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Abstract: Due to the uncontrollable generators, islanded microgrids powered only by renewable
energy require costly energy storage systems. Energy storage needs are amplified when load and
generation are misaligned on hourly, monthly, or seasonal timescales. Diversification of both loads
and generation can smooth out such mismatches. However, the ideal type of battery to smooth
out remaining generation deficits will depend on the duration(s) that energy is stored. This study
presents a controls co-design approach to design an islanded microgrid, showing the benefit of
hybridizing tidal and solar generation and hybridizing lithium-ion and flow battery energy storage.
The optimization of the microgrid’s levelized cost of energy is initially studied in grid-search slices to
understand convexity and smoothness. Then, a particle swarm optimization is proposed and used to
study the sensitivity of the hybrid system configuration to variations in component costs. The study
highlights the benefits of controls co-design, the need to model premature battery failure, and the
importance of using battery cost models that are applicable across orders of magnitude variations in
energy storage durations. The results indicate that such a hybrid microgrid would currently produce
energy at five times the cost of diesel generation, but flow battery innovations could bring this closer
to only twice the cost while using 100% renewable energy.

Keywords: hybrid microgrids; optimization; renewable energy sources; tidal energy; solar energy;
energy storage systems; lithium-ion batteries; vanadium redox flow batteries

1. Introduction

Due to their variability and unpredictable nature, many difficulties arise when inte-
grating renewable energy sources (RES) into the grid. Periods of peak production and
consumption rarely align, making energy storage systems (ESS) necessary to balance differ-
ences between supply and demand [1,2] and to ensure the energy supply remains stable
and reliable [3,4].

An ideal ESS has a long lifespan to minimize the cost of replacement, a high-power
density to handle rapid power fluctuations, and a high energy density to smooth out
variations in generation and load. However, a single energy storage technology is unlikely
to meet all these requirements economically. This presents an opportunity for hybrid ESSs
that utilize the best characteristics of different ESS chemistries [5].

Different batteries have different benefits. Vanadium redox flow batteries (VRFBs) have
relatively low costs per energy stored, can easily be scaled up, do not undergo increased
degradation due to deep discharge, and have a broader state of charge range than lithium-
ion batteries (LIBs) [6,7]. As a large scale energy storage system, VRFBs can contribute to
the transition towards a new sustainable energy paradigm [8]. Estimations also show that
VRFBs may be cheaper to produce than LIBs for long-term energy storage applications.
However, this advantage is currently offset by their low production volume [9]. LIBs, which
have a high power density, are also a promising energy storage option that is currently being
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produced at scale for grid and electric vehicle applications [10,11]. However, high cycling
rates, overcharge, and deep discharge each increase aging in LIBs [12,13]. Flow batteries
are primarily used for long-term energy storage, while LIBs are used to deliver energy and
quickly respond to demand. Hybridization can decrease operational stress and increase
battery lifetime, thus reducing the levelized cost of energy (LCOE) delivered [14,15].

Increasing the diversity of generation sources could increase the likelihood energy
is produced when needed, reducing the need for battery capacity and cycling [16]. Solar
photovoltaic (PV) arrays are highly modular and easily scalable [4]. However, electricity
production using solar PV arrays fluctuates with changing weather conditions that are
difficult to predict [17]. By contrast, tidal power, which uses energy from the ebb and
flow of the tides to generate electricity, is as predictable as the moon’s cycles and orders
of magnitude less affected by local weather. However, the scaling of tidal systems can be
significantly constrained by local hydrology.

Microgrids are electrical grids capable of producing and distributing power through-
out a localized area. When islanded, they can do so without external control or energy [18].
Microgrids improve service quality and enable RES grid integration by lowering trans-
mission losses and the time needed to fix outages [19]. These characteristics are especially
valuable to island communities traditionally relying on diesel power generation. Due to the
high costs of importing fossil fuels, islands can handle the considerable expenses associated
with renewables, energy storage, and first-generation microgrids [20].

While much of the existing literature on hybrid generation and hybrid storage in
microgrids covers the joint optimization of wind and solar, a relatively small number
covers tidal energy or the use of VRFBs in hybrid ESSs. In one study, a coupling calculation
model is constructed and a configuration optimized design method is proposed in [21] to
explore VRFB batteries in a microgrid containing RESs. In another study, a proportional-
integral derivative (PID) controller is used to capture the maximum energy from hybrid
renewable energy sources including wind, photovoltaic, and tidal [22]. However, only a
few studies account for use-based reductions in battery lifetime, resulting in overestimating
battery revenues [23]. In [3], performance models for a PV-wind system with LIB storage
are developed based on data representative of a location in Denmark. In [24], a multi-
objective salp swarm algorithm is used to optimize a hybrid stand-alone microgrid system
with photovoltaics, wind turbines, batteries, and diesel generators to meet the load energy
demand of a remote area in an off-grid community in Djelfa, Algeria. In [25], particle
swarm optimization (PSO) is used to minimize the energy cost of a wind/tidal/PV hybrid
energy system. In [26], a novel expert fuzzy system-grey wolf optimization method is
used to minimize operating costs and CO2 emissions and maximize the efficiency of a
microgrid consisting of a PV system, wind turbine, tidal turbine, and diesel generator
using only LIB in the ESS. In [16], an integrated energy system with combined heat and
power generation, PV, and battery energy storage is optimized while considering battery
lifetime loss by using a simple total power throughput degradation model. In [5], a hybrid
wind/PV and battery/supercapacitor microgrid system is optimized to minimize costs and
greenhouse gas emissions and improve reliability without accounting for abnormal battery
degradation. In [27], the proprietary HOMER software is used to optimize a PV/wind
hybrid power generation system. In [28], an operational planning strategy is defined for an
islanded microgrid containing tidal, PV, and fuel cell generators with only thermal storage
(i.e., storing heat from the fuel cells). In [29], a short-term scheduling algorithm is presented
for a tidal-powered microgrid with LIB storage with a lifetime modeled as a nonlinear
function of depth of discharge.

This manuscript builds on this body of literature, tying together four main contribu-
tions: (1) This is the first paper of its kind to study the economic benefits of combining
solar PV with tidal generation and LIB with VRFBs. (2) A filter-based control algorithm
is proposed to determine the appropriate (dis)charge out/into each battery type. A con-
trols co-design (CCD) approach is used to simultaneously optimize the control algorithms’
parameters and the physical RES and ESS sizes [30]. (3) Battery life is modeled using a



Energies 2023, 16, 2761 3 of 18

maximum lifetime in years and cycle life. Furthermore, different cycle life models are used
for LIB and flow batteries. (4) Lastly, the companion code released with this manuscript
provides a flexible simulation environment for future research on hybrid microgrids.

The rest of this manuscript is organized into sections on Materials and Methods
(Section 2), Results (Section 3), Discussion (Section 4), and Conclusion (Section 5). The
Materials and Methods section presents the model architectures and parameters considered
for the RES and ESS subsystems, the overall microgrid model, optimization methods used,
and the proposed parametric studies of cost and performance. The Results section presents
the LCOE of each simulation and the contribution of each subsystem to the LCOE, time
series plots of the energy flows for key simulations, and the results of the parametric
studies. The Discussion section draws insights from the parametric study results to discuss
the opportunities for such hybrid microgrids under various cost scenarios. Finally, the
Conclusion summarizes the manuscript and presents challenges that should be addressed
in the future to help realize such islanded hybrid microgrids.

2. Materials and Methods

This manuscript considers a study of the microgrid system shown in Figure 1 provid-
ing electricity to a large island community using hybrid RES from tidal and solar power
and a hybrid ESS with LIB and VRFB modules. A microgrid battery controller is designed
to allocate excess generation to charge the batteries and meet any deficit by discharging the
batteries in a way that best leverages each battery type’s unique physics and economics.
This work is entirely simulation-based, developed with object-oriented programming in
MATLAB [31]. Each simulation is 1-year long and considers each discrete hour in the year.
The model contains demand, RES, ESS, and control subsystem models, each with energy
balance, economic, and component degradation models.
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Figure 1. Schematic overview of the hybrid microgrid using solar and tidal RES; LIB and VRFB
ESS; with battery (dis)charging managed by the microgrid controller to meet the island’s electricity
demands. Solid black lines indicate power flow, while dashed blue lines indicate information flow.

2.1. Renewable Generator Models

The total power generated by the RES system (PRES) is calculated by the sum of both
the solar PV (PSolar) and tidal (PTidal) systems as outlined below in Equation (1).

PRES(t) = PSolar(t) + PTidal(t) (1)
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2.1.1. Solar PV

The nominal hourly energy generation of a 1 kW DC rated solar PV system
(

P
◦
Solar(t)

)
was modeled using the National Renewable Energy Laboratory’s PVWatts Calculator [32]
for the ZIP code 02807 (i.e., New Shoreham, RI, USA on Block Island) with the default
14.08% system losses, 96% inverter efficiency, standard modules (i.e., ~15% nominal ef-
ficiency) in a fixed open rack at 20◦ tilt and 180◦ azimuth, resulting in a 15.9% capacity
factor. The solar PV system design parameter is the rated power ([P]Solar) which scales the
1 kW system to the full PV system output power (Psolar(t)). The installed cost ([C]Solar)
per rated power is assumed to be USD 1060/kW in the baseline scenario with a system
lifetime of 30 years (Tmax,Solar) [33]. The total system cost of solar PV generation (CSolar) is
the product of the installed cost and the rated power.

PSolar(t) = [P]Solar · P
◦
Solar(t) (2)

CSolar = [C]Solar · [P]Solar (3)

2.1.2. Tidal

The tidal energy system’s hourly energy generation is assumed to be proportional
to the tidal flows with the rated power output produced at peak flow. The total power
generated from the tidal RES (PTidal(t)) is a product of the rated power of tidal ([P]Tidal)
and the power generated from a 1 kW rated tidal system (P◦Tidal(t)) which is calculated
as the product of daily variations

(
PDaily(t)

)
, monthly variations

(
PMonthly(t)

)
, and the

generator’s rated power.
PTidal(t) = [P]Tidal · P

◦
Tidal(t) (4)

P◦Tidal(t) = PDaily(t) · PMonthly(t) (5)

A lunar day is the amount of time required for a specific location on Earth to rotate
from a point beneath the moon back to this original spot. The moon revolves around the
Earth in the same direction as the Earth’s rotation on its axis, so due to Earth’s additional
time to reach the same location beneath the moon, lunar days are 50 min longer than solar
days. In addition, every lunar day, two high tides and two low tides occur [34]. This
approximately daily tidal flow is modeled using a 6.2 h wavelength sine wave with a
minimum of zero and a maximum of 1.0, shown below in Equation (6), where t is the hour
of the year.

PDaily(t) =
sin
( t

6.2∗2π

)
+ 1

2
(6)

When the Earth, sun, and moon line up, the lunar and solar tides reinforce each other
during full and new moons. As a result, unusually small tides, known as neap tides, occur
when the solar and lunar tides act against each other, while unusually large tides, known
as spring tides, occur when solar and lunar tides reinforce each other. These high and low
tides occur approximately every two weeks [35]. This approximately monthly tidal flow(

PMonthly

)
is modeled using a 360 h wavelength sine wave show in Equation (7).

PMonthly(t) =
sin
( t

360∗2π

)
+ 1

2
(7)

The total system cost of tidal generation (CTidal) is calculated as the product of the
installed cost per rated power ([C]Tidal) and the tidal generators rated power ([P]Tidal). The
design parameter for the tidal RES is the generator’s rated power. The installed cost per
rated power is assumed to be USD 4300/kW in the baseline scenario with a system lifetime
of 20 years (Tmax,Tidal) [36].

CTidal = [C]Tidal · [P]Tidal (8)
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The total capital cost of RES generation (CRES) is the sum of the cost of solar (CSolar)
and tidal (CTidal) systems.

CRES = CSolar + CTidal (9)

2.2. Battery Models

Two types of batteries are considered: conventional LIBs and VRFBs. The total cost
of the ESS (CESS) is the summation of the total cost the LIB (CLIB) and VRFB (CVRFB)
systems. Generally, the battery model is founded on an energy balance rule (i.e., stocks and
flows) at each hour of the year. In an hour where the island’s electric demand is greater
than the supply from the RES, the deficit must come from the combined ESS, and when
supply is greater than demand, the excess is stored in the combined ESS. Each battery has a
maximum lifetime in years and a maximum number of charge/discharge cycles, where a
‘cycle’ is defined differently for the different battery types. Based on the supply–demand
deficit/surplus at each hour, the battery controller (described in Section 2.3.1) allocates
energy to discharge or charge each battery.

The cost of each battery is specified as the sum of the cost per energy storage capacity in
USD/kWh (e.g., energy capacity capital cost and construction and commissioning) and the
cost per rated power in USD/kW (e.g., power conversion system and balance of plant) [37].
Both types of batteries are assumed to have a round-trip efficiency of nearly 100%.

CESS = CLIB + CVRFB (10)

2.2.1. Lithium-Ion Battery (LIB)

Due to their relatively high energy capacity costs and relatively low rated power costs,
LIBs are best suited for short, high-power applications. In this model, the total module
cost of the LIB (CLIB) is calculated by Equation (11) as a function of the LIB’s rated energy
storage capacity [E]LIB and (dis)charge power rating [P]LIB. The LIB ESS baseline energy
capacity cost ([C]EnergyLIB

) is USD 285/kWh (i.e., USD 189/kWh for the capital cost of the
energy capacity of the battery itself plus USD 96/kWh construction and commissioning
cost), and the rated power cost

(
[C]PowerLIB

)
is USD 306/kW (i.e., USD 211/kW for the

power conversion system plus USD 95/kW for the balance of plant). These costs are
based on their 2025 estimate for utility-scale operations with an energy-over-power ratio of
4.0 [33]. Due to the LIB packs’ modularity, the total energy capacity costs are assumed to
scale linearly (i.e., at a fixed USD/kWh). At the scales considered (e.g., MWhs of storage),
the module-level rated-power costs are assumed to be independent and negligible with
respect to module-level energy capacity costs [38].

CLIB = [C]EnergyLIB
· [E]LIB + [C]PowerLIB

· [P]LIB (11)

The LIBs have a maximum lifetime of 10 years, a cycle life ([K]LIB) of 3500 cycles [37],
and are replaced when the first of these limits is reached (Tmax,LIB). A simple discharge-
based model is used to estimate cycle life depletion. For example, a single cycle of a
LIB with a 1 kWh capacity is used if fully charged then fully drained, or twice repeatedly
(partially) charged and then 0.5 kWh of energy discharged, or four times repeated (partially)
charged and 0.25 kWh of energy discharged. The number of discharge cycles per year
(KLIB) is defined as total annual energy storage capacity based on the assumption in [37].

Tmax,LIB = min
({

10 years,
[K]LIB
KLIB

})

KLIB =
∑8760

t max({0, PLIB(t)})∆t
[E]LIB

(12)
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2.2.2. Vanadium Redox Flow Battery (VRFB)

Due to their relatively low energy-capacity costs and relatively high-rated power costs,
VRFBs are well-suited for long-term storage. VRFBs have two significant cost drivers at the
module level: the aqueous electrolytes and the membrane and electrodes. When combined,
these costs scale inverse-exponentially with respect to the energy over power (E/P) ratio
according to Equation (13). This equation was fit to the data for VRFB capital cost in [39]
and reproduced in Figure 2. At very large E/P (i.e., large durations of storage/discharge),
the cost is governed by the electrolyte costs, while at small E/P (i.e., large power output),
the cost is controlled by the membrane and electrode costs.
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to the energy over power ratio (E/P). The energy storage costs of VRFBs are less the fixed cost of LIBs
(USD 285/kWh) when the E/P ratio is greater than 3.4 h.

The VRFB module capital costs are only part of the total VRFB ESS costs. Additional
costs, including construction and commissioning, USD 650/kWh; power conversion system,
USD 211/kW; and balance of plant, USD 95/kW, are considered [37]. The cost estimates
in [37] assume E/P = 4.0; at this size, they estimate an energy-capacity capital cost of USD
393/kWh, while the more general model from [39] provides an estimate of USD 278/kWh.
The sensitivity of this cost parameter will be studied later in this manuscript. Therefore,
the total cost of the VRFB system (CVRFB) is shown in Equation (13) below, as a function of
the rated (dis)charge power of the VRFB system ([P]VRFB) and the rated energy storage
capacity of the VRFB system ([E]VRFB).

CVRFB =
(

7.004 · 104
)

e
(
[P]VRFB ·0.004021

[E]VRFB
) −

(
6.9837 · 104

)
(13)

The VRFBs have a maximum lifetime of 15 years, a cycle life ([K]VRFB) of 10,000 cy-
cles [37], and are replaced when the first of these limits is reached. A cycle is depleted
each time the battery switches from charge to discharge mode due to the assumed degra-
dation of the membrane. The higher cost of rated power output and the desire to limit
discharge or charge mode switching makes VRFBs best-suited for long-duration energy
storage. The realized lifespan of VRFB (Tmax,VRFB) is the lesser of the maximum lifespan or
when the battery reaches the total used cycle lives, whichever is achieved first as shown in
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Equation (14). The number of VRFB cycles used per year is defined by the number of times
the discharge power changes sign (KVRFB) based on assumptions in [37].

Tmax,VRFB = min
({

15 years,
[K]VRFB
KVRFB

})
(14)

KVRFB = ∑8760
t sign(PVRFB(t))∆t 6= sign(PVRFB(t− ∆t)) (15)

2.3. Microgrid Model

This study considers a microgrid that provides electricity to 429 households
(# homes) [40] on Block Island. Due to the lack of a public load profile for this com-
munity, the load is assumed to follow the same shape as the hourly loads from January 1,
2019 to December 31, 2020 on the wholesale electric grid at the nearest load zone, i.e., ISO
New England load zone 4005.Z.RHODEISLAND. The total island demand PDemand(t) is
calculated by the product of the hourly load profile (P◦Demand(t)) and the power demand
scalar of load profile that yields estimated annual consumption of all homes on the island
([P]Demand). The annual power demand scalar is calculated to be 4.57 GWh/Wh as shown
in Equation (17) below as a function of the summation of hourly load profile (P◦Demand(t)),
the number of households on the island (# homes), and the US average annual household
electric energy consumption (Ehome) of 10.65 MWh [41].

PDemand(t) = [P]Demand · P
◦

Demand(t) (16)

[P]Demand =
(# Homes)(EHome)

∑8700
t P◦Demand(t)∆t

(17)

2.3.1. Microgrid Controller

The microgrid controller must ensure that the electricity demand is met at each hour of
the year. The demand is assumed to be uncontrollable, and while renewable generators can
curtail energy, they cannot produce more than is available from the sun and tides at that
hour. This leaves the microgrid controller responsible for splitting the charging (discharge)
power surplus (deficit, respectively) between the demand and generation at each hour.
An expensive backup generator is only available as a measure of last resort. The system
should be designed such that this backup generation is not needed. Therefore, the total net
discharge from the ESS (PESS(t)) is calculated as the summation of discharge power of the
VFRB (PVRFB(t)) and LIB (PLIB(t)) batteries.

PESS(t) = PVRFB(t) + PLIB(t) (18)

Considering the long-duration benefits of VRFBs and the high-power benefits of LIBs,
the battery power-flow controller implements a low-pass filter [5] on the power deficit(

PDe f icit

)
between demand and generation at each hour t, allocating the high-frequency

component PLIB to the LIBs and the low-frequency component PVRFB to the VRFBs as
shown in Equation (19). Following this sign convention, PDe f icit is negative when RES
power generation (PRES) is less than demand, and PLIB and PVRFB are positive when the
battery is discharging. The filter is implemented as a discrete-time (with one-hour time
steps, ∆t) causal moving-average filter, where the span of the moving-average Kcontrol (in
hours) is a design variable.

PVRFB(t) =
1

KControl

KControl

∑
k=1

PDe f icit(t− k∆t− 1) (19)

PLIB(t) = PDe f icit(t)− PVRFB(t) (20)

PDe f icit(t) = PRES(t)− PDemand(t) (21)
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2.4. Design Objective

When designing the microgrid, the objective is to reduce the levelized cost of energy
(LCOE) delivered by the microgrid. Since RES and ESS’s operational costs are orders of
magnitude less than those of traditional generation, only capital costs are considered in this
analysis. To simplify the analysis and to avoid the calculation of salvage values, future costs
are not discounted. Therefore, the LCOE is calculated according to Equation (22) as the
sum of capital cost Cn of each component n divided by each component’s realized lifespan
Tmaxn in years (e.g., if batteries are heavily cycled, they may need replacement before the
maximum lifespan) divided by the total energy delivered per year (Edemand = 4.57 GWh)
resulting in an LCOE in units of USD/MWh delivered, where the number of components
(N = 4) is as follows: (1) Solar, (2) Tidal, (3) LIB, (4) VRFB. To facilitate analysis and
understanding of each microgrid component’s impact, the LCOE is decomposed into the
contributing LCOE of each component by dividing that component’s capital cost by its
realized lifetime divided by the total energy EDemand) delivered by the microgrid.

LCOE =
∑N

n (Cn / Tmaxn)

EDemand
(22)

EDemand =
8760

∑
t

PDemand(t) (23)

2.5. Design Problem

The three independent variables in the design problem from the aforementioned
equations are the rated power of the tidal generator, [P]Tidal ; the rated power of the solar
PV system, [P]Solar; and the span of the moving average filter in the power-flow controller,
KControl . This leads to the following optimization problem. The lower limits of each of
these variables are zero. While there may not be true upper limits on these variables, if a
constrained optimization approach is used, the upper limits should be set high enough that
they are not reached.

min
dPeTidal
dPeSolar
KControl

LCOE (24)

Once [PTidal ], [PSolar], and [KControl ] are selected, an annual simulation of the system
can be run to generate PLIB(t) and PVRFB(t). The rated dis(charge) power of the LIB system
([P]LIB) is the maximum power from the LIB (PLIB(t)) as calculated in Equation (25).

[P]LIB = max
t

(|PLIB(t)|) (25)

[P]VRFB = max
t

(|PVRFB(t)|) (26)

The total energy storage capacity ([E]LIB) of the LIB is the maximum hourly profile
of energy (ELIB(t)) stored in the LIB offset to ensure energy stored is always positive.
Similarly, the rated energy storage capacity of the VRFB system ([E]VRFB) is calculated
from the energy hourly profile of energy stored in the VRFB (EVRFB) offset to ensure the
energy stored is always positive.

ELIB(t) =
8760

∑
t

PLIB(t)∆t + min
τ∈[0, 8759]

(
τ

∑
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PLIB(t)∆t

)
(27)

[E]LIB = max
t

(ELIB(t)) (28)
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EVRFB(t) =
8760

∑
t

PVRFB(t) + min
t∈[0,8759]

Energies 2023, 16, x FOR PEER REVIEW 9 of 19 
 

 

𝐸𝐿𝐼𝐵(𝑡) = ∑ 𝑃𝐿𝐼𝐵(𝑡)Δ𝑡

8760

𝑡

+ 𝑚𝑖𝑛
𝜏∈[0,8759]

(∑ 𝑃𝐿𝐼𝐵(𝓉)Δ𝑡

𝜏

𝓉

) (27) 

[𝐸]𝐿𝐼𝐵 = max
𝑡

(𝐸𝐿𝐼𝐵(𝑡)) (28) 

𝐸𝑉𝑅𝐹𝐵(𝑡) = ∑ 𝑃𝑉𝑅𝐹𝐵(𝑡)

8760

𝑡

+ 𝑚𝑖𝑛
𝓉∈[0,8759]

∑ 𝑃𝑉𝑅𝐹𝐵(𝜏)Δ𝑡

𝓉

𝜏

 (29) 

[𝐸]𝑉𝑅𝐹𝐵 =  𝑚𝑎𝑥
𝑡

(𝐸𝑉𝑅𝐹𝐵(𝑡)) (30) 

From these data, the cycles and realized lifetime of the batteries can be calculated 

according to Equations (12), (14), and (15), as well as the capital cost of the RES and ESS 

according to Equations (11) and (13). 

2.6. Solution Approach 

2.6.1. Grid Search 

An exhaustive grid search of any two independent variables shown as a 2-axis con-

tour map of the LCOE can provide insights into the optimization problem’s convexity, 

smoothness, and general shape. Four ‘slices’ of this three-dimensional optimization prob-

lem are selected for the grid search: (1) vary the tidal and PV RES rated powers using only 

the LIB; (2) vary the tidal and PV RES rated power using only the flow battery; (3) vary 

the rated power of the tidal RES and battery controller filter span, without the PV RES; 

and (4) vary the rated power of the PV RES and battery controller filter span, without the 

tidal RES.  

Due to the large range of these variables under consideration (e.g., the solar-rated 

power may vary from zero to 5 MW), a log spacing is used to define the grid. The lowest 

LCOE on the grid is then selected as a starting point for an interior-point-constrained local 

optimization [42] to further improve the lowest point’s accuracy, which may lie between 

grid lines. 

2.6.2. Particle Swarm Optimization (PSO) 

An exhaustive search of the full three-dimensional space would be computationally 

intractable. Instead, a Particle Swarm Optimization (PSO) method [43] is used to identify 

the system configuration ([𝑃]𝑡𝑖𝑑𝑎𝑙 , [𝑃]𝑠𝑜𝑙𝑎𝑟, 𝐾𝑐𝑜𝑛𝑟𝑜𝑙) with the lowest LCOE. A two-stage 

optimization approach is utilized, wherein the optimal point returned by the PSO initial-

ized a secondary interior-point-constrained local optimization to refine the optimal con-

figuration estimation further. As with the grid search, the independent variables are pro-

jected onto a logarithmic space. The swarm size is the primary meta-parameter of the op-

timization and should be selected as large as possible until computational tractability lim-

its are reached, or negligible improvements are realized.  

2.6.3. Sensitivity Analysis 

The system costs established above are estimates based on the latest literature. How-

ever, RES and ESS’s costs have been decreasing exponentially recently , and new technol-

ogy developments and business practices can yield significant changes in market prices. 

A sensitivity analysis will provide insight into how such price fluctuations affect funda-

mental system architecture. Specifically, the study separately considers four separate cost 

variations: (1) the energy storage capacity costs of the LIB module; (2) the dielectric, mem-

brane, and electrode costs of the VRFB module; (3) the cost per rated power of the solar 

PV; and (4) the cost per rated power of the tidal generator. The power conversion and 

balance of system costs are not varied in the sensitivity analysis as they are not expected 

to fluctuate as greatly.  

∑
τ

PVRFB(τ)∆t (29)

[E]VRFB = max
t

(EVRFB(t)) (30)

From these data, the cycles and realized lifetime of the batteries can be calculated
according to Equations (12), (14), and (15), as well as the capital cost of the RES and ESS
according to Equations (11) and (13).

2.6. Solution Approach
2.6.1. Grid Search

An exhaustive grid search of any two independent variables shown as a 2-axis contour
map of the LCOE can provide insights into the optimization problem’s convexity, smooth-
ness, and general shape. Four ‘slices’ of this three-dimensional optimization problem are
selected for the grid search: (1) vary the tidal and PV RES rated powers using only the LIB;
(2) vary the tidal and PV RES rated power using only the flow battery; (3) vary the rated
power of the tidal RES and battery controller filter span, without the PV RES; and (4) vary
the rated power of the PV RES and battery controller filter span, without the tidal RES.

Due to the large range of these variables under consideration (e.g., the solar-rated
power may vary from zero to 5 MW), a log spacing is used to define the grid. The lowest
LCOE on the grid is then selected as a starting point for an interior-point-constrained local
optimization [42] to further improve the lowest point’s accuracy, which may lie between
grid lines.

2.6.2. Particle Swarm Optimization (PSO)

An exhaustive search of the full three-dimensional space would be computationally
intractable. Instead, a Particle Swarm Optimization (PSO) method [43] is used to identify
the system configuration ([P]tidal , [P]solar, Kconrol) with the lowest LCOE. A two-stage opti-
mization approach is utilized, wherein the optimal point returned by the PSO initialized a
secondary interior-point-constrained local optimization to refine the optimal configuration
estimation further. As with the grid search, the independent variables are projected onto a
logarithmic space. The swarm size is the primary meta-parameter of the optimization and
should be selected as large as possible until computational tractability limits are reached,
or negligible improvements are realized.

2.6.3. Sensitivity Analysis

The system costs established above are estimates based on the latest literature. How-
ever, RES and ESS’s costs have been decreasing exponentially recently, and new technology
developments and business practices can yield significant changes in market prices. A
sensitivity analysis will provide insight into how such price fluctuations affect fundamental
system architecture. Specifically, the study separately considers four separate cost varia-
tions: (1) the energy storage capacity costs of the LIB module; (2) the dielectric, membrane,
and electrode costs of the VRFB module; (3) the cost per rated power of the solar PV; and
(4) the cost per rated power of the tidal generator. The power conversion and balance of
system costs are not varied in the sensitivity analysis as they are not expected to fluctuate
as greatly.

The cost varies from 1/10th to double the baseline cost in 20 equally spaced steps in
the 4 sensitivity analyses. At each step change in component cost, a PSO is conducted to
determine the system configuration ([P]tidal , [P]solar, Kconrol) with the lowest LCOE. Plotting
the components LCOEs in a stacked area chart will then show continuous and step changes
and optimal system configuration as component costs change

2.7. Assumptions and Limitations

This work assumes that variable costs of the RES and ESS are negligible. The power
is generated only by RES (simulation results show that the diesel generator does not
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contribute to the demand). Additionally, operations and maintenance (O&M) costs are
neglected since they are often significantly less than capital costs over the lifetime. In
applying these methods in practice, future work would be needed to study site specific
O&M costs to ensure these assumptions hold.

3. Results

A simulation environment was developed in MATLAB for this work [44] and is
available as Supplementary Materials. The code includes wrappers for the grid search, PSO,
and sensitivity analysis. Using an object-oriented program approach yielded a software
environment where microgrid components can be easily swapped out, added, and modified
parameters. First, the grid search results are shown to provide an understanding of the
optimization surface. The PSO algorithm is then tuned, yielding an efficient swarm size
that is highly likely to identify global optimums in the search domain. A system is then
designed with the PSO using the baseline parameters established above, producing insights
into the key contributors of the LCOE and the time-domain response of the microgrid.
Finally, the sensitivity of LCOE and optimal system configuration with respect to variations
in component costs is presented.

3.1. Grid Search Results

The four grid searches are shown below in Figure 3, which demonstrates the value of
the hybrid microgrid, both hybrid RES and hybrid ESS. This is apparent in the lowest LCOE
value always balancing between solar- and tidal-rated power and a battery controller that
utilizes both LIB and VRFB ESSs. The whitespace in the figure represents LCOEs greater
than an enormous USD 100/kWh and, therefore, not relevant to show their surface profile.
The optimal point (shown as a red dot) is at the base of this steep cliff in all four cases.
Inside the boundary (down and to the left, primarily white space) is a microgrid that fails
to generate all its own energy and/or the generators and batteries fail to deliver power,
resulting in an expensive backup generation. Outside the boundary (to the right and/or
up), the costs increase steadily as the system becomes oversized, curtailing energy and/or
having unused battery capacity. The battery filter span for a system with only solar RES is
13.7 h and 64 h for a tidal generator.

3.2. Selecting the PSO Swarm Size

The PSO algorithm’s default swarm size is the minimum of 100 or 10 times the number
of independent variables (i.e., 3) leading to a default swarm of 100. Rerunning the PSO
with swarm sizes of 100, 266, 708, 1884, and 5012 led to less than a 0.1% variation in the
solutions. Furthermore, running on the PSO algorithm with parallelization on Northeastern
University high-performance computing cluster with 65 nodes and 64 GB of RAM, the
computation time was reduced to ~40 s when a swarm of 200 was used. As such, a swarm
of 200 was used for all the results shown in this manuscript.

3.3. Baseline Hybrid Microgrid

Using the baseline costs and parameters established above, the PSO algorithm reduced
the LCOE to USD 1186/MWh by selecting a 1.7 MW rated-power tidal RES, a 0.5 MW
rated-power solar RES, and a battery controller moving average filter with a 15 h span. The
total cost is USD 83 M. The microgrid served the full demand for energy of 5 GWh with the
combined RES generating a peak power of 85 kW. The 1.7 MW tidal RES cost USD 7.5 M (at
USD 4.3/MW) and produced 3.8 GWh/year, thus a 25% capacity factor. The 0.5 MW solar
RES cost USD 0.6 M (at USD 1.1/MW) and produced 0.7 GWh/year, thus a 16% capacity
factor. The resulting LIB ESS has an energy storage capacity of 3 MWh (USD 0.7 M at USD
285/kWh) and a rated power of 1.0 MW (USD 0.3 M at USD 306/kW), thus an E/P ratio of
2.6 h. The cycling reduced the realized lifespan from a maximum of 10 years to 7.9 years.
The resulting VRFB ESS has an energy storage capacity of 225 MWh (USD 73.1 M at USD
325/kWh) and a rated power of 0.8 MW (USD 0.4 M at USD 503/kW), thus an E/P ratio of
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296 h. The cycling was not enough to reduce the lifespan of the VRFB below the maximum
of 15 years. The energy storage costs of the VRFB are the primary contributor to the USD
1186/MWh LCOE as shown in Figure 4.
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Figure 3. Grid search results plotted as LCOE contours. The red dot shows the lowest LCOE on the
surface. Higher LCOEs are shown as yellow, and lower LCOE costs are shown as blue. All points
on the grid with an LCOE greater than USD 100/kWh are white. Subplots (a,b) show the impact of
solar RES rated power and tidal RES rated power on the LCOE of a system with only an LIB ESS and
VRFB ESS, respectively. Subplots (c,d) show the impact on LCOE of the span of the battery controller
moving average filter and the rated power of the solar and tidal RES, respectively.
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Figure 4. A pie chart demonstrating the breakdown of each microgrid component’s contribution to
the total system LCOE. The energy storage cost of the VRFB is the primary contributor to the LCOE.
Note: Grid, VRFB error, and LIB error energy storage costs are all USD 0/MWh.

Figure 5 shows the demand, generation, and energy stored at each hour of the sim-
ulated year. In Figure 5a, the monthly variations in the tidal power generation are seen,
significantly exceeding the demand at times. Further, the daily fluctuations in solar genera-
tion are generally less than the demand. The curtailments (i.e., excess RES generation not
used by the demand or ESS) and its negative, the amount of power required from ancillary
sources (e.g., diesel generation), is strictly and significantly less than 1.0 mW. Figure 5b
shows that the energy stored by the VRFB is two orders of magnitude higher than that
stored in the LIB. Yet, the figure hides the significant power (i.e., 1 MW peak) provided by
the LIB.

3.4. Cost Sensitivity Study

Figure 6 shows the sensitivity of optimal system configuration to variations in the
cost of system components. In Figure 6, very low LIB costs lead to significantly greater
LIB energy storage. When the baseline cost is multiplied by 1.8, a significant increase in
LCOE is observed due to a large increase in the energy storage requirements. In general,
the VRFB is the most significant component of the LCOE; thus, the linear varying left side
of Figure 6b is expected: the total LCOE would increase significantly as the VRFB costs
are increased. As the VRFB costs are increased ~1.5×, a step change in the use of LIB is
observed to replace the VRFB storage, and at a 2× increase in VRFB, the LIB becomes the
most significant source of energy storage. The solar cost is varied in Figure 6c; however,
due to the relatively small contribution of the solar system to the total LCOE, even the
significant variations in solar costs lead to only linearly increasing system costs with no
substantive changes in the configuration. The tidal cost increases also lead to linearly
increasing LCOE in Figure 6d without significant configuration changes. However, since
the tidal generators provide most of the system’s energy, the tidal energy cost increases
lead to a more significant increase in total LCOE.
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baseline-cost microgrid with tidal and solar RES are shown in (b).
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Figure 6. Results of the cost parametric study where each component cost varies from 1/10th the
baseline to 2 times the baseline. Subplot (a) shows the LIB energy capacity cost variation. Subplot
(b) shows the VRFB module cost variation coming primarily from the cost of the electrolyte, mem-
brane, and electrodes. Subplot (c) shows the Solar PV RES rated power cost variation. Subplot (d)
shows the Tidal RES rated power cost variation. Note: Nearly all of the LCOE is a result of the VRFB
Energy, Tidal, and LIB Energy system components. Other system components are included in these
calculations but account for smaller LCOE that is not visible in the graphs.
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4. Discussion

The LCOE of the optimized system under baseline assumptions was USD 1191/MWh.
This is significantly higher than typical wholesale electricity prices in the US of USD
20–50/MWh [45], typical retail prices in the US of USD 105/MWh [46], and the LCOE of
diesel reciprocating engines of USD 187–319/MWh [47]. Most of this high LCOE is due to
the high cost of long-duration energy storage, even when using lower cost VRFBs. If the
capital cost of VRFB modules can be reduced an order of magnitude through technological,
economic, and business practice learning curves, the hybrid microgrid LCOE could be
reduced to a more competitive USD 772/MWh. Unlike grid-tied electricity and diesel
generators, the proposed hybrid microgrid is 100% renewable.

The utilization of both types of batteries highlights microgrids’ value with hybrid
ESSs and the importance of the microgrid’s battery controller. When only a solar RES is
considered, as shown in Figure 3, the optimized battery controller had a moving average
filter span of 13 h, while when only considering tidal RES, the optimized span was 65 h.
As such, the solar microgrid utilizes the LIB to smooth out hourly variations in solar
energy, and the VRFBs are used to provide energy during the dark nighttime hours and
longer duration (e.g., seasonal) energy needs. On the other hand, the tidal microgrid uses
the LIB to smooth out the daily tide variations and reserves the VRFB for the monthly
tidal variations and seasonal load variations. Especially for microgrids with significant
tidal generation, the microgrid battery control algorithm should be tuned simultaneously
to optimize the tidal-rated power since leveraging the wrong battery could significantly
increase system costs and LCOE.

This study introduced two innovations missing in many previous studies of hybrid
microgrids: battery lifecycle modeling and VRFB nonlinear cost modeling. Both innovations
outlined in this study produced meaningful results. The LIB and VRFB had maximum
lifetimes of 10 and 15 years, respectively. However, excessive cycling drove premature
replacement of the LIB in the baseline scenario, where it needed to be replaced in just
7.9 years. This study demonstrates that lifecycle modeling can extend the lifespan of
batteries hybrid microgrids. Most battery cost models cited in the microgrid literature are
specified only for a given E/P ratio, often around 4 h [37]. This would likely be sufficient
for LIBs since the E/P was 2.6 h in the baseline scenario, and LIB storage capacity is easily
scaled. However, according to Figure 2, a VRFB with an E/P of 4.0 h would have a module
cost around USD 274/kWh, while the E/P of 296 h used in the baseline has a module
cost of USD 206/kWh. This is because the lower rated power results in smaller electrodes
and membranes. Therefore, by considering nonlinear cost modeling for VRFBs, this study
demonstrates the battery cost can be reduced in hybrid microgrids.

The most economical system configurations were identified using the PSO global
optimization algorithm. When implementing optimizations, it is helpful to understand
the convexity and general smoothness of the optimization hypersurface. The grid search
in Figure 3 shows that the optimization appears generally convex at least from 2D slices
shown of the 3D optimization hypersurface. In practice, a more computationally efficient
gradient descent algorithm may be more desirable than the computationally costly PSO
algorithm. However, this assumes that the initial point for the gradient descent algorithm is
feasible and yields an acceptable LCOE and does not consider the possibility of not strictly
convex portions of the surface. Furthermore, the cost sensitivity shows that the cost and
system configuration is nonconvex and nonlinear with respect to component costs.

5. Conclusions

Microgrids using hybrid tidal and solar RES and hybrid LIB and VRFB ESS can provide
economical energy to remote communities, provided the cost of VRFBs is significantly
reduced as the technology and market mature. However, when studying and designing
such systems, it is important to consider the realized life cycles of batteries due to excessive
cycling; nonlinear relationships between cost, rated power, and energy storage capacity for
VRFBs; and the simultaneous design of the physical system and controller parameters. This
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study contributes to this field by applying a simple life-cycle model for LIB and VRFBs, a
VRFB cost model that accounts for the relationship between battery energy capacity and
rated power, and implements controls co-design (CCD). To realize the promises of hybrid
microgrids, future research should validate the approach with higher temporal fidelity;
study the reliability and robustness of the design to temporal variations in RES generation
and load, consider the time-value of money in the LCOE calculation, and implement
demand response to minimize the need for energy storage.
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Nomenclature

Variable Definition Units
CESS Capital cost of ESS USD
CRES Capital cost of generation from RES USD
CLIB Capital cost of LIB USD
Cn Total capital cost of microgrid USD
CSolar Capital cost of solar generators USD
CTidal Capital cost of tidal generators USD
CVRFB Capital cost of VFBB USD
[C]E,LIB Capital cost of LIB per rated energy storage capacity USD/Wh
[C]P,LIB Capital cost of LIB per rated (dis)charge power USD/W
[C]Solar Capital cost of solar generation per rated power USD/W
[C]Tidal Capital cost of tidal generation per rated power USD/W
EHome Average annual energy consumption of a US home Wh
ELIB (t) Hourly profile of energy stored in LIB Wh
EVRFB (t) Hourly profile of energy stored in VRFB Wh
dEeLIB Rated energy storage capacity of LIB Wh
[E]VRFB Rated energy storage capacity of VRFB Wh
KControl Span of moving average filter hours
KLIB LIB discharge cycles consumed per year cycles/year
KVRFB VRFB discharge cycles consumed per year cycles/year
[K]LIB Rated LIB life-cycles cycles

https://github.com/NEU-ABLE-LAB/tidal_grid_open
https://github.com/NEU-ABLE-LAB/tidal_grid_open
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[K]VRFB Rated VRFB life-cycles cycles
LCOE Levelized cost of energy USD/Wh
PESS (t) Hourly profile of discharge power from ESS W
PDaily (t) Hourly profile of tidal power generation W
PDeficit (t) Hourly profile of power demand not met by RES W
PDemand (t) Hourly profile of power demand from homes W
PRES (t) Hourly profile of power generation from RESS W
PLIB (t) Hourly profile of discharge power of LIB W
PSolar (t) Hourly profile of solar power generation W
PTidal (t) Hourly profile of tidal power generation W
PVRFB (t) Hourly profile of discharge power of VRFB W
[P]Demand Scaling factor of power demand W/W
[P]LIB Rated discharge power of LIB W
[P]Solar Rated power of solar generator W
[P]Tidal Rated power of tidal generator W
[P]VRFB Rated discharge power of VRFB W
P◦Demand (t) Reference hourly load profile W/W
P◦Solar (t) Reference site-specific power generation from Solar W/W
P◦Tidal (t) Reference site-specific power generation from Tidal W/W
∆t Simulation timestep hour
Tmax∗ Realized life-span of component years
Acronym Definition
CCD Controls Co-Design
ESS Energy Storage System
LCOE Levelized Cost of Energy
LIB Lithium-Ion Batteries
PSO Particle Swarm Optimization
PV Photo Voltaic
RES Renewable Energy Sources
VRFB Vanadium Redox Flow Batteries
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