
Citation: Gouveia, H.T.V.; Souza,

M.A.; Ferreira, A.A.; de Albuquerque,

J.C.; Nóbrega Neto, O.; da Silva Lira,

M.M.; de Aquino, R.R.B. Application

of Augmented Echo State Networks

and Genetic Algorithm to Improve

Short-Term Wind Speed Forecasting.

Energies 2023, 16, 2635. https://

doi.org/10.3390/en16062635

Received: 6 January 2023

Revised: 28 February 2023

Accepted: 8 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Application of Augmented Echo State Networks and Genetic
Algorithm to Improve Short-Term Wind Speed Forecasting
Hugo T. V. Gouveia 1 , Murilo A. Souza 1 , Aida A. Ferreira 2 , Jonata C. de Albuquerque 1 ,
Otoni Nóbrega Neto 1 , Milde Maria da Silva Lira 1 and Ronaldo R. B. de Aquino 1,* ,

1 Department of Electrical Engineering, Federal University of Pernambuco, Recife 50670-901, Brazil;
hugo.gouveia@ufpe.br (H.T.V.G.); murilo.asouza@ufpe.br (M.A.S.); aidaferreira@recife.ifpe.edu.br (A.A.F.);
jonata.albuquerque@ufpe.br (J.C.d.A.); otoni.nobrega@ufpe.br (O.N.N.); milde@ufpe.br (M.M.d.S.L.)

2 Department of Electrical Systems, Federal Institute of Pernambuco, Recife 50740-545, Brazil
* Correspondence: ronaldo.aquino@ufpe.br

Abstract: The large-scale integration into electrical systems of intermittent power-generation sources,
such as wind power plants, requires greater efforts and knowledge from operators to keep these
systems operating efficiently. These sources require reliable output power forecasts to set up the
optimal operating point of the electrical system. In previous research, the authors developed an
evolutionary approach algorithm called RCDESIGN to optimize the hyperparameters and topology
of Echo State Networks (ESN), and applied the model in different time series forecasting, including
wind speed. In this paper, RCDESIGN was modified in some aspects of the genetic algorithm, and
now it optimizes an ESN with augmented states (ESN-AS) and has been called RCDESIGN-AS.
The evolutionary algorithm allows the search for the best parameters and topology of the recurrent
neural network to be performed simultaneously. In addition, RCDESIGN-AS has the important
characteristic of requiring little computational effort and processing time since it is not necessary
for the eigenvalues of the reservoir weight matrix to be reduced and also due to the fact that the
augmented states make it possible to reduce the number of neurons in the reservoir. The method was
applied for wind speed forecasting with a 24-h ahead horizon using real data of wind speed from
five cities in the Northeast Region of Brazil. All results obtained with the proposed method overcame
forecasting performed by the persistence method, obtaining prediction gains ranging from 60% to
80% in relation to this reference method. In some datasets, the proposed method also yielded better
results than the traditional ESN, showing that RCDESIGN-AS can be a powerful tool for wind-speed
forecasting and possibly for other types of time series.

Keywords: artificial neural networks; forecasting; genetic algorithms; time series analysis; wind energy

1. Introduction

Wind energy is currently one of the renewable energy sources with the highest growth
rates in the energy mix of several countries. Thus, the smart integration of wind farms into
electrical power systems is currently a challenge for many of these countries since it is a
source that is intrinsically dependent on specific climatic conditions for the production
of electricity. In other words, the availability of wind power is almost entirely linked to
the availability of wind. Power systems are subject to greater unpredictable variations in
power flows as the installed capacity of this type of intermittent generation increases. The
problem is that, in these systems, generation must always be equal to demand. Therefore,
as a direct consequence of the increased penetration level of wind generation, there is a
need for new methods for balancing generation and electrical demand [1].

Real-time operation requires short-term forecasts of wind generation in the order of
seconds, minutes and a few hours, as well as the integration of these forecasts in centralized
system controls [1].

Energies 2023, 16, 2635. https://doi.org/10.3390/en16062635 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16062635
https://doi.org/10.3390/en16062635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9788-5831
https://orcid.org/0000-0003-0367-744X
https://orcid.org/0000-0002-0322-6801
https://orcid.org/0000-0001-5766-7023
https://orcid.org/0000-0001-9935-0091
https://orcid.org/0000-0001-7108-4641
https://orcid.org/0000-0003-4835-7378
https://doi.org/10.3390/en16062635
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16062635?type=check_update&version=2

Energies 2023, 16, 2635 2 of 15

For wind generation forecasting, the short-term horizon, more specifically, the next
day horizon, will always be of great relevance. Most of the operators of the power systems
carry out the programming of the unit synchronism for this horizon. Most traders also
focus on the daily market for energy trading and ancillary services. The one-day ahead
horizon is characterized by the definition of system operation planning for the next day,
including the selection of large thermoelectric plants that can take several hours to start so
that they will be able to meet the demand when needed. The importance of using good
wind generation forecasts for the next day’s timing planning has been widely discussed and
incorporated into most power systems, as the consequence of disregarding wind generation
forecasts may be non-optimized planning [2].

The main proposed models in the literature for wind energy forecasting are mostly
divided into physical, statistical and artificial intelligence models [3,4]. Time series fore-
casting using statistical methods can be applied for wind forecasting. However, most of
these models assume linearity and stationary conditions over the time series, and these
constraints are not always met with actual wind energy data [5,6].

Artificial Intelligence (AI) techniques such as support vector machines, random forests,
clusters, fuzzy logic and artificial neural networks (ANN) have been used more frequently
to perform wind power forecasting in recent years. Particularly, ANN showed good
performance, surpassing several cutting-edge techniques [7]. However, most of these
models use univariate time series, considering only endogenous variables [8,9]. Deep
learning (DL) methods have also been used for wind generation forecasting [10]. These
models are formed by multiple hidden layers, and because of that, they are able to extract
more hidden features from the data, usually yielding better performance in the prediction
task than traditional machine learning methods. In addition to data from the target wind
station, [11] uses meteorological data from additional neighboring stations as input to a
mixed-input feature ANN to improve the forecast performance. In [12], two DL networks
(Long Short-Term Memory and Convolutional Neural Network) are applied to perform
a short-term wind power forecast. The results of these networks are combined through
an induced ordered weighted average operator (IOWA), which assigns weights to each
forecasting network by the level of its forecasting accuracy at each time point.

Recurrent Neural Networks (RNN) are a specific class of ANN that is gaining attention
because they can model the time dynamics of a series in a natural way [13]. At each step in
time, an input vector activates the network by updating its hidden state through activation
functions and uses it to predict its output. Its nonlinear dynamics allow modeling and
predicting highly complex time series. It is important to observe the long time consumed
in the modeling process and the large amount of data required in the training process. The
ESN belongs to a paradigm of RNNs, known as Reservoir Computing (RC), where the
weights in the hidden layer (“reservoir”) are not trainable.

An Echo State Network (Figure 1) consists of a large, fixed, recurrent “reservoir”
network from which the desired output is obtained by training suitable output connection
weights [14].

In its classical approach, the reservoir is a large RNN containing hundreds of artificial
neurons whose connection weights are not modified by training. Only the weights of
the reservoir connections to the output are adjusted by linear regression. Jaeger [14]
described how an augmented ESN can be conjoined with the “recursive least squares” (RLS)
algorithm, a method for fast online adaptation known from linear systems. RCDESIGN
(Reservoir Computing and Design Training) is a method that combines an evolutionary
algorithm with RC and, at the same time, finds the best values of parameters, topology
and weight matrices without rescaling the reservoir matrix by its spectral radius; it was
proposed by Ferreira, Ludermir and Aquino [15].

Energies 2023, 16, 2635 3 of 15

u1

u2

u3

uK

x1

x2

x3

x4

xN

y1

y2

y3

yL

W in W
W out

W back
W inout

W outout

K input units N internal units

(Reservoir)

L output units

Figure 1. An Echo State Network. Solid arrows: fixed weights; dashed arrows: trainable weights.
Adapted from Ferreira, Ludermir and Aquino [15].

This paper addresses the problem of forecasting average hourly wind speeds within a
24-h ahead horizon for five different locations in northeastern Brazil. Models created in this
work are based in Gouveia [16], which applied RCDESIGN-AS to adjust the parameters
of ESN-AS with linear (identity) activation functions in reservoir neurons. The promising
results of the proposed method are compared with those derived from the forecasting made
with the Persistence Method (as reference) and also with the classical ESN approach.

The subsequent sections of this work are divided according to the following order:
Section 2 presents an overview of Reservoir Computing; Section 3 provides a detailed
description of the evolutionary strategy for RCDESIGN-AS; Section 4 describes the Persis-
tence Method; Section 5 shows statistics of the data sets used in this paper; Sections 6 and 7
present the results and conclusions, respectively.

2. Reservoir Computing

In RC, the reservoir is a kind of RNN that receives inputs that vary with time and
performs neural computation. Conceptually, forming the output layer from a reservoir is a
non-temporal supervised mapping task from x(t) to ytarget(t), which is a well-researched
domain in machine learning, and there is a wide variety of methods available that can be
applied to solve this problem [15].

2.1. General Description of Echo State Networks

In this paper, an ESN is used as a learning system for time series forecasting. For
the sake of a simple notation, we address only single-input, single-output systems, as
described by Jaeger [17]. The input and output at discrete-time t ≥ 1 are scalars u(t)
and y(t), respectively. The state of reservoir neurons is the N-element column vector
x(t) = (x1(t), ..., xN(t)). The weights of internal reservoir connections are stored in a
square matrix W = (wij) of order N. The weights of connections between u(t) and y(t)
with the N reservoir neurons are stored in column vectors win = (win

i) and wback = (wback
i),

respectively. In addition to these, vectors wbias = (wbias
i) and v(t) (random noise) are also

stored, all of which are applied for updating the reservoir state according to (1).
The weight of connection going from u(t) to y(t) is a scalar winout, and connections

from the reservoir to y(t) are stored in N-element column weight vector wout = (wout
i). In

addition to these, scalars woutout and wbiasout are also stored, all of which are applied to
update the output according to (2).

Energies 2023, 16, 2635 4 of 15

x(t + 1) = f((1− α)x(t) + α(winu(t + 1) + Wx(t)+

wbacky(t + 1) + wbias + v(t + 1))),
(1)

y(t + 1) = fout(winoutu(t + 1) + (wout)Tx(t + 1)+

woutouty(t) + wbiasout),
(2)

where f stands for an element-wise application of neuron activation functions, which can
be linear (identity) or nonlinear (hyperbolic tangent); α is a scalar parameter called leak rate
used for adjusting dynamics of the reservoir, as described by Lukosevicius [18]; fout is the
output activation function (identity). In (2), superscript .T denotes transpose.

Training is performed to adjust only the weights of connections to the output (winout, wout,
woutout, wbiasout), while the weights of connections to the reservoir (win, W, wback and wbias)
are fixed and defined before training. The matrix W typically has sparse connectivity.

2.2. Supervised Readout Training for Classical ESN Approach

From this section, for the remainder of this article, we call wout the vector formed
by the row-wise concatenation [winout, (wout)T , woutout, wbiasout]. Therefore, wout is the
readout vector, which has a number of elements as Ñ = N + 3.

Supervised readout training is nothing more than solving a quadratic error minimiza-
tion problem between the ESN outputs and the desired outputs (targets). The amount of
readout weights is typically less than the number of available linear equations, so it is usual
to use Linear Regression to solve this type of over-determined system of linear equations.
The theory of ESNs can be found in Jaeger [17]. A similar idea has been independently
investigated under the name of “liquid state networks” [19].

The signals from input (u) and output (ytarget) used during classical ESN training are
stationary. When updated according to (1), the network state may become asymptotically
independent of initial conditions. This means that regardless of its initial state if the network
is updated with the same input sequence in both cases, the resulting state sequences
converge to each other, that is x(t)→ x̃(t). If this condition holds, the reservoir state will
asymptotically depend only on the input history, and the network is called an Echo State
Network. A sufficient condition for the echo state property is the contractivity of W [17].

A direct method that uses the Moore–Penrose pseudo-inverse to adjust the output
weights so that the target output is approximated by the ESN was proposed by Jaeger [20].
ESN training is carried out according to the following steps:

1. Create α, win, wback, wbias and v;
2. Define W and then scale it to ensure that its spectral radius is less than 1 (|λmax| < 1);
3. Run the RNN by driving it with the teaching input signal. Dismiss data from initial

transient and collect remaining input and network states row-wise into a P× (N + 3)
matrix M, as shown below:

M =

u(1) xT(1) y(0) 1
u(2) xT(2) y(1) 1

...
...

...
...

u(P) xT(P) y(P− 1) 1

;

4. In parallel, collect the remaining training pre-signals into a column vector r, as
shown below:

r =

(f out)−1ytarget(1)
(f out)−1ytarget(2)

...
(f out)−1ytarget(P)

;

Energies 2023, 16, 2635 5 of 15

5. Compute the pseudo-inverse M+, and then calculate wout = (M+r)T ;
6. Write wout into the output connections; the ESN is now trained.

2.3. Increasing the Power of ESNs with Augmented States

The modeling power of an ESN improves when the reservoir size increases. Jaeger [14,20]
mentions that a simple way to increase the power of the ESN with little computational
effort is to use additional nonlinear transformations of the state x(t), using a quadratic
representation of the reservoir states, which we call ESN-AS. For these networks, the
internal units update (1) is unchanged, but there is a slight modification in the method for
calculating the output signal update, that is accomplished with the following variant of (2):

y(t + 1) = fout(winoutu(t + 1) + (wout)Tx(t + 1)+

woutouty(t) + wbiasout + win2outu2(t + 1)+

(wout2)Tx2(t + 1) + wout2outy2(t) + wbias2out),

(3)

where win2out, wout2out and wbias2out are scalar weights; u2 and y2 represent the square of
the input and output signals, respectively; wout2 = (wout2

i) and x2 = (x2
i) are both column

vectors with N elements each, where the elements of the latter are equal to the respective
elements of x squared.

According to the modifications described above for updating the ESN-AS output, the
readout vector is also modified, being represented by the row-wise concatenation wout−sq =
[winout, (wout)T , woutout, wbiasout,win2out, (wout2)T , wout2out, wbias2out]. Therefore, wout−sq
is the readout vector, the number of elements in which is N̂ = 2N + 6. The adjustment of
the readout weights for an ESN-AS is carried out according to the following steps:

1. (unchanged);
2. Define W (with RCDESIGN-AS there is no need to scale the matrix to ensure that

the spectral radius is less than 1. Thus a smaller amount of calculations is required,
resulting in less computational effort);

3. Run the RNN by driving it with the teaching input signal. Dismiss data from ini-
tial transient and collect the remaining input and network states row-wise into a
P× (2N + 6) matrix Msq, which is formed by the horizontal concatenation of ma-
trices M and M2 (the elements of which are equal to the respective elements of M
squared);

4. (unchanged);
5. Compute the pseudo-inverse (Msq)

+, and then calculate wout−sq = ((Msq)
+r)T

(RCDESIGN-AS also considers the use of Ridge Regression as an alternative for
readout training);

6. Write wout−sq into the output connections; the ESN-AS is now trained.

2.4. Alternatives for Training Readout

Readout training is generally a procedure that has good numerical stability but requires
large hardware memory capacity, especially with the increase in the dimensions of the
state matrix (M). Thus, an alternative to work around this possible problem is to limit the
number of neurons in the reservoir and/or the number of ESN training patterns. According
to Lukosevicius [18], another way to get around the issue is to formulate the problem as
the following system of normal equations:

woutMTM = rTM. (4)

A natural solution for the system of normal equations in (4) would be:

wout = rTM(MTM)−1. (5)

Energies 2023, 16, 2635 6 of 15

The readout training method using (5) has less numerical stability when compared
to the classical approach that uses the pseudo-inverse of the state matrix. According to
Lukosevicius [18], this stability problem can be mitigated by using (MTM)+ instead of
(MTM)−1, which can provide even faster calculations. The system of normal equations
also allows the use of Ridge Regression according to the following equation:

wout = rTM(MTM + λ2I)−1, (6)

where the scalar λ is the regularization parameter of Ridge Regression, and I is the identity
matrix, which is equal to the number of columns in matrix M.

In addition to improving the numerical stability for solving the optimization problem,
the regularization parameter λ contributes to reducing the magnitude of the readout vector
(wout), mitigating sensitivity to noise, and preventing overfitting.

3. Creating Models

The adjustment of the best parameters for an ESN is usually performed through an
exhaustive search or through random experiments, which makes this process of defining
parameters inefficient. Jaeger [21] described tuning strategies for the three most important
global control parameters (network size, spectral radius of reservoir weight matrix and
scaling of input). Bayesian Optimization (BO) was used to robustly tune the hyperparam-
eters of an ESN [22]. The robustness is achieved when the model performs consistently
between validation and test sets. In [23], the reservoir size, spectral radius, and leak rate
of an ESN are optimized by covariance matrix adaption evolutionary strategy (CMA-ES).
The results obtained in the CMA-ES were compared with the traditional ESN, a LSTM
network, a GA-ESN (ESN that was optimized by genetic algorithm) and a feedforward
neural network, and it outperformed all of those models.

The evolutionary algorithms are very efficient in searching for optimal solutions to
a wide variety of problems because they do not impose many of the limitations found in
traditional methods [24]. Thus, we used RCDESIGN-AS as an evolutionary method to
optimize the choice of the best parameters of the networks (ESN and ESN-AS) for wind
speed forecasting.

The fitness function of RCDESIGN-AS considers the performance of the networks
for both sets, training and validation, seeking to obtain networks with better generaliza-
tion capability and reduced chances of overfitting [15]. The fitness function is calculated
as follows:

fitness = MAETrain + ||MAETrain −MAEValid||, (7)

where fitness is the value to be minimized by the evolutionary algorithm, and the MAE
(Mean Absolute Error) is calculated as in (8). Since RCDESIGN-AS uses 10-fold cross-
validation, MAETrain is the average of MAE in the training set, and MAEValid is the average
of MAE in the validation set.

MAE =
1
D

D

∑
i=1
|y(i)− ytarget(i)|, (8)

where D is the total number of data in the set, y(i) and ytarget(i) are actual and desired
(target) outputs of the network, respectively.

The evolutionary algorithm performs an iterative method in which a set of solutions
(individuals) passes through selection and reproduction processes. The algorithm creates a
new generation of individuals (called children) from the selection of individuals from the
current population (called parents). RCDESIGN-AS uses three different ways to produce
the children of the next generation: Elite, Crossover and Mutation. Parents with better fitness
values have their genetic codes fully copied for their children. One part of the current
generation is selected by the stochastic uniform selection method [25] to produce children by
crossing the parents’ genetic codes. The genomes of the remaining parents are copied and

Energies 2023, 16, 2635 7 of 15

some genes can suffer a random change (with a very low probability) to produce children
with mutations.

The population Pk is represented by a group of vectors ci, where k represents a certain
generation of the evolutionary process and ci represents a particular individual in the
population. The value of k will be limited to the maximum number of generations (NG),
and the size of set Pk is defined by parameter NI of the algorithm, which indicates the
number of individuals in the population. Considering that the notation ci

j symbolizes a
characteristic (gene) j for the individual denoted as i, we have the following conceptual
division of ci, as shown in Figure 2.

Figure 2. Conceptual division of ci. Adapted from Ferreira, Ludermir and Aquino [15].

A detailed description of the genetic representation of the solutions is presented below:

• ci
1—Defines the number of neurons (N) in the reservoir and, consequently, the sizes

of win, W, wback and wbias, varying between [10, 50];
• ci

2—If 1, there is a connection between input and output through winout, if 0, there is
no connection;

• ci
3—If 1, there is a feedback connection between output and itself through woutout, if 0,

there is no connection;
• ci

4—If 1, there is a bias connected to output through wbiasout, if 0, there is no connection;
• ci

5—If 1, there are feedback connections between output and reservoir through wback,
if 0, there are no connections;

• ci
6—If 1, there are biases connected to the reservoir through wbias, if 0, there are no

connections;
• csi

7—Defines the density of reservoir connections, that is, the amount of non-null
elements in W, varying between [0.01, 0.1];

• ci
8—Defines the density of connections between the input and reservoir, that is, the

amount of non-null elements in win, varying between [0.01, 1];
• ci

9 —Defines the density of feedback connections between the output and reservoir,
that is, the amount of non-null elements in wback, varying between [0.01, 1];

• ci
10—Scaling factor applied to the input signal, between [1, 10];

• ci
11—Scaling factor applied to the feedback between the output and reservoir, varying

between [0, 10];
• ci

12—Scaling factor applied to the bias in the reservoir, between [0, 10];
• ci

13—Defines the maximum value of random noise (v) applied to reservoir states,
varying between [0, 10−8];

• ci
14—If 1, the reservoir activation functions are tanh(), if 0, the activation functions are

identity;
• ci

15—If 1, the readout training function is pseudo–inverse, if 0, it is ridge regress;
• ci

16—Leak rate (α), varying between [0.1, 1];
• ci

17—Regularization parameter (λ), varying between [10−8, 10−1];
• ci

18—If 1, augmented states are used (ESN-AS), if 0, natural states are used (classical
ESN);

• ci
19—reserved for future use;

Energies 2023, 16, 2635 8 of 15

• ci
20—reserved for future use;

• ci
21 ... ci

(N2+3N+20) are the weights of W, win, wback and wbias, varying between [−1, 1].

The pseudo-code used by RCDESIGN in its evolutionary process of searching for the
best global parameters, topology and reservoir weights at the same time is presented in
Ferreira, Ludermir and Aquino [15].

The operator of elitism is nothing more than the replication of the genetic trait of
individuals with the best skills between consecutive generations. The number of new
individuals produced by elitism is defined according to the elite number parameter.

An adaptation of the uniform crossover for populations of individuals with different
sizes of genomes is used by the crossover operator in RCDESIGN-AS. For a given couple of
parents, the individual who has the largest genome defines the vector ca, and the smallest
one, cb. The genome of child cf is created by crossing the parents’ genomes based on a
mask, m, that indicates which cf characteristics will be inherited from ca or cb. The process
begins by crossing the first 20 genes of the parents (which represent the main characteristics
of the ESN). Next, a mask (vector with 20 elements) of randomly generated binary numbers
is created, indicating which genes will be inherited by the child, as shown in Figure 3.

Figure 3. Operator crossing in the first part of the genome. Adapted from Ferreira, Ludermir and
Aquino [15].

Then, the crossing is performed to define the second part of the genome (which
corresponds to the weights of the matrix W). If c f

1 = cb
1, create mask m with size (cb

1)
2 and

the crossover operator will combine ca and cb from gene 21 to gene (cb
1)

2 + 20. If c f
1 = ca

1, a
mask with size (ca

1)
2 is created, with the first (cb

1)
2 elements being random binary values

and with the remaining elements equal to 1. That is, the crossing operator will combine
ca and cb from gene 21 to gene (cb

1)
2 + 20 and repeat the genes from ca from positions

(cb
1)

2 + 21 to (ca
1)

2 + 20. The crossing operator acts identically to the parts of the genome
corresponding to the weights of win, wback and wbias. A scheme of this procedure applied
to the second part of the genome is shown in Figure 4.

Figure 4. Operator crossing in the second part of the genome. Adapted from Ferreira, Ludermir and
Aquino [15].

As individuals in the population have genomes with different sizes, the mutation
operator used by RCDESIGN-AS is also adapted. For each future child susceptible to
genetic mutation with a parent ci, the gene ci

1 is copied to c f
1 (which means that the number

Energies 2023, 16, 2635 9 of 15

of neurons in the reservoir represented by the child’s first gene is identical to that of one of
their parent’s). The mutation can occur with a probability defined by the parameter MT in
any gene of the child, except for the first one.

Randomized experiments were conducted to define the parameters of genetic algo-
rithm used by RCDESIGN-AS. The configuration parameters that showed a lower average
error in the experimental tests were chosen. In our experiments, the maximum number
of generations is 10, the population size is 60, the number of elite individuals is 2, the
crossover fraction is 0.8, and the remaining individuals are the mutation children (with a
probability of mutation equal to 0.05).

4. Persistence Method

The persistence forecasting method was used to compare the results obtained by the
forecasting models created with ESN and ESN-AS. This method is premised on the fact
that the conditions on the forecast horizon will not change. The persistence forecasting
method tends to be used as a benchmark to serve as a reference for comparison with all
other forecasting models [26].

5. Data Sets

The experiments covered in this article were based on the application of the Persistence
Method and the RCDESIGN-AS to carry out forecasts of average hourly wind speeds
for five cities in northeastern Brazil: Triunfo and Belo Jardim data are from the project
SONDA [27]; Macau, Mossoro and Natal data are from National Meteorological Institute
(INMET) automatic surface stations [28].

In Table 1, we present the periods and the total samples of the average hourly wind
speed series used in this article. The minimum, maximum, means, standard deviations and
measurement heights of the wind speed series are shown in Table 2.

Table 1. Wind Speed Series.

Data Set Initials Source Period Size

Triunfo TRI SONDA 2004 to 2005 13,176
Belo Jardim BJD SONDA 2004 to 2006 21,936

Macau MAC INMET 2008 to 2009 16,800
Mossoro MOS INMET 2008 to 2009 13,200

Natal NAT INMET 2008 to 2010 13,152

Table 2. Wind Speed Series Statistics.

Initials vmin (m/s) vmax (m/s) v (m/s) σ (m/s) Height (m)

BJD 0 12.95 5.1 1.79 50
TRI 0 37.0 11.97 5.13 50

MAC 0.2 11.6 4.48 1.99 10
MOS 0.1 9.4 3.32 1.95 10
NAT 0.09 10.50 4.70 1.81 10

Before creating the models, the time series were normalized for the interval [0, 1]
according to:

dnorm(t) =
d(t)− dmin
dmax − dmin

, (9)

where dnorm(t) is the normalized value of d(t); dmin and dmax are the minimum and maxi-
mum values of the time series d, respectively.

We used 75% of the normalized data for training and validation, and the remaining
25% percent was used for the tests. To perform the 10-fold cross-validation, the data were

Energies 2023, 16, 2635 10 of 15

split into 10 chunks. Each one was used separately as a validation set, while the rest was
used for training the readout.

It is worth mentioning that the test set for each series was exactly the same in order to
allow a correct comparison between the performance of the different forecasting models.

6. Results

In this section, we present the results of different models for wind speed forecasting.
We used the Persistence Method as a reference for comparison with the ESN (as presented
in [15]) and ESN-AS (created with RCDESIGN-AS) models. There are also comparisons
with results from the WTESN model, proposed by Gouveia [29].

The simulations were performed on a notebook with a 64-bit Intel (R) Core (TM) 2 Duo
CPU T6600 @ 2.20 GHz-2.20 GHz processor, 4 GB of RAM and 64-bit Windows 7 operating
system, using the software MATLAB® in version 8.6.0.267246 (R2015b).

We used MAE (mean absolute error, defined in (8) previously), MSE (mean squared
error), NMSE (normalized mean squared error), NRMSE (normalized root mean squared er-
ror) and MAPE (mean absolute percentage error), to evaluate the performance of forecasters,
according to:

MSE =
1
D

D

∑
i=1

(y(i)− ytarget(i))2, (10)

NMSE =
MSE
σ2

ytarget

, (11)

NRMSE =
√

NMSE, (12)

MAPE =
100
D

D

∑
i=1

|y(i)− ytarget(i)|
y(i)

, (13)

where D is the total number of data in the set; y(i) and ytarget(i) are the actual and desired
(target) outputs of the network, respectively; σ2

ytarget is the variance of the values in the target
data set.

When proposing a new forecasting method, it is very important to highlight and
quantify the gains obtained in relation to the reference methods [30]. The expression used
to calculate these percentage gains is the following:

Gref,EC = 100(
ECref − EC

ECref
), (14)

where ECref and EC are the evaluation criteria for the reference and proposed method,
respectively.

Due to the random characteristics of the RCDESIGN-AS method, thirty initializations
of the method were performed for each of the time series used in this paper, with the
average performance for a given series corresponding to the average of the performances
in the thirty initializations.

The average test performances of persistence, ESN and ESN-AS for TRI and BJD are
presented in Tables 3 and 4, respectively, in which the values in bold text indicate the best
performance for the corresponding criterion.

Energies 2023, 16, 2635 11 of 15

Table 3. Average test performance—TRI.

Criterion Persistence ESN ESN-AS

NRMSE 0.64501 0.43601 0.1944
NMSE 0.41604 0.19011 0.069111

MAPE (%) 22.46 9.86 7.77
MAE (m/s) 1.92 0.87 0.84

Generations - 4.5 2.9
Spectral radius - 1.59 0.95
Reservoir size - 86 43

Table 4. Average test performance—BJD.

Criterion Persistence ESN ESN-AS

NRMSE 0.92295 0.4923 0.38854
NMSE 0.85183 0.24237 0.25798

MAPE (%) 23.99 12.08 13.08
MAE (m/s) 1.22 0.62 0.64

Generations - 7.4 3.5
Spectral radius - 1.53 1.02
Reservoir size - 79 43

The average test performances of persistence, WTESN and RCDESIGN-AS for MAC,
MOS and NAT are presented in Tables 5, 6 and 7, respectively.

Table 5. Average test performance—MAC.

Criterion Persistence WTESN ESN-AS

MSE (m2/s2) 2.4315 1.6476 0.8322
MAE (m/s) 1.195 0.9934 0.7144

Generations - - 2.9
Spectral radius - 0.9 0.99
Reservoir size - 1000 44

Table 6. Average test performance—MOS.

Criterion Persistence WTESN ESN-AS

MSE (m2/s2) 1.2315 0.8017 0.4314
MAE (m/s) 0.8275 0.6708 0.5336

Generations - - 2.8
Spectral radius - 0.9 0.99
Reservoir size - 1000 44

Table 7. Average test performance—NAT.

Criterion Persistence WTESN ESN-AS

MSE (m2/s2) 1.34 0.9080 0.2906
MAE (m/s) 0.883 0.7437 0.4749

Generations - - 4.7
Spectral radius - 0.9 1.01
Reservoir size - 1000 43

As can be seen in Tables 3–7, the performances of RCDESIGN-AS are far superior to
that of the Persistence Method, which is confirmed in Table 8, which presents the gains (14)

Energies 2023, 16, 2635 12 of 15

for TRI and BJD based on the MAE and MSE criteria. The same is valid for MAC, MOS and
NAT, according to Table 9.

Table 8. Gains (%) over Persistence—TRI and BJD.

BJD TRI

error ESN ESN-AS ESN ESN-AS

MSE 71.5 69.6 83.2 83.8
MAE 49.2 47.5 54.7 56.3

Table 9. Gains (%) over Persistence—MAC, MOS and NAT.

MAC MOS NAT

error WTESN ESN-AS WTESN ESN-AS WTESN ESN-AS

MSE 32.2 65.8 34.9 65.0 32.2 78.3
MAE 16.9 40.2 18.9 35.5 15.8 46.2

The main parameters of the best solutions for the test sets of all evaluated series with
the application of RCDESIGN-AS are presented in Table 10, in which the average time
(shown in the last line) refers to the time needed to carry out the training of a single ESN-AS.

An overview of the eigenvalues of W as well as the actual versus forecasted values for
the last 240 wind speeds of the test set for TRI, is presented in Figures 5 and 6, respectively.
Due to the restriction on the total number of pages in this article, we do not present
the equivalent figures for the other evaluated series, whose details can be checked in
Gouveia [16].

Figure 5. Eigenvalues of W. Adapted from Gouveia [16].

Energies 2023, 16, 2635 13 of 15

Figure 6. Sample of forecasts for TRI. Adapted from Gouveia [16].

Table 10. Main characteristics of the best ESN-AS.

Parameter TRI BJD MAC MOS NAT

Generations 1 4 2 2 5
Reservoir size 45 46 44 50 46
Sparsity of W 91.6% 95.8% 90.8% 93.4% 91.7%

Spectral radius 1.088 1.015 1.362 1.156 1.127
Input scaling 9.463 6.926 1.222 7.710 3.465

Leak rate 0.477 0.332 0.436 0.715 0.501
Average time (s) 2.93 0.82 0.79 0.64 0.69

7. Conclusions

In this paper, we present models created for wind forecasting within a 24-h ahead
forecasting horizon using real data of wind speeds from five cities in the Brazilian Northeast.

We used the Persistence Method as a reference for comparing the performances of
the models developed with the RCDESIGN-AS, which combines the advantages of an
evolutionary strategy with RC in order to generate an automatic process for creating and
training ESNs. Through this method, it is possible to investigate different topologies, as
well as evaluate many parameter combinations. The use of ESN-AS enables the reduction
of computational effort to train the readout, because augmented states allow reductions in
the reservoir size without a loss in performance. Another interesting point is that all the
reservoir and readout activation functions can be linear (identity).

We verified that models created with ESN or ESN-AS overcame the Persistence Method
for wind speed forecasting in all time series. Although models created with ESN and
ESN-AS both presented good performances, ESN-AS performed better than ESN for all
except for one of the five series evaluated.

Author Contributions: Conceptualization, H.T.V.G., A.A.F. and R.R.B.d.A.; methodology, H.T.V.G.,
M.A.S., A.A.F. and R.R.B.d.A.; software, H.T.V.G., M.A.S. and J.C.d.A.; validation, M.M.d.S.L. and
O.N.N.; formal analysis, R.R.B.d.A. and A.A.F.; investigation, H.T.V.G. and M.A.S.; resources,
R.R.B.d.A., M.M.d.S.L. and O.N.N.; data curation, H.T.V.G., M.A.S. and J.C.d.A.; writing—original
draft preparation, H.T.V.G. and M.A.S.; writing—review and editing, H.T.V.G., M.A.S., J.C.d.A.,
M.M.d.S.L. and O.N.N.; visualization, H.T.V.G. and M.A.S.; supervision, R.R.B.d.A. and A.A.F.;
project administration, R.R.B.d.A.; funding acquisition, R.R.B.d.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was financed, in part, by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior—Brasil (CAPES)—Finance Code 001. Implemented at Federal University of
Pernambuco (UFPE), nº 054735/2022-11, through the PROPG nº 06/2022 announcement.

Data Availability Statement: Not applicable.

Energies 2023, 16, 2635 14 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Venayagamoorthy, G.K.; Rohrig, K.; Erlich, I. One Step Ahead: Short-Term Wind Power Forecasting and Intelligent Predictive

Control Based on Data Analytics. IEEE Power Energy Mag. 2012, 10, 70–78. [CrossRef]
2. Milligan, M.; Kirby, B.; Acker, T.; Ahlstrom, M.; Frew, B.; Goggin, M.; Lasher, W.; Marquis, M.; Osborn, D. Review and Status of

Wind Integration and Transmission in the United States. Key Issues and Lessons Learned; Technical Report; National Renewable Energy
Lab. (NREL): Golden, CO, USA, 2015.

3. Lei, M.; Shiyan, L.; Chuanwen, J.; Hongling, L.; Yan, Z. A review on the forecasting of wind speed and generated power. Renew.
Sustain. Energy Rev. 2009, 13, 915–920. [CrossRef]

4. Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev.
2014, 31, 762–777. [CrossRef]

5. Fortuna, L.; Nunnari, S.; Guariso, G. Fractal order evidences in wind speed time series. In Proceedings of the ICFDA’14
International Conference on Fractional Differentiation and Its Applications 2014, Catania, Italy, 23–25 June 2014; pp. 1–6.

6. Shen, Z.; Ritter, M. Forecasting volatility of wind power production. Appl. Energy 2016, 176, 295–308. [CrossRef]
7. Fazelpour, F.; Tarashkar, N.; Rosen, M.A. Short-term wind speed forecasting using artificial neural networks for Tehran, Iran. Int.

J. Energy Environ. Eng. 2016, 7, 377–390. [CrossRef]
8. Kadhem, A.A.; Wahab, N.I.A.; Aris, I.; Jasni, J.; Abdalla, A.N. Advanced Wind Speed Prediction Model Based on a Combination

of Weibull Distribution and an Artificial Neural Network. Energies 2017, 10, 1744. [CrossRef]
9. Zheng, D.; Shi, M.; Wang, Y.; Eseye, A.; Zhang, J. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling

Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting
Accuracy. Energies 2017, 10, 1988. [CrossRef]

10. Wu, Z.; Luo, G.; Yang, Z.; Guo, Y.; Li, K.; Xue, Y. A comprehensive review on deep learning approaches in wind forecasting
applications. CAAI Trans. Intell. Technol. 2022, 7, 129–143. [CrossRef]

11. Chen, Q.; Folly, K.A. Short-Term Wind Power Forecasting Using Mixed Input Feature-Based Cascade-connected Artificial Neural
Networks. Front. Energy Res. 2021, 9, 411. [CrossRef]

12. He, B.; Ye, L.; Pei, M.; Lu, P.; Dai, B.; Li, Z.; Wang, K. A combined model for short-term wind power forecasting based on the
analysis of numerical weather prediction data. Energy Rep. 2022, 8, 929–939. [CrossRef]

13. Hallas, M.; Dorffner, G. A Comparative Study on Feedforward and Recurrent Neural Networks in Time Series Prediction Using Gradient
Descent Learning; Vienna University of Economics and Business Administration: Wien, Austria, 1998.

14. Jaeger, H. Adaptive Nonlinear System Identification with Echo State Networks. In Advances in Neural Information Processing
Systems 15; Becker, S., Thrun, S., Obermayer, K., Eds.; MIT Press: Cambridge, MA, USA, 2003; pp. 609–616.

15. Ferreira, A.A.; Ludermir, T.B.; de Aquino, R.R.B. An approach to reservoir computing design and training. Expert Syst. Appl.
2013, 40, 4172–4182. [CrossRef]

16. Gouveia, H.T.V. Sistema de previsão de Geração eólica Baseado em Ferramentas de Inteligência Artificial. Ph.D. Thesis,
Universidade Federal de Pernambuco, Recife, Brazil, 2018.

17. Jaeger, H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks—With an Erratum Note1; German National
Research Center for Information Technology GMD: Bonn, Germany, 2010.

18. Lukosevicius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3,
127–149. [CrossRef]

19. Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation
based on perturbations. Neural Comput. 2002, 14, 2531–2560. [CrossRef] [PubMed]

20. Jaeger, H. Short Term Memory in Echo State Networks; German National Research Center for Information Technology GMD: Bonn,
Germany, 2002.

21. Jaeger, H. Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the Echo State Network Approach; GMD-
Report; GMD-Forschungszentrum Informationstechnik: Bonn, Germany, 2002.

22. Racca, A.; Magri, L. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics. Neural Netw.
2021, 142, 252–268. [CrossRef] [PubMed]

23. Liu, K.; Zhang, J. Nonlinear process modelling using echo state networks optimised by covariance matrix adaption evolutionary
strategy. Comput. Chem. Eng. 2020, 135, 106730. [CrossRef]

24. Taylor, C.E. Complex Adaptive Systems. In Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems; Holland, J.H., Ed.; MIT Press: Cambridge, MA, USA, 1994.

25. Baker, J.E. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the Second International Conference on
Genetic Algorithms, Cambridge, MA, USA, 28–31 July 1987; Volume 206, pp. 14–21.

26. Walson, S. Fresh forecasts [wind power forecasting]. Power Eng. 2005, 19, 36–38. [CrossRef]
27. SONDA—Sistema Nacional de Organização de Dados Ambientais. Available online: http://sonda.ccst.inpe.br/ (accessed on

17 January 2020).
28. INMET—Instituto Nacional de Meteorologia. Available online: http://www.inmet.gov.br (accessed on 17 January 2020).

http://doi.org/10.1109/MPE.2012.2205322
http://dx.doi.org/10.1016/j.rser.2008.02.002
http://dx.doi.org/10.1016/j.rser.2013.12.054
http://dx.doi.org/10.1016/j.apenergy.2016.05.071
http://dx.doi.org/10.1007/s40095-016-0220-6
http://dx.doi.org/10.3390/en10111744
http://dx.doi.org/10.3390/en10121988
http://dx.doi.org/10.1049/cit2.12076
http://dx.doi.org/10.3389/fenrg.2021.634639
http://dx.doi.org/10.1016/j.egyr.2021.10.102
http://dx.doi.org/10.1016/j.eswa.2013.01.029
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1162/089976602760407955
http://www.ncbi.nlm.nih.gov/pubmed/12433288
http://dx.doi.org/10.1016/j.neunet.2021.05.004
http://www.ncbi.nlm.nih.gov/pubmed/34034072
http://dx.doi.org/10.1016/j.compchemeng.2020.106730
http://dx.doi.org/10.1049/pe:20050208
http://sonda.ccst.inpe.br/
http://www.inmet.gov.br

Energies 2023, 16, 2635 15 of 15

29. Gouveia, H.T.V.; De Aquino, R.R.B.; Ferreira, A.A. Enhancing Short-Term Wind Power Forecasting through Multiresolution
Analysis and Echo State Networks. Energies 2018, 11, 824. [CrossRef]

30. Madsen, H.; Pinson, P.; Kariniotakis, G.; Nielsen, H.A.; Nielsen, T.S. A protocol for standardizing the performance evaluation of
short-term wind power prediction models. Wind Eng. 2005, 29, 475–489. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/en11040824
http://dx.doi.org/10.1260/030952405776234599

	Introduction
	Reservoir Computing
	General Description of Echo State Networks
	Supervised Readout Training for Classical ESN Approach
	Increasing the Power of ESNs with Augmented States
	Alternatives for Training Readout

	Creating Models
	Persistence Method
	Data Sets
	Results
	Conclusions
	References

