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Abstract: This article deals with fault detection and the classification of incipient and intermittent
open-transistor faults in grid-connected three-level T-type inverters. Normally, open-transistor
detection algorithms are developed for permanent faults. Nevertheless, the difficulty to detect
incipient and intermittent faults is much greater, and appropriate methods are required. This
requirement is due to the fact that over time, its repetition may lead to permanent failures that may
lead to irreversible degradation. Therefore, the early detection of these failures is very important
to ensure the reliability of the system and avoid unscheduled stops. For diagnosing these incipient
and intermittent faults, a novel method based on a Walsh transform combined with a multilayer
perceptron (MLP)-based classifier is proposed in this paper. This non-classical approach of using the
Walsh transform not only allows accurate detections but is also very fast. This last characteristic is
very important in these applications due to their practical implementation. The proposed method
includes two main steps. First, the acquired AC currents are used by the control system and processed
using the Walsh transform. This results in detailed information used to potentially identify open-
transistor faults. Then, such information is processed using the MLP to finally determine whether a
fault is present or not. Several experiments are conducted with different types of incipient transistor
faults to create a relevant dataset.

Keywords: artificial neural networks (ANNs); Walsh transform; fault diagnosis; incipient and
intermittent fault; open transistor; multilevel T-type inverter

1. Introduction

Power electronic converters play a key role in most modern equipment. They pro-
vide the necessary energy conversion to interconnect several devices from simple home
appliances to complex industrial applications. Despite their importance in several areas,
it is in the energy sector that some of the greatest converter developments have been
registered, especially with the aim of integrating renewable energy sources (RES) into the
electrical grid, such as solar photovoltaic and wind generation [1]. In order to increasingly
reinforce investments and confidence in RES, it is also necessary to improve the reliability
of power electronic converters, ensuring the high quality, continuity, and safe operation of
the connected solutions. Many architectures for grid-connected power electronic converters
have been proposed in the literature over the last decade [2–10]. Nevertheless, there are
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common problems with all power electronic converters related to reliability, availability,
and fault-tolerant capability to open- and/or short-circuit faults in power semiconductors,
among other components, such as capacitors, inductors, fans, cables, connectors, PCBs, etc.

Despite similar issues, reliability and fault tolerance have different meanings. While
reliability quantifies the probability of a converter failing within a given time interval [0, t],
i.e., it is a function of time, fault tolerance is usually the last attempt to make the system
operational after fault detection/diagnosis [11]. It should be noted that fault-tolerant
capability is only possible if appropriate fault detection/diagnosis methods are used, and
without such methods, any attempt to provide fault tolerance will prove ineffective.

Regarding power electronic converters, there are several types of failures that can
occur. The types and quantification of these failures have been presented in a number
of works. For example, a study presented in [12] showed that PV inverters contribute to
37% of overall unscheduled maintenance events. Power converter failures lead to 59% of
the total unplanned maintenance expenditure. Furthermore, based on an industry-based
survey in [13], the most vulnerable components in power converters are semiconductor
power devices, which contribute to about 31% of all power converter failures. Another
study based on the literature, which considered 132 inverters used in large-scale grid-
connected photovoltaic systems (with an AC-rated power of 350 kW each), also showed
that the highest mean time to repair (MTTR) was for IGBTs [14]. So, these aspects show
the importance of detecting transistor faults, which can occur in any commercial converter
and any type of application. Thus, malfunctions or failures in power electronic converters
have been extensively researched over the last few decades, mainly dedicated to the
permanent failures of power semiconductors. Some of the most common solutions to detect
permanent failures in power semiconductors can be found in [15–27]. Many other works
dedicated to fault diagnosis can be found in the literature considering other systems and
applications such as mechanical devices or machines [28–31]. Nevertheless, only a small
number of works about fault diagnosis have been dedicated to intermittent or incipient
faults, especially to power electronic converters [32–34]. Thus, the main purpose of this
work is to evaluate the combination of some fault diagnosis techniques to identify incipient
faults in power semiconductors of multilevel converters, which has not been extensively
investigated, introducing new strategies in this area. Before introducing the proposed
solution, a general overview of fault diagnosis methods applied to different systems and
applications is presented next, which can be extended to other areas.

Fault diagnosis methods are mainly classified into four different categories: signal-
based, model-based [19], knowledge-based (or history-based), and hybrid [20]. Signal-
based methods are adopted to extract the features of a sample signal, including the fre-
quency domain, time domain, singular points, etc. Wavelet analysis (WA), short-time
Fourier transform (STFT) analysis, correlation analysis, Hilbert–Huang transform (HHT),
Wigner–Ville distribution (WVD), and time series analysis are some of the most well-known
signal-based methods. The diagnosis of open-transistor faults based on Park’s vector was
one of the approaches used [35,36]. Similarly, observing the slope of the induction current
over time, a fault diagnosis method was developed for open- and short-circuit faults of
power semiconductors in non-isolated DC–DC converters [37]. Due to the increasing num-
ber of sensors used for the diagnosis of most signal-based methods (and their consequent
computational complexity), it is difficult to use these methods in real-time applications for
large-scale systems. In addition, these methods have some limitations in diagnosing the
faults related to load changes during normal operation.

Model-based methods require models of systems, which can be obtained using either
physical principles or system identification techniques. Some of the most well-known
model-based methods are parameter estimation techniques, eigenstructure approaches,
linear matrix inequality (LMI) techniques, advanced observer techniques, modified Kalman
filters, parity space approaches, and Petri-net-based techniques [38–43]. A recent model-
based fault detection method applied to mechanical systems using a technique called
the total measurable fault information residual (ToMFIR) was proposed in [44]. Such a



Energies 2023, 16, 2668 3 of 18

technique is mainly applied to incipient spring and damper faults in high-speed trains and
railway applications. Knowledge-based methods are different from model-based methods
and signal-based approaches since they require a large volume of historical data. Such
methods do not require an explicit or complete model and are particularly suitable for
monitoring and diagnosing complex processes where explicit system models are not avail-
able [19]. Applying various quantitative or qualitative techniques to the available historical
data causes dependence on system variable extraction. The consistency between the ob-
served behavior of the operating system and the knowledge base is then checked, leading
to a fault diagnosis decision with the aid of a classifier. The most well-known quantitative
knowledge-based fault diagnosis methods are analytical models, neural networks (NNs),
principal component analysis (PCA), partial least squares (PLS), independent component
analysis (ICA), statistical pattern classifiers, and support vector machine (SVM) [45–53].
The most common qualitative process models are qualitative trend analysis (QTA) models,
signed direct graph (SDG) models, and fuzzy logic models [54–59]. A brief overview
of other knowledge-based methods and their application can also be found in the litera-
ture [60–62], but none of these methods are applied to failures in power converter structures.
Nevertheless, it is worth mentioning that neural networks are especially well adapted for
pattern recognition problems [63–65]. In fact, they have been used due to their adaptive
learning, self-organization, and fault-tolerant capabilities.

Hybrid methods are essentially based on combinations of the previously mentioned
methods. In [66], a combination of PCA and the average current was proposed for the fault
detection and diagnosis of grid-connected inverters. In [67], a fault diagnosis method for the
open-transistor faults of power semiconductors was proposed based on multilevel signal
decomposition and reconstruction of three-phase grid-connected inverter currents using an
artificial neural network (ANN) and multiresolution analysis (MRA). A similar solution
for the same inverter topology using a fault algorithm based on multistate data processing
(MSDP), subsection fluctuation analysis (SSFA), and ANN was presented in [68]. Several
other hybrid methods used in other applications can be found in the literature [69–71].
All the methods presented previously in this section for the fault diagnosis of the open-
transistor faults of grid-connected inverters or motor drives are focused on permanent
faults in power semiconductors.

Concerns about incipient and intermittent faults in transistors, especially open-circuit
faults, is another important aspect related to the reliability of converters. However, these
faults in grid-connected inverters are quite difficult to diagnose and may occur randomly
with different durations. On the other hand, the severity can vary from incipient to severe.
Initially, the appearance of this problem does not affect the system as it is negligible. How-
ever, over time, its repetition may lead to permanent failures that may lead to irreversible
degradation. Therefore, the early detection of these failures is very important to ensure the
reliability of the system and avoid unscheduled stops. Nevertheless, only a few works have
addressed this problem, namely the detection of incipient and intermittent faults. In [33], a
method using statistical analysis of the output current was presented. However, this work
was developed for the motor drive. In [34], a study was presented for intermittent faults in
IGBTs but not for inverters with closed-loop control.

With the aim of detecting a transistor fault in grid-connected inverters in the early
stages and not when the problem is already permanent, this work proposes a new method.
Although very important from the point of view of the development of a reliable PV
generator, not many works have addressed the detection of incipient and intermittent open-
transistor faults. Therefore, this work intends to provide new insights into this area with the
proposal of a new intelligent algorithm. The proposed algorithm is developed to be not only
accurate but also very fast, which is very important in these applications for their practical
implementation. The converter under study is a three-level T-type three-phase inverter,
which is one of the interesting options for grid-connected renewable generators and storage
systems. Since these faults are very difficult to detect in the early stages, this approach was
implemented using an intelligent algorithm. Thus, the proposed fault detection algorithm
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is based on a multilayer perceptron model supported by the features extracted from the
Walsh transform. This unconventional approach of using the Walsh transform can be an
important asset since only addition and subtraction are required to compute this transform.
In this way, the computational cost of the proposed method is lower than the discrete cosine
transform and FFT-based approaches, making it very convenient in real-time applications.
Indeed, using this diagnosis will result in a very fast method. Besides that, as will be
shown, this method also allows very precise results to be obtained, compared to other
approaches. The capability of the proposed algorithm to detect incipient and intermittent
open-transistor faults was tested through several simulations and the use of a laboratory
prototype.

2. Structure of the Grid-Connected Systems with a T-Type Three-Level

One of the critical parts of several grid-connected systems, such as storage systems,
photovoltaics, and wind generators, is the inverter. This power electronic converter is
essential for the adaptation of voltages and power control between generators, storage
systems, and the grid. Due to the many advantages of multilevel inverters, they have been
considered a very interesting option. The T-type three-level three-phase inverter is one
of the typical solutions (industrial solutions already present modules that integrate the
complete topology) [72–76]. Figure 1 shows the considered topology, where VSA, VSB, and
VSC are the grid voltages. As can be seen in this figure, it consists of a classical three-phase
two-level inverter but with three bidirectional switches that allow the outputs of the AC
inverter to be connected to the capacitor’s middle point. This three-level T-type three-phase
inverter is connected to the grid through inductors’ low-pass filters.
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To obtain the model representing the inverter connected to the grid, Kirchhoff’s laws
are considered. Following this methodology, it is possible to obtain the state space equations
of this system (1), where LS and RS denote the inductance and resistance of the filter and
the line between the inverter and the grid.

d
dt

iA
iB
iC

 =
1

LS

−RS 0 0
0 −RS 0
0 0 −RS

 iA
iB
iC

 − 1
LS

1 0 0
0 1 0
0 0 1

 VA
VB
VC

 +
1

LS

1 0 0
0 1 0
0 0 1

 VSA
VSB
VSC

 (1)

where iA, iB, and iC are the inverter’s AC currents; LS and RS are the inductance and
internal resistance of the inductors; VA, VB, and VC are the inverter’s AC voltages; and VSA,
VSB, and VSC are grid voltages.

On the other hand, the AC voltages of the inverter (VA, VB, and VC) are a function
of the state of switches and output DC voltage. These voltages can be mathematically
expressed in a simplified form, as a function of those variables, assuming transistors as
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ideal components. So, considering the fact that the inverter’s AC output voltages can
assume three specific values with which they will be related to three switching functions,
these functions, represented by Gi, are expressed as follows (where i = 1, 2, 3):

Gi =


1 if TiU is ON ∧ TiML + TiMR are OFF ∧ TiL is OFF

0.5 if TiU is OFF ∧ TiML + TiMR are ON ∧ TiL is OFF
0 if TiU is OFF ∧ TiML + TiMR are OFF ∧ TiL is ON

(2)

Using the previous equation, it is finally possible to obtain the inverter’s output AC
voltages as expressed by (3).VA

VB
VC

 = Vo

1 0 0
0 1 0
0 0 1

 G1
G2
G3

 (3)

From the analysis of Equations (2) and (3), it can be concluded that a fault in one
of the transistors will affect the phase connected to the inverter leg associated with that
transistor. Thus, in order to ensure the proper operation of the inverter, the integration of a
fault diagnosis algorithm that detects faults early is fundamental.

Many control systems have been proposed to control the grid-connected inverters
associated with renewable sources or storage systems; one of the most used is the one based
on a decoupled dq-frame current controller. Thus, the system model (1) in the dq-reference
frame (4) is considered.

d
dt

[
id
iq

]
=

1
Ls

[
−RS ω
−ω −RS

] [
id
iq

]
− 1

Ls

[
1 0
0 1

] [
vd
vq

]
+

1
Ls

[
1 0
0 1

] [
vSd
vSq

]
(4)

where id and iq are the inverter’s AC currents in the dq frame, ω is the angular frequency,
vd and vq are the inverter’s AC voltages in the dq frame, and vSd and vSq the grid voltages
in the dq frame.

The control of the active and reactive powers injected into the grid by the T-type
inverter is achieved by ensuring that the AC currents in the dq coordinates will track the
desired references. Through the instantaneous P–Q power theory [77,78], these currents
can be related to active and reactive power as expressed by[

P
Q

]
=

[
vsd vsq
vsq −vsd

] [
id
iq

]
(5)

However, taking into consideration that the d axis of AC currents is in synchrony with
the same component of AC voltages (Vsq = 0), the previous relationship can be simplified
to the form presented in (6). [

P
Q

]
=

[
vsd 0
0 −vsd

] [
id
iq

]
(6)

From the analysis of this last power relationship, it is possible to conclude that each
of them is only dependent on each current component. Thus, the active power can be
controlled through the id component, while the reactive power is controlled through the iq
component. Usually, in PV generators, the reactive power is zero, and therefore iq should
also be zero. This intends to ensure that all the power generated by PV panels will be
transferred to the grid. This can be achieved by ensuring that the DC capacitor’s voltages
are nearly constant and equal to a specific value. This can be achieved through the use of
a proportional–integral (PI) compensator, which will be associated with the d component
of the AC currents (with gains KpV , KiV). In this way, the d component reference of the
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AC currents can be expressed by this PI compensator associated with the error of DC
capacitor’s voltages (reference and measured capacitors voltages), expressed as follows:

i∗d =

(
KpV +

KiV
s

) (
V∗DC − (vCo1 + vCo2)

)
(7)

where KpV and KiV are the proportional and integer gains of the PI regulator, i∗d is the
component d of the AC current reference, and V∗DC is the inverter capacitor’s voltage
reference.

As verified by (6), since the active and reactive powers are controlled by each of the dq
current components, the inverter will be controlled by an inner decoupled current controller.
This inner current controller, which considers the d and q components of the AC currents,
will be controlled by two PI compensators in the SRF, defining the dq voltage components
of the inverter. In this way, it will be possible to obtain the following control laws: vd = −

(
KpI +

KiI
s

)
( i∗d + id) + ωLS iq + vsd

vq = −
(

KpI +
KiI
s

)
( i∗q + iq) − ωLS id + vsq

(8)

where KpI and KiI are the proportional and integer gains of the PI regulators used for the
inner current controller.

3. Fault Detection and Diagnosis Method

One of the important factors that can affect the reliability of grid-connected inverters is
a fault in one of the controlled power semiconductors. As mentioned earlier, PV inverters
contribute to 37% of overall unscheduled maintenance events [12]. On the other hand, it has
been found that the most fragile components in power converters are semiconductor power
devices [13]. Therefore, several methods have focused on the detection and diagnosis of
open-transistor faults but with an emphasis on permanent faults. Often, these types of
faults start with intermittent and incipient behavior. Initially, these faults are non-critical,
but over time, they become permanent. In this way, incipient and intermittent faults can
lead to irreversible deterioration. So, early detection can be considered important in order
to ensure that the system maintains its reliability over time.

The method proposed in this paper for the detection and diagnosis of incipient and
intermittent open-transistor faults, whose structure is presented in Figure 2, has several
steps. The first part is the acquisition of the inverter’s AC currents, which are obtained
using a sampling procedure. No additional sensors are needed, as they are already also
required for the control system. Thus, the same sensors can be used. After this process,
the acquired signals will be used with the Walsh transform to obtain a set of features that
will define the characteristics of the faults. Finally, these signal features will be used by
a multilayer perceptron (MLP) model to identify and diagnose the faulty transistor. This
proposed fault detection and diagnosis method, in which the main structure is based on
the Walsh transform combined with a multilayer-perceptron-based classifier, will also be
designated by its abbreviation WT-MLT. As mentioned in the introduction, the adoption
of neural networks was due to the fact that they are especially well adapted for pattern
recognition problems [63–65]. Thus, since in this case, the purpose is to identify specific
characteristics from the Walsh transform that are related to transistor faults, this adoption
seems natural. In fact, as will be seen in the presented tests, this adoption led to very
accurate results.
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3.1. Feature Extraction Using Walsh Transform

The Walsh transform has been widely used in signal processing [79–81]. It is a general-
ized class of Fourier transform and is based on Walsh functions, which consist of the trains
of square pulses with states +1 or −1. In harmonic analysis, Walsh functions create an
orthogonal set of functions that can represent any discrete function. For a discrete function
f (i) (i = 0, 1, . . . , N − 1), where N is the number of current samples, the Walsh transform
(WH(k)) can be represented by

WH(k) =
1
2p

N−1

∑
i=0

f (i)Hp+1(k, i) (9)

where 2p+1 < N < 2p, p ∈ N, k = 0, 1, . . . , 2p−1 and Hp+1(k,i) is the (k,i) input parameters of
the Walsh function, Hp+1. The parameter p is the vector dimension of the Walsh transform.
The Hp+1 can be calculated recursively using (10), where H1 = [1].

Hp+1 =

[
Hp Hp
Hp −Hp

]
(10)

Considering the window p, and the window size N, the variation in the Walsh trans-
form (∆WH(k)) can be calculated by

∆WHn(k) = WHn(k)−WHn−1(k) (11)

Considering the different fault scenarios, all coefficients of ∆WH(k) are calculated in
order to find the coefficients of WH(k) that are most sensitive to a faulty condition. The
most sensitive coefficients are the features that are used as inputs to the neural network.

To extract the signal features of ∆WH(k), the absolute average ratio using the most
sensitive coefficients (MSC) is determined, as presented in (12) to (14).

MA =
MSC

∑
k=0

∆WHn(k)
N

(12)
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AMAn =
MSC

∑
k=0

|∆WHn(k)|
N

(13)

AMARn =
MAn

AMAn
(14)

where MAn is the moving average of ∆WH(k), and AMAn and AMARn are the absolute
moving average and the absolute moving average ratio ∆WH(k), respectively.

The feature vector input in the neural network for the three-phase currents is defined
by [

AMARA
n AMARB

n AMARC
n · · ·

∆WHA
n ∆WHB

n ∆WHC
n · · ·

]
(15)

3.2. Diagnosis with Artificial Neural Network

For the detection and diagnosis of open-transistor faults, a multilayer perceptron
(MLP) is used, which is a class of feedforward artificial neural networks (ANNs) [82–84].
Through the learning process, this architecture can classify the type of fault for each input
feature vector. The structure of the ANN used is shown in Figure 3, which has one input
layer, two hidden layers, and one output layer.
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Figure 3. MLP structure for current fault detection and diagnosis.

For each three-phase current signal, the input of the MLP includes the absolute moving
average ratio (AMARn) and the first 30 sensitive coefficients of ∆WHn(k), giving a total of
31 input parameters for each phase. Considering the 3 phases, as the feature vector totals
93 parameters, the ANN has 93 neurons in its input layer. The output layer represents
the diagnostic results indicating whether or not a fault exists and what type of fault has
occurred. Each neuron in the ANN output layer is associated with a fault type. As it is
intended to identify 16 types of occurrences (1 healthy and 15 fault types), it is necessary
for the ANN to have 16 neurons in its output layer. The number of hidden layers and the
number of neurons in each of these layers are defined based on the minimization of the
cost function used.

The scaled conjugate gradient is used to minimize the cross-entropy function. To
evaluate how well the network predictions correspond to the target classification, the cross-
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entropy loss (13) is used. This type of function is used when true labels are one-hot-encoded,
as happens in the proposed approach at the output to distinguish each fault.

LCE =
M

∑
i=1

ti log(pi) (16)

The parameter M corresponds to the number of fault types, ti is the truth label, and pi
is the SoftMax probability for the ith fault. In MLP Training, the early stopping criterion is
used when the validation error starts increasing.

4. Results of Experimental Tests

The capabilities of the proposed WT-MLT method to detect incipient and intermittent
inverter open-transistor faults were tested through the use of a laboratory prototype,
using a commercial inverter module, namely the 12MBI75VN-120-50 module from Fuji
Electric, Tokyo, Japan. The inverter was controlled using a dSPACE controller, and the
open-transistor faults were implemented through the inhibition of transistor gate signals.
The parameters of this experimental system are listed in Table 1.

Table 1. Parameters of the system with a T-type inverter.

Parameters Value

Grid RMS voltage 110 V
Grid frequency 50 Hz
Input DC voltage 500 V
Transistor switching frequency 20 kHz
Inductance 10 mH
Internal resistance of the inductance 0.1 Ω
DC capacitors 1000 µF

The inverter was connected to the low-voltage laboratory grid. The three-phase
currents were acquired with a sampling frequency of 200 kHz. Since the operating frequency
of the inverter’s three-phase currents was 50 Hz, the number of samples in each period
was 4000, which corresponded to the current window size N. As described before in the
description of the proposed approach (Figure 2), after the acquisition of these currents, the
Walsh transform was applied. Based on the current window size, the dimension of the
vector WHn, p, was 4096. Under normal conditions, the value of the variation in the Walsh
transform coefficients ∆WH(k) was approximately zero. Whenever a fault occurred, the
vector of the Walsh transform, WH(k), presented some variations, and thus ∆WH(k) would
also change. Figure 4 shows the variation in ∆WH(k) for the most sensitive coefficients
in an incipient and intermittent fault in transistor T1U (in this case, the one presented in
Figure 5b). From this result, it was possible to infer that ∆WH(k) was considerable for the
first 30 coefficients. This aspect was also verified for the other tests performed. Since for
each type of fault, a different pattern in ∆WH(k) appeared, those first 30 coefficients were
considered as the features in the fault diagnosis method (MSC = 30).
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As mentioned earlier, the purpose of the proposed methodology was to ensure that
whenever an open-transistor fault appeared, the output of the detection algorithm would
change its value. To investigate the difficulty in the detection of open-transistor intermittent
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and incipient faults, first, a converter with a permanent fault was tested. The result of
this test for a permanent fault in transistor T1U is presented in Figure 5a. After analyzing
these waveforms, it was found that the half-positive semicycle practically remained at
zero, introducing an important DC component. However, in the case of an incipient and
intermittent fault, the impact was very different. Figure 5b shows the same fault but
with a duration of only 2 ms in one of the cycles. In this case, the impact on the current
waveforms was minimal, making it difficult to see. The results of another test are presented
in Figure 6, but in this case, they are for an intermittent fault in the transistors of the middle
leg (T2ML and T2MR). The waveforms again show that the impact of the fault is very low
and intermittent. Another incipient and intermittent fault for the upper transistor (T2U)
was realized, but in this case, the start of the fault did not match the beginning of the
semicycle. The result of this test can be seen in Figure 7. As shown in this figure, the pattern
changes are a little bit more evident, although still with a reduced impact. One fact evident
from these laboratory results is that, for this multilevel inverter connected to the grid with
the widely used decoupled dq-frame current controller, the impact of these faults on the
waveforms of the inverter AC currents is very tenuous. Thus, this indicates a very different
behavior when compared with a permanent open-transistor fault in which the impact is
much more visible and easier to detect.
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A set of experimental tests were performed in order to assess the performance of
the proposed WT-MLT fault detection and diagnosis algorithm. Table 2 presents the
details and results obtained from these tests. The experimental data were divided into
training, validation, and testing datasets. However, one of the important aspects was
how to assess the quality of the training set. In machine learning applications, dataset
preparation and data transformation are important tasks. The datasets were prepared to
ensure their quality and the correctness of the model training. Data normalization was
taken into account avoiding some of the feature values overweighting others. This is the
case of the absolute moving average ratio in the feature vector described in (11). From
the normalized dataset, the data were randomly divided into 60% for training and 20%
for testing and validation [85]. For each transistor state, we had 32 training data, 11 test
data, and 11 validation data (Table 2). The training data were balanced by oversampling
the data of those transistor states less represented. The training set was used for learning
to find the optimal weights of the model. The validation set was used to tune the number
of hidden units of the model, determining the stop criterion for the scaled conjugate
gradient backpropagation algorithm [86]. The conjugate gradient methods have many
advantages in real numerical experiments, such as fast convergence and low memory
requirements. Although the conjugate gradient method does not require the calculation of
second derivatives, it has a quadratic convergence property [87]. The performance of the
trained model was assessed using the test set. For the testing condition, the intermittent
condition was also considered, i.e., a fault in one cycle, no fault during several cycles, and a
fault again in one cycle. Table 2 lists the training and testing details used to test the capability
of the proposed WT-MLT method. It is worth mentioning that the results presented in
Table 2 are only associated with the faults in leg 1. However, there were also other tests
associated with the other legs, the results being similar. For each condition of the transistor
states, 96 different tests were used for training. These tests were performed for different AC
current amplitudes and fault durations of the inverter. In MLP training, the early stopping
criterion was obtained at epoch 315 with a cross-entropy value of 5.258 × 10−6. In the
training algorithm, the sigma parameter that determined the weight change for the second
derivative approximation during the training process had the value of 5 × 10−5. During
the same process, the lambda parameter for regulating the indefiniteness of the Hessian
value was 5 × 10−7. Figure 8 shows the cross-entropy loss over epochs for the training,
validation, and testing datasets, and Figure 9 shows the correspondent gradient variation.
It can be observed that the MLP model presents good convergence behavior, showing no
sign of over- or under-fitting. This type of model with adaptive features and more than one
output has a lower computational cost in its learning stage when compared to the models
based on SVM or neuro-fuzzy theories, making it highly applicable.

Table 2. MLP training, testing, and validation details.

Transistor
States

Target Output
Value Training Data Testing Data Validation Data

No-fault 100000 96 32 32
T1U 010000 96 32 32

T1ML 001000 96 32 32
T1MR 000100 96 32 32

T1ML, T1MR 000010 96 32 32
T1L 000001 96 32 32
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5. Discussion

A fundamental aspect associated with the algorithms developed for the detection of
transistor faults is regarding their performance. Moreover, since a method is proposed that
is based on an algorithm that has the capability to learn, their validation and comparison
with other approaches are very important. With this in mind, the proposed approach
was compared with other advanced methods, such as the support vector machine (SVM)
and the artificial neural network with multiresolution analysis (ANN-MRA). However, to
ensure a fair comparison of the performance of the proposed method and other approaches,
the same data were used for all of them (as previously mentioned, the data obtained from
experimental tests). The results of the fault classification accuracy of the proposed WT-MLT
and other methods are presented in Table 3. After analyzing these results, it was possible
to conclude that all the methods could successfully diagnose incipient and intermittent
open-transistor faults. However, for the proposed WT-MLT method, the accuracy was
better in all tests. The SVM revealed the worst results. It was also found that the detection
of a fault in the upper or lower transistors was more precise. The main weakness of the
WT-MLT method was only for faults with a duration of less than 1 ms. In fact, for these
faults with such a short time duration, the WT-MLT method was not able to detect them.
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Regarding the middle transistors, the accuracy was a little lower. In this case, the method
had more difficulty in detecting faults that occurred with a duration of less than 2 ms.
Another aspect that was also tested was the processing time associated with each of the
methods. This aspect is very important for the practical implementation of the system,
especially if it is intended for the continuous online fault detection and diagnosis of the
transistors of the converter. From these tests, it was revealed that, on average, the WT-MLT
approach presented a computational cost 10 times lower than the ANN-MRA and 25 times
lower than the SVM. This also confirms that the proposed approach can be very convenient
in real-time applications.

Table 3. Comparison between the proposed and other advanced methods regarding the fault classifi-
cation accuracy.

Switches States SVM ANN-MRA Proposed WT-MLT

No-fault 96% 100% 100%
T1U 79% 87% 90%

T1ML 76% 81% 84%
T1MR 76% 82% 84%

T1ML, T1MR 75% 84% 84%
T1L 80% 88% 90%

6. Conclusions

One of the fundamental aspects of the reliability of PV generators is the early detection
of faults in the power electronic converters associated with them. Thus, this paper ad-
dressed the problem of the detection of open-transistor faults in inverters at an early stage,
which usually precedes a permanent failure. So, in accordance with this purpose, a fault
detection and diagnosis algorithm for incipient and intermittent inverter open-transistor
faults was proposed. Since not many works addressed this important aspect, this novel
approach can be considered as a step forward. Due to the very high difficulty in the
detection of this kind of fault, the proposed method is based on an intelligent algorithm.
The inverter that was considered had a three-level T-type three-phase topology, which
is commonly applied to grid-connected applications such as renewable generators and
battery storage systems. In order to ensure a fast and accurate method, the use of the Walsh
transform was proposed. This proposal had the purpose of obtaining signals with detailed
information that exist in line currents and are associated with incipient and intermittent
open-transistor faults. One aspect that the use of the Walsh transform showed is that the
process of training and testing was very fast. The algorithm developed using the proposed
WT-MLT approach for the detection of incipient and intermittent open-transistor faults was
tested through the use of a laboratory prototype. The results of several tests for different
injected power levels and different fault times were presented. Another aspect that was
verified was the validation and performance of the proposed approach. In line with this, a
comparative study with other methods was carried out, namely the support vector machine
(SVM) and the artificial neural network with multiresolution analysis (ANN-MRA). From
this comparative study, it was possible to see that the proposed approach was the one that
led to the best results. For the worst condition, namely a fault in the inner transistors, the
proposed approach had an accuracy of 84%, while for the SVM, this was only 75%. Another
aspect that was tested was the processing time, which is critical for continuous diagnosis
in real-time applications. From the comparative study of the processing times between
all the methods, it was possible to see that, on average, the WT-MLT approach presented
a computational cost 10 times lower than the ANN-MRA and 25 times lower than the
SVM. This shows the interesting capability of the proposed approach regarding real-time
applications. Another aspect of this work is regarding future work. Due to the success of
this kind of approach and the importance of the early detection of these failures in order to
ensure the reliability of the system and to avoid unscheduled stops, this method must be
adapted and tested in other power converter topologies. Another aspect is regarding the
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use of a deep learning approach. However, one important aspect that must also be taken
into account is that this type of network requires a huge volume of data.
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