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Abstract: Energy accounting is a system for regularly measuring, analyzing, and reporting the energy
use of various activities. This is done to increase energy efficiency and monitor the impact of energy
usage on the environment. Primary energy accounting is now done by determining the amount
of fossil fuel energy required to generate it. However, if fossil fuels become scarcer, this strategy
becomes less viable. Instead, a new energy accounting approach will be required, one that takes
into consideration the intermittent character of the two most prevalent renewable energy sources,
wind and solar power. Furthermore, estimation of the energy consumption data collected from
household surveys, whether using a recall-based approach or a meter-based one, remains a difficult
task. Hence, this paper proposes a novel energy accounting model using Fuzzy Restricted Boltzmann
Machine-Recurrent Neural Network (FRBM-RNN). The energy consumption dataset is preprocessed
using linear-scaling normalization. The proposed model is optimized using the Adaptive Fuzzy
Adam Optimization Algorithm (AFAOA). The performance metrics like Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE) are estimated. The estimated results for our proposed technique are MSE (0.19), RMSE (0.44),
MAE (0.2), and MAPE (3.5).

Keywords: energy accounting; linear-scaling normalization; fuzzy restricted Boltzmann machine;
recurrent neural network (FRBM-RNN); adaptive fuzzy Adam optimization algorithm (AFAOA)

1. Introduction

Energy is an essential part of our existence, and practically the whole thing is connected
to electricity in some way. The need for electricity is increasing each day. Buildings use a
substantial quantity of power globally. Residential energy use has risen, including in the
last decade. Building energy consumption accounts for a reliable share of primary energy
consumption and is a major contributor to carbon emissions in the world. Emissions of CO2,
air pollution, and global warming are all caused by the usage of energy produced from fossil
fuels. According to studies, buildings account for 39 percent of the overall consumption of
energy and 38 percent of global CO2 emissions in the world. The major cause for the rise
in energy utilization is the developmentof urbanization in recent decades [1].

Building energy use is too high, which is not ideal for a rising country. Depending
on the report issued by the Energy Information Administration (EIA) of the US, global
energy consumption may rise by 28 percent until 2040. Companies that generate energy
are continuously coming under pressure to fulfill the rising energy needs of households
and commercial areas. Saving energy (electricity/heating/cooling) is crucial not just for
future ecological sustainability, but also for energy businesses and home users. Electricity
influences the user’s monthly expenditure, and the client is continually seeking for solutions
to save money. To limit energy use and emissions, linked government entities must dedicate
major human and financial resources [2].
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One of the key aims of countries is to minimize the use of energy and the accompanying
emissions of pollutants. The globally known energy-saving plan mandates correct control
of energy consumption in residences and the avoidance of unnecessary energy wastage.
One of the most crucial components of energy management and operating approaches in
constructing resource forecasting models. Precision and powerful energy determination
approaches with generalization capability are necessary for successful energy management,
planning, and conservation. Energy management and conservation in buildings depend
significantly on forecasts, which may aid us in assessing energy consumption, performing
building commissioning, and identifying and diagnosing system faults in offices [3].

Physical and data-driven models are the basic kinds of energy consumption models.
Physical models are not very useful owing to their lesser forecast accuracy. As data mining
is revolutionizing many industries, the data-driven approach is presently the most frequent
manner owing to the least consumption of time and good performance. These models are
useful as they depend on actual data rather than intricate system features. As AI can analyze
the data using computer algorithms, data-driven techniques are rapidly being employed in
developing energy projections. These models utilize single or hybrid algorithms. These are
used to build the relationship between energy usage and other variables. Environmental
variables, building features, and occupancy are the three primary forms of inputs for the
energy consumption forecast model. Environmental characteristics include indoor and
outdoor temperature, relative humidity, and radiation. Occupancy refers to the number of
people and their habits of energy use. Building elements include form, size of the building,
and heat transfer rate of the wall and roof. Figure 1 displays the various elements that may
be given as input to the prediction model. Many scientists have put in a lot of effort and
devised numerous ways of estimating energy use [4].
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We proposed a novel energy accounting scheme, FRBM-RNN, to determine the en-
ergy consumed in buildings in this paper. In addition, the proposed model is optimized
using AFAOA to further enhance the prediction accuracy. The major contributions of this
paper include:

• To present a novel energy accounting model using Fuzzy Restricted Boltzmann
Machine-Recurrent Neural Network (FRBM-RNN).

• To preprocess energy consumption dataset using linear-scaling normalization.
• To optimize the model using the Adaptive Fuzzy Adam Optimization Algorithm (AFAOA).
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The remaining sections in the paper are structured as follows. The associated literature
and the problem statement are presented in Section 2. The explanations of the proposed
work are provided in Section 3. Section 4 has results and discussions. The proposed paper’s
conclusion is presented in Section 5.

2. Literature Review

Ref. [5] established a hybrid model that is a hybrid of convolutional neural network
(CNN) and long short-term memory (LSTM) to gather spatial and temporal data and
estimate dwelling energy use efficiently. The CNN layer helps in extracting features
among several factors that influence energy utilization, whereas the LSTM layer is good for
training the temporal information of irregular patterns in the components of time series.
CNN-LSTM internal analysis was used to reduce the noise in power consumption data,
and class activation map was used to examine the factors that have a significant impact
on energy consumption prediction. Ref. [6] used an energy usage forecasting system in
public buildings to save energy and hence enhance energy efficiency without compromis-
ing the comfort level and wellbeing. The ability to estimate energy usage is critical for
the operation and planning of intelligent systems. For anticipating such consumption,
they utilized an ELM an neural network and a genetic algorithm to maximize the model’s
weight. Similarly, the CNN-LSTM main flaw is its complexity, since adding additional
components to a neural network—for example, adding a memory layer—increases the
connection, resulting in a considerably more complicated model. Ref. [7] illustrated a
machine learning baseline model for commercial building energy usage forecast based on
the gradient boosting machine (GBM) technique. To increase GBM’s predicted accuracy,
they used an extended version of the k-fold validation technique. One possible drawback
in practice is that M&V experts are less experienced with machine learning approaches
than with traditional regressions. Ref. [8] constructed a mathematical scheme of a Venlo
greenhouse’s energy usage depending on the energy conservation concept. Different
optimization schemes are utilized to determine the factors in the energy consumption
technique that are difficult to calculate. The energy utilization prediction is also challenging
to apply to energy predictions in several seasons over the course of a year. Summer cooling
energy consumption forecast model has to be investigated further. Ref. [9] suggested a
unique technique for estimating periodic energy usage depending on the LSTM network.
To begin, the autocorrelation graph is used to extract hidden characteristics from real-world
industrial data. Determining the relevant secondary variables as the input to the model is
aided by correlation analysis and mechanism analysis. Additionally, the time variable is
supplemented to obtain the periodicity more accurately. Many approaches for forecasting
energy use have been proposed. Traditional approaches, on the other hand, are ineffective
because they do not extract the periodicity concealed in energy use statistics.

Ref. [10] developed a support vector machine energy usage forecasting model to study
and assess the energy utilization of hotel structures. The RBF kernel function is chosen as the
support vector machine’s kernel function, and the model prediction accuracy is increased by
updating the kernel factors. During the modelling process, it was discovered that variables
including the flow of people had a significant impact on the hotel’s energy use. For example,
a sudden spike in passenger traffic over the holidays may cause the model to become
unresponsive. Matching new developments, how to represent the influence of these aspects
in the model, and giving hotel managers with a more effective decision-making foundation
are all issues that should be addressed in the future. For short-term building energy
demand estimation, teaching learning-based optimization (TLBO)was a novel evolutionary
strategy adopted by [11]. The original TLBO method is updated in three ways to improve
the speed of convergence and accuracy of optimization. To anticipate the electrical energy
consumption of different educational institutions, the upgraded technique is combined
with artificial neural networks (ANNs). The original TLBO was modified using three steps
to speed up convergence and increase optimization accuracy: introducing a review stage,
adding an accuracy factor, and deleting the worst solution. Ref. [12] created Hephaestus,



Energies 2023, 16, 2844 4 of 15

a new transfer learning approach for forecasting the energy in buildings depending on
time series multi-feature regression with seasonal and trend correction. The suggested
technique leverages measurements from other comparable structures gathered over a
much longer time period to enhance prediction for an establishing with a limited data set.
This technique enables energy prediction by combining data from similar buildings with
different distributions and seasonal aspects. For hourly building energy forecast, ref. [13]
illustrated a homogeneous ensemble strategy using Random Forest (RF). The method was
used to forecast the power demand of two educational facilities in North Central Florida
on an hourly basis. Ref. [14] proposed a new method for predictive control depending on
the information by buildings utilizing machine learning methods such as regression trees
and RF. This method was named the Data-driven model Predictive Control (DPC), and it
was used in three studies.

Ref. [15] introduced a unique deep recurrent neural network scheme for predicting the
consumption patterns of power in residents and offices for one week at a one-hour resolu-
tion. Using real-world building operating data, ref. [16] studied the efficacy of several deep
learning approaches in autonomously generating features with high quality for building
energy estimation. Convolutional autoencoders, fully connected autoencoders, and genera-
tive adversarial networks are applied to create three kinds of deep learning-based features.
Ref. [17] developed a unique prediction model known as LSTM with random time effective
function (LSTMRT). The effective random time function is employed in LSTM in this case,
which takes into account the timeliness of past data as well as the random shift in the
market environment. The LSTM model is composed of the properties, namely selected
memory and internal time series influence, making it ideal for price time series prediction.
For energy demand prediction, ref. [18] suggested a unique neural network-based optimiza-
tion technique. To begin, the CNN method is used to determine the needed energy demand
estimate at the customer level. Second, techniques such as Neural Network-based Particle
Swarm Optimization (PSO) and Neural Network-based Genetic Algorithm (NNGA) are
utilized to automatically change the neural network weights. Ref. [19] provided a method
for estimating occupancy depending on the blind system identification (BSI), as well as a
prediction technique for power utilization by air-conditioning machine employing extreme
learning machine (ELM),feed-forward neural network (FFNN), and ensemble models.

To more effectively analyze the energy use in residents, ref. [20] introduced a hybrid
estimation approach depending on RF and BP neural networks (RF-BPNN). Ref. [21] demon-
strated a hybrid deep learning technique that joins an ensemble LSTM neural network with
the stationary wavelet transform (SWT) method. The SWT reduces volatility and expands
data dimensionality, possibly augmenting the estimation accuracy of LSTM. Furthermore,
the suggested method’s predicting performance is improved even further by using an
ensemble LSTM neural network. Ref. [22] developed surrogate, zone-level artificial neural
networks with occupancy, weather, and internal temperature as input features. A genetic
algorithm utilizes them as a validation system to decrease energy usage. Ref. [23] used mul-
tiple regression (MLR), multilayer neural network (MNN), RF, and gradient boosting (GB)
techniques to design data-driven approaches for determining electricity and consumption
of gas in houses. Factors such as economic, demographic, and building attributes were
applied as predictors. Ref. [24] suggested a Hidden Markov Model-based approach for
predicting energy usage in houses using smart meter data. Ref. [25] introduced an effi-
cient medium and long-term energy determination model depending on machine learning,
which included an ANN with an adaptive boosting approach, a nonlinear autoregressive
exogenous multivariable input scheme, and a multivariate linear regression technique.

To reflect the full country of Turkey, the forecasting of meteorological data utilized
in thermal system design was carried out for 50 cities. Modeling of data acquired from
the General Directorate of Meteorology (MGM) was accomplished via the use of artificial
neural networks and adaptive-network-based fuzzy inference systems [26].

The approximated temperature values were used to compute the HDD and CDD
values for Turkey. To estimate temperature values, an artificial neural network (ANN)
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and an adaptive network-based fuzzy inference system (ANFIS) were both used. For the
feedforward back propagation of the ANN, the Levenberg–Marquardt training method
was utilized, but for the ANFIS, the Sugeno-type fuzzy inference method was used [27].

The utilization of energy in buildings is rapidly increasing worldwide. Hence, energy
utilization in the building sector must be minimized. The best way to cut down on energy
use in an existing structure is to plan and manage the usage of energy strategically. Energy
planning, management, and conservation need the use of accurate and robust energy
forecast models. Deep learning techniques are gaining importance in designing these
models. Hence, we proposed a novel energy accounting scheme, FRBM-RNN, to determine
the energy consumed in buildings. The estimation accuracy of the energy utilization
prediction strategy which is critical for scheduling and regulating energy use may be
improved by enhancing the performance of current algorithms. Therefore, the proposed
model is optimized using AFAOA to further enhance the prediction accuracy.

3. Proposed Work

Determination of energy utilization in residential buildings is very important. This pa-
per is focused on designing a new energy accounting model called FRBM-RNN to estimate
the energy utilized in buildings. Real-time data is collected and preprocessed using the
linear scaling normalization technique. The illustrated model is optimized using AFAOA
to improve the predictive performance. The flow of our proposed work is given in Figure 2,
and a detailed description is provided in this section.

(a) Historical Energy Consumption Database

The dataset for our study was gathered from the library building present in East China.
The building includes ten floors with an overall area of 25,542 m2 and 13 reading rooms.
A full schedule of opening and closing times of the reading rooms was supplied which
was considered as the occupancy measure. There is a nearby weather station that collects
daily dry-bulb temperatures. Cooling, heating, lighting, ventilation, and plug loads were
all taken into account when calculating the building’s energy usage. From 9 October 2009
to 15 January 2010, a total of 2472 time-step data were gathered at hourly intervals [11]

(b) Data Preprocessing Using Linear Scaling Normalization (LSN)

Initially, dataset features are preprocessed using LSN. The issue of big number ranges
being dominated is avoided by normalizing the dataset’s characteristics, which aids the
algorithm in making correct predictions. We obtained the energy consumption data at an
hourly resolution. Because of this, a preprocessing strategy was devised to turn the hourly
energy consumption data into a maximum linear-scaling transformation. Normalization
is used to turn the observed data into values between 0 and 1 across the research period.
Next, the scaled hourly data is utilized to represent the average daily energy use. LSN is
defined by Equation (1).

y′i =
yi − ymin

ymax − ymin
(1)

where ymin the input dataset’s actual value is yYi the normalized value scaled according
to the range [0,1], max and min are the maximum and minimum values of the features,
correspondingly. The preprocessed data is categorized into training and testing datasets.
Overall, 70% of the preprocessed data are considered as a training set, and the remaining
data are noted as a testing set.

(c) Fuzzy Restricted Boltzmann Machine-Recurrent Neural Network (FRBM-RNN)

The training dataset is utilized to design the model. The illustrated scheme is a hybrid
of FRBM and RNN and it is applied in buildings to determine energy usage. FRBM is
advantageous compared to the conventional RBM. FRBM offers greater feature extraction
capabilities than standard RBM since the setup parameters are fuzzy. When presented with
noisy data, FRBM’s resilience may be improved. Visible and hidden layers are present in
FRBM. No connections exist between neurons in the same layer and all connections exist
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between neurons in other layers. The structure of FRBM is given in Figure 3. The input
data are sent to the ‘m’ visible units (v1, v2, . . . , VP), and features of the input data are
extracted using ‘n’ hidden layers (h1, h2, . . . , HQ).
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The fuzzy energy function, Ẽ
(

v, h, θ̃
)

, is defined by Equation (2).

Ẽ
(

v, h, θ̃
)
= −

p

∑
k=1

ãkvk −
q

∑
l=1

b̃lhl −
p

∑
k=1

q

∑
l=1

hlw̃k,lvk (2)

where θ̃ =
{

ãk, b̃l , w̃k,l

}
represents fuzzy parameters, ãk, b̃l , and w̃k,l are fuzzy numbers.

ãk and b̃l denote the biases of visible and hidden layers, correspondingly. w̃k,l means the
connection weight existing between the kth visible unit and the lth hidden unit. The fuzzy
free energy function is simplified into Equation (3).

G̃(v) = −ln ∑
h

e−Ẽ(v,h,θ̃) = −
p

∑
k=1

ãkvk −
q

∑
l=1

ln
(

1 + e(b̃l+∑
p
k=1 w̃kl vk)

)
(3)

where G̃(v) is the simplified fuzzy energy function.
It is required to use a membership function having higher sensitivity and resolu-

tion due to the small size of the parameters and the short fluctuation interval they en-
tail. The symmetric triangle membership function is a great alternative for this purpose.
The fuzzy number ãk is defined by Equation (4).

gãk
(v) =



0, v ≤ aL
k

v−aL
k

aM
k −aL

k
, aL

k < v < aM
k

aR
k −v

aR
k −aM

k
, aM

k < v ≤ aR
k

0, v ≥ aR
k

(4)

where ak
R, ak

L, and ak
M denote the right bound, the left bound, and the center of connection

weights, respectively. b̃l , and w̃k, can also be obtained by similar methods.
FRBM’s visible and hidden layers interact best when the parameter is optimally tuned.

The objective function becomes nonlinear because the optimum solution is turned into
the maximum probability questions regarding fuzzy numbers. That is why figuring out
how to compute the fuzzy membership function is so difficult. If the goal function is
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defuzzified, the issue may be reduced to a calculable maximum likelihood form. Area
bisector, the center of centroid, maximum membership, and crisp possibilistic mean value
(CPMV) are a few of the defuzzification techniques available.

The function of fuzzy free energy is defuzzified with the help of CPMV. Equation (5)
defines the defuzzified free energy function when the membership function is symmetric.

G̃s(v) =
∫ 1

0 α(GL(α) + GR(α))dα ≈ −
p
∑

k=1

aL
k +aU

k
2 vk −

q
∑

l=1

ln
(

1+ebL
l +∑

p
k=1 WL

kl vk
)

2

= 1
2 [−

p
∑

k=1
aL

k vk −
q
∑

l=1
ln(1 + e(b

L
R+∑

p
k=1 WL

kl vk) −
p
∑

k=1
aR

k vk −
q
∑

l=1
ln(1 + e(b

R
R+∑

p
k=1 WR

kl vk)

= 1
2
[
G
(
v, WL, aL, bL)+ G

(
v, WR, aR, bR)]

(5)

where G̃S(V) represents defuzzified G̃(v), GL(α) and GR(α) are the left and right boundaries
of an interval [GL(α), GR(α)], which express the α-cut of the fuzzy number G̃(α)V.

The probability function of free energy, P
(

v
∣∣∣θ̃), is provided in Equation (6).

P
(

v
∣∣∣θ̃) =

e−G̃s(v)

∑v e−G̃s(v)
(6)

The function of negative log-likelihood is defined by Equation (7).

ln N
(

a, θ̃
)
= −ln

qr

∏
k=1

P
(

vk
∣∣∣θ̃) = −

qr

∑
k=1

ln P(
(

vk
∣∣∣θ̃) (7)

where is the training data amount? To get the best solution for the parameters according to
Equation (8), the stochastic gradient descent approach may be applied to Equation (7).

min
θ̃

(
−∑

v∈r
ln P(

(
v
∣∣∣θ̃)) (8)

The partial derivatives of ln(
(

v
∣∣∣θ̃) are computed. Contrastive Divergence is used to

approximate the partial derivatives of the maximum log-likelihood gradient to simplify
the complexity of computation. The significant features for estimating energy usage are
collected from the hidden layers of FRBM.

The extracted features from FRBM are sent to RNN for determining the energy. In their
hidden layers, RNNs differ from basic feed-forward neural networks. RNN hidden layers
are fed not only by the inputs from their preceding layer but also by the initiations of
themselves for the previous inputs that they receive. Nodes in the hidden layer of RNN are
linked to the prior activation of all the other hidden layers. It is the activation functions
of the RNN that determine the neuron’s output level, and the RNN has several inputs.
The RNN process is based on a forward and backward pass, respectively. The input, hidden,
and output layers are included in RNN, and its architecture is depicted in Figure 4.

Here, we are training the RNN based on the available energy dataset and extracted
features. The inputs for the input layer are initialized and the weights are assigned to them.
The RNN’s forward pass is given in Equation (9).

γc(m) = ∑
d

δd(m)wcd(m) (9)

where γc is the input neuron and Wcd is the value of the assigned weight. δc is the neuron’s
activation state at a time ‘m’ according to Equation (10).

δc(m) = fc(γc(m)) (10)
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where c = 1,2, . . . .
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According tothe network inputs, activation function fc is determined. Based on the
activation functions, the functions of hidden node are constructed. The activation function
of unseen nodesis processed through sigmoid function to derive decision vector. Each neu-
ron’s backward pass output is computed using the function specified in Equation (11).

δc(m) = fc(γc(m), Cc(m)) (11)

γc(m) = ∑
d∈h

δd(m)wcd + ∑
d∈i

γd(m)wcd + ∑
d∈C

δd(m− τcd)wcd (12)

where i and h denote the values of input neurons and hidden layer, correspondingly,
the neuron’s value C reflects the previous network stage’s data stored in the neuron’s
memory, δd means the dth input neuron, and τcd denotes an integer value that represents the
dislocation in recurrent network occurred in a given period. Backpropagation through time
delay (BPTT) and Bayesian regulation (BR)are used to train the RNN. The backpropagation
error, µh, is determined by Equation (13).

µh = δt − δ̂ (13)

The BR approach may reduce the error. The BR approach is employed to train the
neural network at this moment. By combining the average total of squared network
errors and weights, this BR approach develops a better-utilized network by selecting
the correct amalgamation. The weight and bias values are adjusted by Equation (14)
using the BR approach, which is a function of network training and based on Levenberg–
Marquardt optimization.

µd =
1
Q

Q

∑
c=1

(
(µh)

2
)

(14)

where µd is the network’s updated weight.
The network’s weights are updated finally. The output of the trained RNN is the

predicted energy consumption.

(d) Adaptive Fuzzy Adam Optimization Algorithm (AFAOA)

AFAOA speeds up the learning process and increases the machine’s efficiency by
allowing the planned model to converge more quickly. AFAOA is a stochastic optimization
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algorithm applied to optimize the features for enhancing the training process of FRBM-
RNN. The AFAOA is a modified variation of stochastic gradient descent (SGD) that has
lately gained popularity in deep learning applications. The weights of RNN can be updated
repeatedly depending on training data. The important formulas to define the optimization
process using AFAOA are provided in Equations (15)–(20).

gz = ∇θ fz(θz−1) (15)

hz = β1.hz−1 + (1− β1).gz (16)

vz = β2.vz−1 + (1− β2).g2
z (17)

ĥz =
hz

1− βz
1

(18)

v̂z =
vz

1− βz
2

(19)

θz = θz−1 −
α.ĥz√
v̂z + ε

(20)

where α means the size of the step, β1 and β2 represent the exponential decay rates, and z
denotes the time-step. f (θ) denotes the stochastic objective function, θ0 and θz represent the
initial and final parameter vectors, respectively, hz and vz denote first and second-moment
vectors, respectively, θ̂Hz and v̂z are bias-corrected moment estimates, and g2

z means the
element-wise square.

Initially, the step size, exponential decay rates, and objective function are confirmed.
The parameter vector, first and second-moment vectors, and time-step are initialized.
Then, the loop’s every part is repeatedly updated until the parameter θz converges.
The stochastic objective function is renewed at the time-step ‘z’. The biased first and sec-
ond moments were estimated. Then, the bias-corrected first and second-moment estimates
were calculated. Finally, the parameters of RNN were updated using the above-determined
value. The prediction performance of the optimized FRBM-RNN using AFAOA is evaluated
against the testing set.

4. Results and Discussion

This work focuses on the design of FRBM-RNN and its optimization using AFAOA to
accurately anticipate the energy usage in buildings. The testing set was used to ensure that
FRBM-RNN+AFAOA was accurate. Our model was compared to the existing techniques
such as CNN-LSTM and LSTM. The performance metrics utilized for the model’s validation
are RMSE, MAE, MSE, and MAPE. The simulation results were generated using MATLAB.

MSE is defined as the variations between the determined and actual energy consump-
tion. It is calculated by Equation (21). It is measured in joule per second (J/s).

MSE =
1
n

n

∑
i=1

(TO,i − TP,i)
2 (21)

where TO is the actual value and Tp is the determined value of energy consumed, n repre-
sents the sample size and i = 1 to n.

RMSE means the square root of MSE and it is defined in Equation (22). It is measured
in joule per second (J/s).

RMSE =

√
∑n

i=1(TO,i − TP,i)
2

n
(22)
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MAE is described as the average of the absolute values of the prediction errors. It is
determined by Equation (23). It is measured in joule per second (J/s).

MAE =
1
n

n

∑
i=1
|TO,i − TP,i| (23)

MAPE is the mean of the absolute percentage errors of prediction and is defined by
Equation (24). It is measured in percentage (%).

MAPE =
100
n

n

∑
i=1

∣∣∣∣TO,i − TP,i

TP,i

∣∣∣∣ (24)

Coefficient of variation (COV) is defined as the standard deviation divided by the
mean and multiplied by 100. Additionally, it is determined by Equation (25):

COV =
S
X
∗ 100 (25)

S is the standard deviation and X is the mean.
It is shown in Figure 5 that FRBM-RNN+AFAOA exhibited lower MSE when compared

to LSTM and CNN-LSTM. If the value of MSE is lower, the determination performance
of the approach is better. From Figure 6, it is clear that the RMSE value of our suggested
model is lesser than that of CNN-LSTM and LSTM. This confirms that FRBM-RNN+AFAOA
showed a lesser prediction error. MAE value of our suggested model was lesser compared
to the existing methods. This was observed in Figure 7. The lesser MAE value of FRBM-
RNN+AFAOA illustrated that the deviation of predicted building energy from the actual
building energy was not so much. In addition, this result shows that the energy predicted
by the model was very closer to the actual energy utilized in the buildings. From Figure 8,
it is clear that our suggested technique exhibited lower MAPE when compared to CNN-
LSTM and LSTM. This confirms that the FRBM-RNN+AFAOA method achieved higher
prediction accuracy. Table 1 showed the performance analysis of the different methods.
Combining the benefits of Convolutional neural networks (CNN) that can obtain effective
features from the data, and long short-term memory (LSTM), which could not only search
the interdependence of data in time series data, but also automatically detect the best
mode appropriate for relevant data while comparing with the FRBM-RNN+AFAO. Figure 9
shows the comparative analysis of different models based on COV. From the figure it is clear
that the proposed method has a lower COV than the conventional approaches. From the
analysis of these results, it is confirmed that our proposed model determines the energy
consumed in the buildings accurately and efficiently compared to CNN-LSTM and LSTM.
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Table 1. Comparative analysis of prediction performance.

Methods MSE RMSE (J per s) MAE MAPE COV

FRBM-RNN + AFAOA (proposed) 0.19 0.44 0.2 3.5 0.15
CNN-LSTM [5] 0.37 0.61 0.35 34.84 0.29

LSTM [9] 0.88 0.94 0.72 5 0.66
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5. Discussion

In many practical systems, energy consumption data is a kind of time–series data
with periodicity, but standard forecasting approaches ignore periodicity. Ref. [9] provide
a unique technique for estimating periodic energy usage based on a CNN-LSTM (Long
short-term memory) network. The autocorrelation graph extracts hidden patterns from
actual industrial data. Finding the relevant secondary variables as model input is aided
by correlation coefficient and mechanism analysis. Due to its significant economic bene-
fits, the work of energy forecasting has taken on a significant role in our everyday lives.
Many approaches for forecasting energy use have been proposed. Traditional approaches,
on the other hand, are ineffective because they do not extract the periodicity concealed in
energy use statistics. In today’s world, the fast increase in the population and technological
advancements have dramatically increased electricity consumption. As electricity is used
at the same time as it is created at the power station, precise forecasting of energy con-
sumption is critical for reliable power supply. Finally, using CNN-LSTM internal analysis,
we validated the process of decreasing noise in power consumption data and investigated
the factors that have a significant impact on energy consumption prediction using a class
activation map. The CNN-LSTM model developed in this work predicts irregular electrical
energy usage patterns that are not anticipated by current machine learning approaches.
When compared to existing methods, the proposed method provides better results.

6. Conclusions

Prediction of energy consumed in buildings has become a crucial part of our everyday
lives due to the rise in energy demand worldwide. This could support the energy managers
to plan and manage the energy efficiency in buildings and conserve the energy in the
world. Therefore, the development of accurate models for predicting energy use is of
tremendous importance. In this paper, we proposed the FRBM-RNN technique to estimate
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the energy utilized in buildings. In addition, the AFAOA approach was applied to augment
the estimation performance of the FRBM-RNN model. The performance of the proposed
model was compared with the existing techniques namely CNN-LSTM and LSTM. FRBM-
RNN+AFAOA strategy exhibited lower MSE, RMSE, MAE, and MAPE values compared to
the conventional methods. This confirmed that the estimation of energy consumed in the
buildings using our proposed model was highly accurate and consistent. The limitations
are Gradient explosion and disappearing difficulties are challenges with recurrent neural
networks. It is quite difficult to train an RNN. When Tan h or Relu is used as an activation
feature, it cannot handle exceedingly long sequences. Large amounts of training data are
required, as the position of objects is not encoded in CNN-LSTM.

In the future, this study can be embedded into the smart grids of other building
categories to forecast energy consumption.
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