcendental equation into nonlinear
equations by introducing a new variable. It is reported that the results are more accurate,
where the crossing frequency is determined by implementing the sweeping test. It has
been shown in prior work that the LFC system has a time delay, and that computing it is
crucial for practical purposes due to the majority of existing approaches having advanced
complex mathematical analysis and involving numerous computations to determine the
DM; however, engineers require a method that is quick and precise in practice [17].

A precise frequency domain technique for DM calculation is described in [18], where
the stability condition is constructed and the characteristic equation is translated into a
polynomial equation. Exact DM values are acquired by precisely determining the crossing
frequencies. The sweeping test in [16,19] determines the precise values of the DM, however,
the test is highly dependent on the sweeping range and the sweeping step size. It must
be noted that employing the sweeping test with high accuracy (i.e., very small step size)
can be time-consuming. Furthermore, the majority of researchers are focused on building
a new algorithm for determining the exact DM through the iteration process. However,
there is not much effort made to combine optimisation approaches with the existing DM
algorithms. This study aimed to eliminate the iteration process and to determine the more
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accurate results of DM by introducing an optimisation technique. It is expected that by
combining an optimisation technique with the existing DM algorithm, the DM results for
a constant time delay problem will be more accurate and reliable. Furthermore, it has
been proven in [20–27] that the combination of a metaheuristic optimisation technique
and a conventional algorithm provides a significant improvement in many power system
applications and other real-world problems.

In this paper, the method of improving the computation of the DM using GWO for
a constant time delay is presented. The proposed method is developed to optimise the
minimum error and thus, determine the best design variable (i.e., the crossing frequency).
The crossing frequency obtained from the proposed method will lead to an accurate result
of the DM. Furthermore, the contribution of this paper is that the proposed method can
address the problem, as mentioned in [17], where the proposed method does not require
any sweeping range, sweeping step size, or iteration method to determine the accurate
crossing frequency. In addition, an objective function is introduced and formulated using
the existing theorem to determine the optimal crossing frequency with minimal error. The
proposed method is realised in a two-area network power system, and the DM values
are compared with the methods in [18,28] for the different values of KP and KI . It is
observed during the simulation that the DM results are more accurate and stable compared
to [18,19,28,29]. The simulation was run for a prolonged period of time to avoid inaccuracy
in the results. The remainder of the article is organised as follows: The dynamic model
of a two-area LFC system with time delay is defined in Section 2, the overview of GWO
is detailed in Section 3, the proposed computation of DM based on GWO is described in
Section 4, the results are discussed in Section 5, and this article is concluded in Section 6.

2. Dynamic Model of Two-Area LFC System with Time Delay

Figure 1 depicts a standard model of a two-area LFC system. The network is made
up of a governor, a turbine, a rotating mass, a PI controller, communication delay, and a
load with the feedback of regulation constant and area control error (i.e., ACE1 and ACE2)
for both areas (i.e., area 1 and area 2). The disturbance in the system happens when the
load changes, as indicated by ∆Pd1 and ∆Pd2. When the load on the system increases, the
turbine speed decreases until the governor can adjust the steam input into the new load.
The error signal decreases as the variation in speed value decreases, and the governor
setting approaches the point required to keep the speed constant.

Figure 1. Two-area LFC scheme [28,30].
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In terms of its state-space model, the model of Figure 1 with communication delay is
defined as [28,30]:

ẋ(t) = Kx(t) + Kdx(t− τ) + F∆Pd (1)

x(t) = [∆ f1(t) ∆Pm1(t) ∆Pv1(t)
∫

ACE1dt ∆P12(t) ∆ f2(t) ∆Pm2(t) ∆Pv2(t)
∫

ACE2dt]T (2)

K =



− D1

M1

1
M1

0 0 − 1
M1

0 0 0 0

0 − 1
Tch1

1
Tch1

0 0 0 0 0 0

− 1
R1Tg1

0 − 1
Tg1

0 0 0 0 0 0

β1 0 0 0 1 0 0 0 0

2πT12 0 0 0 0 −2πT12 0 0 0

0 0 0 0
1

M2
− D2

M2

1
M2

0 0

0 0 0 0 0 0 − 1
Tch2

1
Tch2

0

0 0 0 0 0 − 1
R2Tg2

0 − 1
Tg2

0

0 0 0 0 −1 β2 0 0 0



(3)

Kd =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

− β1KP1

Tg1
0 0 −KI1

Tg1
−KP1

Tg1
0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0
KP2

Tg2
− β2KP2

Tg2
0 0 −KI2

Tg2

0 0 0 0 0 0 0 0 0



(4)

F =


− 1

M1
0 0 0 0 0 0 0 0

0 0 0 0 0 − 1
M2

0 0 0


T

(5)
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where ∆ f1 and ∆ f2 are the frequency deviations in area 1 and area 2, ∆Pm1 and ∆Pm2 are
the mechanical output power deviation in area 1 and area 2, ∆Pv1 and ∆Pv2 are the valve
position deviation in area 1 and area 2, ∆P12 is the power transfer deviation in tie-line
between the two areas, D1 and D2 are the generator damping coefficient in area 1 and area
2, M1 and M2 are the moment of inertia of generator in area 1 and area 2, Tch1 and Tch2 are
the turbine time constant in area 1 and area 2, Tg1 and Tg2 are the governor time constant
in area 1 and area 2, R1 and R2 are the speed drop in area 1 and area 2, β1 and β2 are the
frequency bias factor in area 1 and area 2, T12 is the synchronising coefficient of the tie-line
between two areas, KP1 and KP2 are the proportional gain of the PI controller in area 1 and
area 2, and KI1 and KI2 are the integral gain of the PI controller in area 1 and area 2. The
area control error, ACE, is calculated for each control region as the sum or difference of the
power transfer along the tie-line connecting the two areas and scaled by a frequency bias
factor, which can be defined as [18,29]:

ACE1(t) = β1∆ f1(t) + ∆P12(t) (6)

ACE2(t) = β2∆ f2(t)− ∆P12(t) (7)

The time delay τ is made up of the following components: the transducer delay, the
delay in the communication connection, the delay in processing, the delay in multiplexing,
and the delay in the analogue-to-digital conversion [31]. In dedicated communication
channels, this delay is constant, but if open communication is utilised, it may fluctuate in
length [29]. The two-area LFC system becomes a linear time delay system when ∆Pd is set
to zero, Equation (1) may then be stated as follows [16]:

ẋ(t) = Kx(t) + Kdx(t− τ) (8)

The maximum DM, τd, can be determined by transforming Equation (8) into the s-domain
using the Laplace transform and can be expressed as:

sI − K− Kde−sτ = 0 (9)

The system is asymptotically stable for the given delay [16], if all of the roots of Equation (9)
are situated on the left half plane. All of the roots of the free delay system are on the left
half plane, and it is assumed the system is stable. In this paper, the frequency domain
approach is employed to determine the maximum time delay using grey wolf optimisation,
which will be discussed in the next section.

3. Overview of Grey Wolf Optimisation

A pack of grey wolves surrounding and assaulting prey for food is a simplistic de-
piction of the grey wolf optimisation algorithm, in which they have a disciplined social
dominating hierarchy beginning with alpha, beta, delta, and omega [32]. Grey wolves’
hunting behaviour may be separated into three stages, namely the tracking, surrounding,
and attacking prey. To begin, surrounding the prey may be defined as [32,33]:

~DV = | ~CV. ~XVp(t)− ~XV(t)| (10)

~XV(t + 1) = ~XVp(t)− ~AV. ~DV (11)

where t denotes the iteration, ~XVp is the position vector of the prey, ~XV is the position
vector of a grey wolf, ~AV and ~CV are the coefficient vectors, and ~DV is the distance between
the position vectors of the prey and a grey wolf. These coefficients can be calculated by:

~AV = 2~b.~r1 −~b (12)

~CV = 2.~r2 (13)
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where~b decreases linearly over the length of iterations from 2 to 0 and ~r1, ~r2 are random
vectors in [0, 1]. Meanwhile, grey wolf hunting behaviour may be analytically described
as [32,33]:

~XV1 = ~XVα − ~AV1.( ~DVα) (14)

~XV2 = ~XVβ − ~AV2.( ~DVβ) (15)

~XV3 = ~XVδ − ~AV3.( ~DVδ) (16)

~XV(t + 1) =
~XV1 + ~XV2 + ~XV3

3
(17)

where subscript α indicates the best candidate for searching the prey. Meanwhile, the
subscripts β and δ represent the second and third best solution, respectively.

4. Delay Margin Computation Based on Grey Wolf Optimisation

As discussed in Reference [16], systems that deal with time delays can either be delay-
dependent or delay-independent. A delay-independent system is said to be asymptotically
stable only if the value of time delay is positive. However, in a delay-dependent system, the
system is said to be asymptotically stable, marginally stable, and asymptotically unstable, if
the value of τ < τd, τ = τd, and τ > τd, respectively. The LFC system modelled in Equation (8)
is said to be asymptotically stable independent of delay if it satisfies the condition stipulated
in [34], as described in Equations (18) and (19):

det(jωI − K− Kde−jωτ) 6= 0, ∀ω > 0, ∀τ ∈ [0, ∞) (18)

lim
ω→∞

ρ((jωI − K)−1Kd) = 0 (19)

If Equations (18) and (19) are satisfied, this means that the system does not intersect the
imaginary axis. However, the system is said to be delay-dependent stable, if Equations (18)
and (19) do not meet for some values of ω. Where for τ < τd, all roots lie on the closed left
half plane, for τ > τd, some roots will lie on the right plane, and for τ = τd, the roots will
intersect with the imaginary axis. The following definition, as explained in Reference [16],
uses the spectral radius to determine the crossover frequency, ωc, at which the roots cross
the imaginary axis.

Definition 1 ([34]). A pair of matrices’ combined spectral radius can be described as:

ρ(K, Kd) := min{|λ||det(K− λKd = 0)|} (20)

where λi(K) and λi(K, Kd) are the ith eigenvalue of the matrix K and the generalised eigenvalue of
matrix pair K and Kd, respectively.

To determine the maximum DM, we use the sweeping test [34] in the ω domain.
The sweeping test is a very useful technique, especially in light of the improvements in
computational power seen in modern computers. The sweeping test is superior since it
requires less computation and produces accurate results. We apply the following theorem
to determine the DM of the two-area LFC system.

Theorem 1 ([34]). We can define a stable system (8) at τd = 0, where K + Kd is stable and
rank(Kd) = q.

τi :=


min

1≤k≤n

θi
k

ωi
k

, i f λi(jωi
k I − K, Kd) = e−jθi

k

f or some ωi
k ∈ (0, ∞), θi

k ∈ [0, 2π]
∞, ρ(jωI − K, Kd) > 1 ∀ω ∈ (0, ∞)

(21)
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Then,

τd := min
1≤i≤q

τi

where the system in (8) is unstable at τ = τd and stable for all τ ∈ [0, ∞).

Proof ([34–37]). The system (8) is considered stable for any time delay when Equation (22)
is satisfied:

ρ(jωI − K, Kd) = ρ(jωI − K, Kde−jωτ) > 1, for ω > 0, τ ≥ 0 (22)

According to the condition of Equation (22), the system is stable when τ = 0, det(K +
Kd) 6= 0, and ω = 0. However, it is unstable for a certain τ for τd < ∞. Then, the following
assumption is examined:

det(jωI − K− Kde−jωτ) 6= 0, ∀ω ∈ [0, ∞) (23)

This is true for ω 6= ωi
k, or else:

|λi(jωI − K, Kd)| 6= 1, i = 1, 2, 3, ..., m (24)

For τ ∈ [0, τd), τωi
k 6= θi

k, Equation (25) is satisfied:

det(jωi
k I − K− Kde−jωi

kτ) 6= 0 (25)

Equation (26) is satisfied if τ = τd, such that (ωi
k, θi

k) is unique, which satisfies
τd = θi

k/ωi
k, and consequently:

det(jωi
k I − K− Kde−jωi

kτd) = det(jωi
k I − K− Kde−jθi

kτd) = 0 (26)

Corollary 1 ([34]). If and only if the system (8) is stable regardless of delay:

• K is stable;
• K + Kd is stable, and;
• ρ(jωI − K, Kd) > 1, ∀ω > 0.

The delay-independent stability is represented by the three conditions in Corollary
1, where the first and second conditions state that the system is stable for τ = 0 and
τ = ∞, respectively. The third condition states that the system is stable for τ ∈ [0, ∞).
Finally, we can compute the exact DM by using Theorem 1 to determine the system stability
(i.e., delay-independent or delay-dependent stability). First, we can examine the condition
in Equation (22) to see if the system (8) is delay independent. For some values of ω, if
Equation (22) is not satisfied, the crossing frequency is determined using the proposed
algorithm in Figure 2.

To begin, the system matrices for a two-area network are calculated using
Equations (3) and (4). This is followed by the objective function to minimise the error
of the spectral radius, ε, and can be expressed as:

f = min(ε) (27)

ε = |1− ρ(jωI − K, Kd)| (28)

where integer 1 is the desired spectral radius at the crossing frequency, ωc. Furthermore, ω,
is the only decision variable in this problem. The constraint can be expressed as:

0 ≤ ω ≤ ωmax (29)
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where ωmax is the maximum frequency desired by the user. Once the GWO algorithm
found the optimal solution in the search space, the best design variable ω is then updated
to determine the value of the crossing angle, θ, which can be expressed as:

λi(jωI − K, Kd) = e−jθ (30)

Finally, the desired DM is calculated as:

τd = min
1≤k≤n

θi
k

ωi
k

(31)

In the event that the algorithm is unable to identify the optimum solution, the decision vari-
able is randomly re-initialised in an effort to locate the optimal solution in the search space.

Start

Determine K and Kd using
Equation (3) and Equation (4)

Randomly initialise ω 

Set the boundary of ω
using Equation (29)

Initialise b, AV, and CV in
Equation (12) and Equation (13)

Calculate the fitness of
each search agent

(i.e. XVα, XVβ, and XVδ)
using Equation (27) 

Calculate θ:
λi(jωI - K, Kd) = e-jθ

Calculate τd:
τd = θ/ω

End

Update the position of
the current search agent

using Equation (17) 

Update b, AV, and CV in
Equation (12) and Equation (13)

Update the fitness of
each search agent

(i.e. XVα, XVβ, and XVδ)
using Equation (27) 

Determine the best
design variable of ω 

GWO algorithm:
To determine the

crossing frequency

Computation of Delay Margin

Iter > MaxIter?

Iter = Iter + 1

No

Yes

Figure 2. Flowchart of the proposed DM computation based on GWO.

5. Case Study: Two-Area LFC System

Three case studies for a two-area LFC system are presented in this section. We utilise
the parameters in References [18,28,29] to compare the outcomes of our suggested approach
with those that have already been published. Table 1 tabulates the system DM for various PI
controller gains, KP and KI , as well as the results of the methods in references [18,19,28,29].
It is noteworthy that the approach described in reference [18] offers the highest degree of
accuracy-reported DMs. Moreover, the GWO algorithm has a maximum population size and
maximum iterations of 50 and 200, respectively.
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Table 1. The DM for various KP and KI values.

τd, s KI
KP

Method 0.05 0.10 0.15 0.20 0.40 0.60 1.0

Proposed method 30.935 15.200 9.949 7.322 3.235 1.851 0.586
[18] 30.812 15.090 9.842 7.211 3.225 1.843 0.591

0.0 [19] 30.827 15.178 - 7.225 3.275 1.930 -
[28] 30.756 15.072 9.835 7.210 3.231 1.849 0.586
[29] 27.848 13.699 8.974 6.603 3.002 1.745 0.573

Proposed method 31.895 15.680 10.269 7.561 3.354 1.930 0.631
[18] 31.772 15.570 10.162 7.450 3.345 1.922 0.638

0.05 [19] 31.763 15.587 - 7.509 3.399 2.008 -
[28] 31.704 15.547 10.152 7.448 3.350 1.928 0.631
[29] 27.830 14.020 9.205 6.777 3.095 1.810 0.616

Proposed method 32.772 16.117 10.560 7.780 3.462 2.000 0.669
[18] 32.647 16.008 10.453 7.669 3.453 1.993 0.676

0.10 [19] 32.632 16.021 - 7.700 3.507 2.079 -
[28] 31.083 15.968 10.440 7.664 3.457 1.998 0.669
[29] 27.001 13.650 9.166 6.881 3.174 1.863 0.649

Proposed method 34.248 16.852 11.050 8.146 3.641 2.113 0.716
[18] 34.122 16.744 10.943 8.035 3.631 2.106 0.725

0.20 [19] 34.1563 16.768 - 8.058 3.694 2.1975 -
[28] 28.579 15.102 10.495 7.998 3.634 2.110 0.716
[29] 25.090 12.702 8.572 6.497 3.209 1.931 0.692

Proposed method 35.845 17.647 11.574 8.536 3.812 2.189 0.662
[18] 35.728 17.542 11.469 8.424 3.802 2.184 0.684

0.40 [19] 35.7223 17.566 - 8.4673 3.876 2.2997 -
[28] 22.841 12.196 8.609 6.781 3.778 2.184 0.662
[29] 20.278 10.364 7.014 5.338 2.735 1.731 0.637

Proposed method 34.914 17.162 11.239 8.275 3.597 1.874 0.454
[18] 34.809 17.068 11.136 8.155 3.588 1.881 0.480

0.60 [19] 34.8393 17.103 - 8.2113 3.710 2.1141 -
[28] 16.254 8.839 6.387 5.134 3.089 1.864 0.454
[29] 14.228 7.332 4.944 3.768 1.920 1.198 0.443

Proposed method 0.555 0.546 0.537 0.526 0.482 0.434 0.339
[18] 0.510 0.498 0.485 0.472 0.416 0.357 0.243

1.0 [19] - - - - - - -
[28] 0.486 0.474 0.462 0.450 0.396 0.339 0.229
[29] 0.465 0.455 0.444 0.433 0.384 0.332 0.227

- Data are not available from the published paper.

Table 1 shows that the proposed method yields remarkably similar results to the method
described in Reference [18]. Furthermore, the proposed method provides fewer computations
by reducing the mathematical complexity to obtain the system DMs. Figures 3–9 compare
the proposed method to the methods given in References [18,28]. For various values of
proportional gain, KP, they show the DM, τd, versus the integral gain, KI , curve. It is obvious
that the proposed method precisely and accurately calculates the DM for the two-area LFC
system for a variety of KIand KP values. Furthermore, the relative inaccuracy of the suggested
approach and the one stated in [18] is rather minor. More importantly, the average relative
percentage error is only 3.1611%, and thus, demonstrates that the DM values are nearly
identical to those provided in [18].
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Figure 3. With KP = 0, the DM, τd, is shown against the integral gain, KI , curve [18,28].

Figure 4. With KP = 0.05, the DM, τd, is shown against the integral gain, KI , curve [18,28].
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Figure 5. With KP = 0.1, the DM, τd, is shown against the integral gain, KI , curve [18,28].

Figure 6. With KP = 0.2, the DM, τd, is shown against the integral gain, KI , curve [18,28].
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Figure 7. With KP = 0.4, the DM, τd, is shown against the integral gain, KI , curve [18,28].

Figure 8. With KP = 0.6, the DM, τd, is shown against the integral gain, KI , curve [18,28].
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Figure 9. With KP = 1.0, the DM, τd, is shown against the integral gain, KI , curve [18,28].

Case study 1 with KP = 0.2 and KI = 0.4: The DM estimated using the method pro-
vided in [18] is 3.631 s, while it was 3.641 s with the proposed method. The proposed
method, just like the method described in [18], gives precise DM values. Simulations
with Matlab/Simulink are performed to validate the results. Figures 10 and 11 showcase
the frequency response of a two-area LFC system when subjected to different time delay
values in area 1 and area 2, while utilising KP = 0.2 and KI = 0.4. At 10 s, the load changes,
(∆Pd1 = ∆Pd2), by 0.1 p.u. Figures 10 and 11 depict the frequency response with time delay,
τ, of 3.5 s, 3.641 s, and 3.7 s, for area 1 and area 2, respectively. It is obvious that the system
is stable with τ = 3.5 s and unstable with τ = 3.7 s. Meanwhile, the system is marginally
stable with τ = 3.641 s.

Figure 10. Frequency deviation for LFC−1: ∆ f1 was measured while using KP = 0.2 and KI = 0.4.
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Figure 11. Frequency deviation for LFC−2: ∆ f2, was measured while using KP = 0.2 and KI = 0.4.

The percentage inaccuracy while employing the simulation-based DM is 0.000%.
Figure 12 depicts the spectral radius against the frequency for KP = 0.2 and KI = 0.4. It was
found that the crossing frequency, ωc, was equal to 0.41914 rad/s with θ = 1.5261 rad. By
solving Equation (31), we obtain the DM equal to 3.641 s.

Case study 2 with KP = 0.4 and KI = 0.6: The DM estimated using the method provided
in [18] is 2.184 s, while it was 2.189 s with the proposed method. The frequency response
of the two-area LFC system was illustrated in Figures 13 and 14, taking into account the
impact of various time delays on area 1 and area 2, while setting KP = 0.4 and KI = 0.6.

Figure 12. The spectral radius, ρ, against the frequency, ω, for KP = 0.2 and KI = 0.4.
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Figure 13. Frequency deviation for LFC−1: ∆ f1 was measured while using KP = 0.4 and KI = 0.6.

Figure 14. Frequency deviation for LFC−2: ∆ f2 was measured while using KP = 0.4 and KI = 0.6.

Figures 13 and 14 depict the frequency response with time delay, τ, of 2.0 s, 2.189 s,
and 2.2 s, for area 1 and area 2, respectively. It is obvious that the system is stable with
τ = 2.0 s and unstable with τ = 2.2 s. Meanwhile, the system is marginally stable with
τ = 2.189 s. The percentage inaccuracy while employing the simulation-based DM is
0.000%. Figure 15 depicts the spectral radius against the frequency for KP = 0.4 and KI = 0.6.
It was found that the crossing frequency, ωc, was equal to 0.71530 rad/s with θ = 1.5658
rad. By solving Equation (31), we obtain the DM equal to 2.189 s.
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Figure 15. The spectral radius, ρ, against the frequency, ω, for KP = 0.4 and KI = 0.6.

Case study 3 with KP = 0.05 and KI = 0.05: The DM estimated using the method
provided in reference [18] is 31.704 s, while it was 31.895 s with the proposed method. The
frequency response of the two-area LFC system was illustrated in Figures 16 and 17, taking
into account the impact of various time delays on area 1 and area 2, while setting KP = 0.05
and KI = 0.05.

Figure 16. Frequency deviation for LFC−1: ∆ f1 was measured while using KP = 0.05 and KI = 0.05.
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Figure 17. Frequency deviation for LFC−2: ∆ f2 was measured while using KP = 0.05 and KI = 0.05.

Figures 16 and 17 depict the frequency response with time delay, τ, of 30.0 s, 31.800 s,
and 33.0 s, for area 1 and area 2, respectively. It is obvious that the system is stable with
τ = 30.0 s and unstable with τ = 33.0 s. Meanwhile, the system is marginally stable with
τ = 31.800 s. The percentage inaccuracy while employing the simulation-based DM is
0.2987%. Figure 18 depicts the spectral radius against the frequency for KP = 0.05 and
KI = 0.05. It was found that the crossing frequency, ωc, was equal to 0.05011 rad/s with
θ = 1.5983 rad. By solving Equation (31), we obtain the DM equal to 31.895 s.

Figure 18. The spectral radius, ρ, against the frequency, ω, for KP = 0.05 and KI = 0.05.

Four other published methods were compared with the proposed method. As indi-
cated in [28,29], the DM method produces less traditional results than the LMI method,
but the LMI method has the advantage of handling delays that fluctuate over time. The
proposed method is easier to execute, yet the DM results are similar to those obtained using
the frequency domain techniques, as described in [18,19,28,29].
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6. Conclusions

In this paper, a metaheuristic algorithm, namely the GWO, has been successfully
employed to determine the optimal DM for a constant time delay of a two-area network.
The optimisation of the spectral radius subjected to the optimal frequency formulated
with the GWO is regarded as the most effective of all the techniques listed as it provides
the minimum error of the spectral radius and hence optimises the best design variable of
the crossing frequency such that an accurate result of DM can be obtained. A case study
employing a two-area LFC system suggested that the proposed method is significantly
superior in comparison to the others, as the sweeping range and sweeping step size method
in the frequency domain method are no longer needed to determine the crossing frequency.
In comparison to the previous methods, the time delay simulation showed that this novel
technique provides precise delay margins with the smallest percentage error of 0.000%.
In future work, a detailed case study of time-varying delay for load–frequency control
with the proposed method will be implemented and compared with the most recently
published methods.
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