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Abstract: The operation of a water supply system (WSS) is inextricably linked with the possibility of
different types of failure. It is very common for these failures to be random in nature. The results of
reliability studies carried out in many water supply systems revealed, for example, the possibility of
incidental water pollution, power supply issues, failure in machinery, damage to water plants, or
natural disasters. As a result of the WSS failure, we deal with a state of threat to safety (TSS) or a
state of loss of safety (LSS). Using Markov processes, we developed a failure model of the WSS to
determine the possibility that the system may find itself in different states of safety. As a result, a
mathematical model using Markov processes has been proposed for each of these distinct states of
safety (complete safety state—CSS; threat to safety state—TSS; and loss of safety state—LSS). The
proposed approach in the water supply system will limit emergency states by optimizing working
and repair times. Reducing losses in the water supply system is crucial to reduce and optimize energy
consumption for water production and distribution.

Keywords: water supply system; water supply; critical infrastructure; safety analysis; Markov processes

1. Introduction

Water, electricity, gas, and other supply systems play a strategic role in the security of
facilities and installations with respect to the water–energy nexus. According to the 7th goal
of the 2030 Agenda [1] for Sustainable Development, the place of living is safe, resilient, and
sustainable, with general access to affordable, reliable, and sustainable energy. Therefore,
regulations and guidelines include these systems in the so-called critical infrastructures. The
safety of the water supply system (WSS) is the ability of the system to perform its functions
in a safe manner to itself and its environment, despite the occurrence of various types of
adverse events. The safety of the water supply system is measured by the probability of
staying in a safe operating configuration when faced with an adverse (cause) hazardous
event (cause). Losing safe functioning may impact the system itself, its environment,
and/or the health or life of consumers (effects) [2].

UN global development program has recognized the access right for all to safe drinking
water and sanitation, as cited in the resolution 64/292 of the General Assembly and the
Human Rights Council states that the right to access safe and clean drinking water and
sanitation is a human right necessary for the full enjoyment of life and the enjoyment of all
human rights [3]. Resolution No. 1693/2009 of the Parliamentary Assembly of the Council
of Europe contained a provision that access to water must be recognized as a fundamental
human right because water is necessary for life on Earth and is a common good, belonging
to all mankind [4].

A water utility should provide recipients with water of appropriate quality, in the
right quantity, and under the appropriate pressure, and, according to the Regulation on
the quality of water intended for human consumption, it should be free of pathogenic
microorganisms and parasites that could pose a threat to human health, or any substances
in concentration that are potentially harmful to human health and must not indicate
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aggressive corrosive properties. Further, it must meet the microbiological and chemical
requirements specified in the Regulation [5,6].

In recent years, there has been an increase in safety-related risks, such as large-scale
power failures or blackouts resulting from the generalized use of ICT and the systemic
connectivity of different critical infrastructures [7]. The risk of other undesirable events
that may result in a failure of the water supply system makes it necessary to develop
alternative solutions to supply people with drinking water in crisis situations [8,9]. Water
supply systems are an important element of critical infrastructure. They should be subject
to increasingly restrictive requirements in terms of resilience and business continuity,
especially in crisis situations, including blackouts [10,11].

There are several undesirable events associated with the daily operation of the water
supply system (WSS), including secondary contamination of drinking water in the distri-
bution subsystem, breaks in the water supply, or drops in water pressure [12,13]. Water
supply systems are characterized by continuous work, and due to the specific requirements
associated with them, they must be highly reliable, both operationally and in terms of safety,
particularly in terms of the safety of water consumers [14–16]. As one of its characteristics,
the WSS is capable of changing its properties, which have a significant impact on the
reliability and safety of the system [17].

A WSS can progress from complete capability (reliability and safety) to partial inca-
pability (threat to safety), up to complete incapability, resulting in a loss of the system
safety (threat to water consumers), depending on the type, character, and magnitude of the
failure [18–20]. To determine the probability that a particular state will occur, an analysis
using the Markov process method was conducted, whereby the reliability features of WSSs
are represented using the so-called graph of states [21,22]. As a result of this method, it
is possible to model the reliability of a system’s operation and safety over time [23]. In a
Markov process, the probability of each event depends only on the result of a previous
event (this is a random process without memory) [24]. The main purpose of this work
is to perform a safety analysis of the WSS, implementing Markov processes. In order to
reduce energy consumption for water production, e.g., pumping, a detailed analysis of
safety conditions through the optimization of working and repair times is crucial. In the
same way, the costs that are incurred by companies through water losses are examined.
This is very significant in times of energy crisis.

2. Identification of System Safety States

Water supply systems that are the subject of interest in this paper are systems of a
special type. Subsequently, they are characterized by dynamics and considerable inertia,
and they are spatially extended. Such systems can be in various operational states [25,26].
These states, from the point of view of safety, can be classified into two sets: safe states (no
damage) and unsafe states (loss of safety). From the point of view of reliability, these states
can be classified into fitness and unfitness. Additional specific states of the system will
also be considered. That is, “the state of emergency” [27]. The possibility of a quantitative
description of this state was of interest to the authors [28,29]. The set of internal properties,
defined by the interrelationship of the processes taking place in its subsystems, is defined
as the state of the system at time t [5].

The condition is a set of properties that determines its ability to perform operational
tasks. The state of threat to the system is characterized by destructive processes that occur
during its operation [22,30,31]. It changes its operating characteristics, despite the fact
that the system’s functional capabilities are maintained [32,33]. The failure condition is
characterized by the inability to meet reliability requirements, i.e., provide drinking water
in the right quantity and quality, under the required pressure, at any time convenient to the
consumer, and an acceptable price [34]. Unfitness can be both reversible and irreversible. It is
characterized by the fact that the system loses its ability to function fully or partially [35,36].
The reversibility of this condition is that the system may be fully operational after repair.
When analyzing the system in terms of safety, the following states were additionally defined:
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• Safety state (reliability)—CSS;
• Under threat—TSS;

And failure status:

• Loss (unreliability) of safety—LSS.

In work [36] for WSS, these states were defined as follows:

• CSS—the condition in which the system performs its functions in accordance with
the applicable legal regulations and the expectations of water consumers in terms of
the volume of production of drinking water (nominal water production efficiency is
defined as Qn ≥ Qdmax) and quality (water meets the requirements of the applicable
regulation). Emergency events may occur in the system’s operation, but the related
losses C do not affect the system’s viability (they are negligible). It can be assumed
that the relative value of the losses is equal to zero (C = 0). In terms of the safety of the
water supply, the system meets the requirements for consumers but also does not pose
a threat to the environment and other technical infrastructure—the tolerable state;

• TSS—a condition characterized by short-term disturbances in system operation: The
daily production of water decreases (0.3 Qdmax ≤ Qn < Qdmax), or there are interrup-
tions in its supply lasting up to 24 h (domino effect). The effects of the disturbances
are greater than zero but less than or equal to the adopted limit values of Cgr, related
to interruptions in water supply and threats to water consumers (possible exceedances
of the normative values for the physicochemical parameters of water quality). If it
is assumed that the relative value of the limit loss is equal to one, then 0 < C ≤ 1. In
the aspect of safety, there is the so-called threat to water supplies to consumers or the
environment (e.g., excessive water abstraction, leakage of chemicals) or other technical
infrastructure (e.g., road washing)—the controlled state;

• LSS—a state in which the WSS does not fulfill its functions (Qn < 0.3 Qdmax) or water
supply interruptions last longer than 24 h for individual housing estates, districts, or
parts of the city. Consumers are exposed to the consumption of poor-quality water
(exceeding the normative values for microbiological and (or) physicochemical indica-
tors). Water quality poses a threat to the health or life of consumers: C ≥ Cgr = 1—the
unacceptable state.

In terms of safety, there has been a loss of water supply safety—the system is not safe
for the environment and other technical infrastructure.

Two variables characterize WSS [23,28,29,37,38]:

• The variable X characterizes the system in terms of specific features of the system and
their safety requirements;

• The Y variable characterizes the system in terms of system safety.

The variables X and Y can take the following values:

• X = 1 when all features of the system meet the safety requirements;
• X = 0 when at least one feature of the system does not meet the safety requirements;
• Y = 1 when there is no loss of system safety (tolerated or controlled state);
• Y = 0 when there is a loss of system safety (an unacceptable state).

Probabilities P(X) and P(Y|X) are assumed to be given. Therefore, the total probability
is [28,29,38]:

P(X∧Y) = P(X) · P(Y|X), (1)

Each of the variables X and Y describes two states of the system. Consequently, the
system at time t may be in the following states [28,29,38]:

• X = 1 and Y = 1—CSS, the safety reliability state, which means that all features of the
system meet the specified safety requirements of the system and there is no loss of
safety. The probability of the condition occurring is:

P(CSS) = P(X = 1 ∧ Y = 1) = P(X = 1) · P(Y = 1|X = 1), (2)
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• The probability of safety is:

P(TSS) = P(TSS1) + P(TSS2), (3)

• X = 1 and Y = O—TSS1, the state that can occur theoretically. There has been a loss of
safety in the system, but some features are within acceptable limits. The probability of
the condition occurring is:

P(TSS1 ) = P(X = 1∧ Y = 0) = P(X = 1)·P(Y = 0 |X = 1), (4)

• X = 0 and Y = 1—TSS2, state of the safety emergency. At least one feature of the system
does not meet the safety requirements, but there is no safety failure. The probability of
the condition occurring is:

P(TSS2 ) = P(X = 0∧ Y = 1) = P(X = 0)·P(Y = 1 |X = 0), (5)

• X = 0 and Y = 0—state of safety unreliability LSS. One or more features of the system
do not meet the safety requirements, and there is a safety failure.

The probability of the condition occurring is:

P(LSS) = P(X = 0∧ Y = 0) = P(X = 0)·P(Y = 0 |X = 0). (6)

3. Methodology

Markov processes can also be used to model the reliability and safety of WSS. Detailed
models in this regard can be found, among others, in the works [23,36].

In the analysis carried out by the Markov processes, we have the so-called state change
graph. The use of Markov processes in safety analysis allows modeling the strategy of the
system operation and the process of damage/renewal.

The differential equation is written in the general form [28,29,38,39]:

dp1 (t)
dt

= −p1 (t)
n

∑
j=2

λ1j −
n

∑
i=2

λj1Pj

dpi (t)
dt

=

j=i

∑
j=1

pjλji −
n

∑
j=i+1

pj(t)λij, 1 < i < n, t ≥ 0

dpn (t)
dt

=
n

∑
i=2

pj (t)λjn,

(7)

The equation should be solved with the following initial condition:{
p1 (0) = 1

pi (0) = 0, i = 2, . . . n,
(8)

This way, the probability values of individual states are obtained. The transition matrix
is as follows:

M
(
λij
)
=


λ1,1 λ1,2 · · · λ1,n−1 λ1,n
λ2,1 λ2,2 · · · λ2,n−1 λ2,n

...
λn,1 λn,2 · · · λn,n−1 λ1n,n

 (9)

The development of the Markovian WSS safety model consisted of defining operational
states, determining the transition matrix, and determining the initial distribution. WSS
reliability analyses of the WSS proved that the working times between failure and recovery
have exponential distributions. Thus, it is possible to construct a model of the functioning
of the WSS based on the Markov process. Depending on the degree of susceptibility to
the threat of the system and the protection of consumers against adverse events, five
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models have been proposed in [37], which show various possibilities of transition between
defined operating states. For the models adopted in this way, Markov chains were used
to determine individual stationary values of the probability of occurrence of individual
operational states [36,40].

Figure 1 presents variants of the transition possibilities among the safety states of the
WSS.
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The model presented in Figure 1a assumed the possibility of developing an emergency,
which is always preceded by an initiating event. The system may return to the CSS state as
a result of the protection system. The model in Figure 1b took into account the possibility
of removing the threat with the intensity transition of µTSS as a result of the operation of
the protective barriers in the event of a threat occurrence. The transition of the system
to the state of full operability; that is, the return from LSS to CSS, is always preceded by
the TSS transition state, with the intensity transition of µLSS. The model assumed that it
is possible to repair the system partially, i.e., to put it into operation conditionally, e.g.,
water supplied to some recipients with reduced pressure or the possibility of drinking
water after boiling. This is the so-called conditional operation of the system until complete
repair when the system goes to a state of full operability with the intensity transition of
µTSS. Figure 1d characterizes the low-level protection model and standard water quality
monitoring according to the current regulations. This model presents a situation in which,
during the development of a crisis, there is no return from state TSS to state CSS, and the
so-called domino effect occurs. Only when LSS arises is there a possibility to counter the
threat and to return directly to the state TSS. The model in Figure 1e took into account the
possibility of removing the threat of the transition intensity µTSS during the operation of
the system. In the proposed model, there is a possibility of a direct transition from CSS to
LSS state through sudden catastrophic events, such as pollution of water intakes connected
with serious failures that cannot be reduced by the treatment process, such as long-lasting
lack of power supply or failure in the strategic pipeline. The model in Figure 1f assumed
that the failure situation develops with time and is always proceeded by the initiating event.
In this case, the state CSS can contribute to the occurrence of a catastrophic event, but at
the same time, as a result of the protection system, the system can return to the state CSS.
As with model E, there is no possibility to counter LSS with the suitable µLSS. If the LSS
state occurs immediately, it will depend on the type of system, treatment technology, repair
and monitoring system, the efficiency and number of repair brigades, or the use of modern
technologies. If we are able to react quickly to the LSS state, we go straight to the CSS state.
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In the case of a small system with a small number of brigades, the repair will be carried out
in stages, and therefore slower, so indirectly the TSS state can occur, e.g., not a complete
lack of water, but the need to boil water or water supply under reduced pressure.

The model shown in Figure 1c was selected. The model took into account the multistate
of the system, as well as the occurrence of the so-called evaporation of the emergency state
with the intensity of transitions µTSS during the operation of the WSS (e.g., timely correction
of the water treatment process, the inclusion of alternative technologies, etc.). In this type of
model, there is a possibility of a direct transition from CSS to LSS (emergency—catastrophic,
e.g., contamination of water intakes related to serious accidents that the treatment process
cannot reduce; flooding of the area of WSS; failure of a strategic pipeline; long-term total
lack of power supply), as well as the possibility of vaporization of the LSS state with the
appropriate intensity of the transitions. It should be noted that the intensity of transitions
λLSS is associated with sudden events, and λTSS with the scenario of developing during a
catastrophic situation (Domino effect, cascade failures) [41–43]. For the model defined this
way, the following assumptions were made [28,29,38,39]:

• The occurrence of each condition is a random event; the transition probability corre-
sponding to the individual states is: PCSS(t), PTSS(t), PLSS(t);

• The system can only be in one of the distinguished states at a time;
• At time t = 0, the subsystem is in the CSS state;
• Transition times between individual states have exponential distributions;
• Failure rate (or failure frequency) and repair parameter are, respectively, λ, µ;
• The graph directed from CSS to TSS and LSS to TSS means the occurrence of an

emergency event with the probability λCSS∆t and λTSS∆t in the time interval ∆t; the
graph directed from LSS to TSS and TSS to CSS shows the system renewal process of
the system with probability µ1∆t and µ2∆t over the time interval ∆t;

• The stream of damage is the simplest, i.e., a stationary Poisson stream. The transition
matrix according to matrix (9) is as follows [28,29,39]:

M(λi,µj) =

−(λCSS + λLSS) λCSS λLSS
µTSS −(λTSS + µTSS) λTSS
µLSS 0 −µLSS

 (10)

The system of Kolmogorov differential equations based on formula (7) takes the
following form [8,9,28]:

dPCSS(t)
dt

= −λCSS·PCSS(t) + µTSS·PTSS(t)− λLSSPCSS(t) + µLSS·PLSS(t)

dPTSS(t)
dt

= λCSS·PCSS(t)− (λTSS + µTSS)·PTSS(t)

dPLSS(t)
dt

= λTSS·PTSS(t)− µLSS·PLSS(t) + λLSS·PCSS(t)

(11)

At time t = 0, the system is in CSS, which means that:

p(0) =

1
0
0

. (12)

For stationary conditions, i.e., t→ ∞ [28]:
−λCSS·PCSS − λLSS·PCSS + µLSS·PLSS + µTSS·PTSS = 0

λCSS·PCSS − µTSS·PTSS − λTSS·PTSS = 0

λTSS·PTSS + λLSS·PCSS − µLSS·PLSS = 0

PCSS + PTSS + PLSS = 1

(13)
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As a result of solving the system of equations, the following is obtained [37]:

PCSS =
µTSS·µLSS + µLSS·λTSS

λCSS·λTSS + λLSS·µTSS + λTSS·λLSS + µLSS·µTSS + µLSS·λTSS + µLSS·λCSS
(14)

PTSS =
µLSS·λCSS

λCSS·λTSS + λLSS·µTSS + λTSS·λLSS + µLSS·µTSS + µLSS·λTSS + µLSS·λCSS
(15)

PLSS =
λCSS·λTSS + λLSS·µTSS + λTSS·λLSS

λCSS·λTSS + λLSS·µTSS + λTSS·λLSS + µLSS·µTSS + µLSS·λTSS + µLSS·λCSS
(16)

4. Research Object

The source of water for the water treatment plant (WTP) is surface water. In the
1990s, the facility was modernized, introducing preliminary ozonation of raw water. The
total production capacity of the WTP is Qmaxd = 84,000 m3·d−1. The WTP consists of two
independent water treatment plants (WTPI and WTPII), located in one area, with a common
intake.

The current possibilities for emergency water supply to the city, taking into account
all available water sources, are as follows:

• Water stored in 18 equalizing reservoirs within the water supply network, with a total
capacity of 35,300 m3;

• One hundred and seventy-nine emergency public wells with a total capacity of
689.4 m3·d−1, giving a total of 35,222 m3·d−1.

At present, the water treatment processes are the removal of large contaminants on
the grates, water ozonation, coagulation: slow mixing; flocculation; sedimentation in
horizontal sedimentation tanks (continuous sludge scraping); filtration through a sand
bed (WTP I station) and anthracite-sand (WTP II station); indirect ozonation; filtration
through a carbon bed; preliminary disinfection with UV and final disinfection with chlorine
compounds (chlorine gas and chlorine dioxide); and the correction of the pH of the water
(depending on the needs).

The water supply pipes are mainly plastic pipes. PVC pipes account for 29.4% and
PE—48.0% of the total length of the water supply networks. Steel pipes account for 3.5% of
the length of all pipes, cast iron pipes account for almost 14.5%, and asbestos-cement pipes
only 0.18%. Water connections constitute approximately 33.9% of the network (334.82 km),
and the main network, approximately 5.7% (96.88 km). The remaining part, approximately
60% of the network, is distribution networks (656.80 km). In total, the water supply network
administered by the water company is 1088.5 km long. The water pipelines are constructed
with diameters from 25 to 1200 mm.

5. Results of Research
5.1. An Exemplary Analysis of the Method Being Applied

An exemplary analysis was performed using data from the literature and operating
data from different WSSs to estimate the values of λ and constant µ. In Figures 2–5, the
failure rates for λCSS, λTSS, and λLSS, as well as the dependence of the PCSS, PTSS, and
PLSS values on the failure rates λCSS, λTSS, and λLSS, for constant µTSS = 1.0399 d−1 and
µLSS = 0.0276 d−1 are presented.

In Figures 6–9, the repair rates for µTSS and µLSS, as well as the dependence of the
values of PCSS, PTSS, and PLSS values on the repair rates for µTSS and µLSS, for constant
failure rates λCSS = 0.0028379 d−1, λTSS = 0.0007703 d−1, and λLSS = 0.0000220 d−1 are
presented.
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Figure 3. Dependence of the PCSS values on the failure rates λCSS, λTSS, and λLSS acc. to Figure 2, for
the constant µTSS = 1.0399 d−1 and µLSS = 0.0276 d−1.
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Figure 4. Dependence of the PTSS values on the failure rates λCSS, λTSS, and λLSS acc. to Figure 2, for
the constant µTSS = 1.0399 d−1 and µLSS = 0.0276 d−1.
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Figure 5. Dependence of the PLSS values on the failure rates λCSS, λTSS, and λLSS acc. to Figure 2, for
the constant µTSS = 1.0399 d−1 and µLSS = 0.0276 d−1.
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Figure 6. Repair rates for µTSS and µLSS.
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Figure 7. Dependence of the PCSS values on the repair rates µTSS and µLSS acc. to Figure 6, for
constant failure rates λCSS = 0.0028379 d−1, λTSS = 0.0007703 d−1, and λLSS = 0.0000220 d−1.
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constant failure rates λCSS = 0.0028379 d−1, λTSS = 0.0007703 d−1, and λLSS = 0.0000220 d−1.
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The results were considerably dependent on the failure rate and rate of the repair.
Since each defined state was characterized by a specific number of losses, determining each
state means determining the probability that a threat to the system could occur.

5.2. The Case Study Results

The following assumptions were made for CSS, TSS, and LSS, based on many years of
research on the water supply system:

• The occurrence of each of the three states is a random event that occurs with probabili-
ties: PCSS(t), PTSS(t), PLSS(t);

• The WSS may be in one of the three distinguished states at any given time;
• There may be a transition from one state to another;
• At time t = 0, the subsystem is in the CSS state;
• Transition times between individual states have exponential distributions in accor-

dance with the carried out statistical analysis through chi-square test;
• The failure rate and repair rate parameters are, respectively, λCSS, λTSS, λLSS, µCSS,

µTSS, µLSS;
• The stream of damage is the simplest, i.e., a stationary Poisson stream.

The operational data used in the analysis concerned the failure rate of the examined
water supply system and interruptions to the water supply. After a detailed analysis of
the examined water supply system, the following values of mean time to repair (MTTR),
calculated as the average time needed to determine the cause of (Mean Waiting Time
to Repair—MWTTR), and repair fails (Mean Time to Repair—MTR) for each state were
obtained:

• MTTR for TSS state: 0.875 days;
• MTTR for LSS state: 3.625 days.

And for the mean time between failures:

• MTBF for CSS state: 42.52 days (0.11 year);
• MTBF for TSS state: 1020.41 days (2.79 years);
• MTBF for LSS state: 35,714.29 days (97.85 years).

On the basis of the estimated times of MTTR and MTBF, the failure and repair rate
parameters were determined.

Figures 10 and 11, shows the following values of parameters λ and µ for states CSS,
TSS, and LSS, obtained from the examined water supply system, based on the operational
data.
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Figure 10. Failure rates—λCSS, λTSS, and λLSS.
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Figure 11. Repair rates—µTSS and µLSS.

Figure 12 shows the results of the calculations (based on Figures 10 and 11) of the
transition probabilities PCSS, PTSS, and PLSS.
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5.3. Discussion

Taking into account the transition probabilities, based on the results of the analysis,
it was determined that the PTSS of a partial WSS fault in the examined city regarding
the lack of water supply to consumers was very low, indicating that the controlled state
existed when the supply of water was interrupted or the water was of poor quality. The
state of complete fault described by the probability PLSS was very low. This unacceptable
state refers to a situation in which there is a real threat due to a break in water supply or
bad quality water being consumed. In this regard, the PCSS of the tolerable state in the
analyzed city was very high, which means the occurrence of incidental events in WSS was
at low occurrence frequency, so the threat of water shortage or consumption of bad quality
water was unexposed under favorable circumstances [23,39]. In addition, establishing the
criteria values for states is an important issue, which should be achieved by collaborating
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teams of experts in safety assessment methods and experienced engineers, using the most
current scientific and technological knowledge and data from the operating WSS [19]. The
developed models require an extensive knowledge base of the intensity of transitions
between states and knowledge of the distributions of individual probabilities. When this
knowledge base does not meet the requirements in terms of the number of operating data,
or simply lack of them, then expert knowledge can be used and fuzzy modeling can be
applied [39]. The use of Markov models was applicable in the analysis conducted in terms
of the occurrence of incidental events, resulting in disruptions in the functioning of the
entire system, in comparison to the research performed on the basis of certain values of
parameters in water distribution subsystems [44–46]. The developed models took into
account the possibility of partial and complete system failure. The probability of the
occurrence of a given state depends on the adopted model, which characterizes the given
system through the network, hydraulic system, monitoring system, multibarrier system,
etc. This allows using the model for any system of any specificity, which is essential in the
context of the practical application of the proposed models.

6. Conclusions

Markov models for WSSs operations can be used to develop a computer simulation
method that can predict the probability of failure for different types of WSSs. One of
the most challenging aspects of WSSs is the ability to predict events that can lead to a
loss of safety. All scenarios, even the most unlikely ones, are possible. There is only a
limited amount that can be done to minimize the consequences and losses. It is possible to
determine the values of the nonstationary probabilities at any time using the calculated
values. This study presented operating models that can be modified for different, real
operating systems.

As a result of the proposed approach for the water supply system, emergency condi-
tions can be limited. Analysis of the failure rates of water supply systems, and, in particular,
its modeling (i.e., mechanism of formation), through optimization of working and repair
times, will reduce losses in the water supply system, which is crucial to reduce and opti-
mize energy consumption. Research of this type should be the basis for sustainable water
management to reduce the use of water resources and protect water ecosystems, which is
part of the European Green Deal strategy.

The calculated values relative to the system safety indicated that the following category
applies: tolerable state, which means that the WSS performs its functions in a safe and
reliable manner. The controlled state requires improvement in the performance of certain
elements of the system (e.g., network monitoring, protective stations), and the repair of
certain sections of the water distribution network should be considered. An unacceptable
state signifies that the WSS does not meet its intended functions, both in terms of operational
reliability and safety. An analysis of the main factors is required, and the WSS should be
completely redesigned or modernized.

Water supply system strategies should take into account the following factors: the
risk of disruption to the water supply; the possibility of biological or chemical pollution
at the source and within the water distribution system; the risk of biological or mineral
contamination; the risk of malevolent actions; as well as the cost of corrective actions to
provide water from alternative sources to consumers.

It is important to assess the threats associated with crisis management regarding critical
infrastructure, including drinking water systems, on a case-by-case basis. There is always a
problem of providing drinking water to the population in a variety of crisis situations, such
as floods, droughts, earthquakes, breakdowns, technical disasters, blackouts, etc.

Diseases and epidemics occur as a result of a lack of these supplies. It is also important
to note that the WSS itself can result in a crisis if various adverse events occur, resulting
in the unreliable functioning of the system and consequently, a loss of consumer safety.
To develop a comprehensive safety management program for the drinking water supply
system, it is imperative that emergency drinking water supply plans are developed for a
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variety of crisis situations, as well as a detailed risk analysis of the possibility of adverse
events occurring in the system.

The method of analyzing and assessing the operational safety of the water supply
system proposed in this paper forms the basis for the risk management process and for
making modernization and renovation decisions of water supply companies.

The major issue is the optimization of the operation of the critical infrastructures:
connected water and energy systems. It is a multicriteria optimization issue as it covers the
minimization of water losses, and therefore, the energy used in water supply systems, the
maximization of operational reliability and safety, and the minimization of sanitary risks.
The issue becomes even more significant if one considers the transition to sustainable energy
in accordance with EU standards and recommendations that should be implemented: good
engineering practices; design; construction; and operation phases of the system. The
proposed assessment can also be applied in energy supply systems, given the relative
universality of the approach presented here.
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