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Abstract: Humans have always been searching for new and efficient ways to convert fuels into usable
energy. Solid oxide fuel cells, energy conversion devices capable of generating electrical energy,
are widely used due to their high thermal energy production. In this research, fuzzy control was
used to manage the voltage and current of solid oxide fuel cells. Simulations were conducted in two
evaluation modes: checking the voltage, current, and power of the fuel cell, with and without the
use of fuzzy control, and analyzing maximum power point tracking (MPPT) using fuzzy control.
In the second mode, when connected to the load, the performance of the fuel cell was evaluated in
the transient state, and the role of the controller was clearly visible According to the current–power
characteristic of the fuel cell, which is a nonlinear curve and has a maximum point, and by using the
fuzzy controller and the appropriate selection of input and output functions, this research aimed to
make the system work at the maximum power point at all times. To this effect, a printer was used
between the fuel cell and the load, and a fuzzy controller was used to set the cycle of activities, whose
input was the slope of the current–power curve. The results show that this controller performs well
and is faster when compared to the P&O control method. MATLAB software was used to design and
analyze the system and, in order to validate the model, the transient behavior of the fuel cell was
studied. The results were compared, and an acceptable match was observed.

Keywords: fuel cell; transient state; maximum power point tracking; fuzzy controller

1. Introduction
1.1. General Perspective

In the last decade, the use of fuel cells to simultaneously supply electricity and heat
via the electrochemical method has developed rapidly. Using this method, which can
be regarded as reverse electrolysis, the chemical energy stored in fossil fuels is extracted
without combustion. These systems are highly efficient when compared to other methods
and produce very little pollution. Fuel cells are much better than combustion because
they chemically generate electricity. They are not limited by the laws of thermodynamics,
which is why they are much more efficient at producing energy. Energy losses can also
be inhibited by increasing efficiency in some cells [1–4]. Fuel cells have found a special
place in the electricity industry as suppliers of new power, with ease of use, high reliability,
transportability, low pollution, and high efficiency among their features, which has led to
growing scientific interest. Electronic power converters play a major role in converting
the DC power generated by fuel cells, which also have extensive variations [5–8]. Under
normal operating conditions, a single fuel cell can generate approximately 1.2 volts. For use
in power generation systems that require relatively high power, several cells are grouped
together to produce more power [9,10]. Fuel cells, such as proton exchange membranes,
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are a good source of energy. However, they cannot optimally respond to charge changes,
which is mainly due to their slow thermodynamic and electrochemical response [11,12].
In this regard, a cell model is needed to evaluate their behavior. The main issue with fuel
cells is their slow chemical reactions [13,14]. A fuel cell takes about ten minutes to produce
rated power. This time varies depending on the type of fuel cell and its power. Therefore,
it is necessary to use fuel cells with an auxiliary energy source, such as a battery or a
capacitor cloud. When a fuel cell is connected directly to an external load, its output power
depends on the internal electrochemical reaction and the external load impedance [15,16].
The operating point of the system is located at the intersection of the I-P curve of the fuel
cell and the load line. Thus, there is only one operating point where the fuel cell produces
maximum power. The output power of the fuel cell nonlinearly depends on the current
and voltage applied to it, and there is only one maximum power point. The dynamic
characteristics of fuel cells can be expressed via an accurate mathematical model. This
poses a control challenge.

1.2. Review of Recent Literature

In Ref. [4], the ideal voltage of the fuel cell and its losses are calculated using mathe-
matical calculations that consider temperature, hydrogen, oxygen pressure, and fuel cell
current. The dynamical behavior of the fuel cell is also accounted for by a quadratic equa-
tion. Another precise mathematical model for the fuel cell is introduced. In [5], fuel cell
performance is divided into seven regions, and, for each part, differential equations are
written according to time or position. To obtain the model, it is necessary to divide each
region into small elements and solve their equations. Because the overall system (including
power supplies, DC/DC converters, motors, and controllers) is complex, the use of this
model slows down the simulation. In Ref. [6], the orbital model for the proton exchange
membrane fuel cell is also presented. This model, which includes chemical reactions in an
electrical circuit, has good accuracy, and it is useful for simulations made in Pspice. In [7],
artificial neural networks are used to control the output voltage of the fuel cell and optimize
the system parameters. In Ref. [8], a controller is provided to adjust the output voltage of
the fuel cell under small load changes, and the output voltage changes are less than 5%.
The authors of [9] propose a neural network predictive controller to control the output
voltage of the fuel cell in the presence of fluctuations. The work proposed by [10] uses the
fuzzy control technique to keep the fuel cell output voltage constant by controlling the gas
pressure. In Ref. [11], to control the output voltage of the fuel cell, a feedback controller
based on a quadratic linear regulator is proposed. Studies [12–14] investigate the problems
regarding proton exchange membrane (PEM) fuel cell control, using a PID controller for
applications in complex and nonlinear control problems. In Ref. [15], multivariate robust
control strategies are applied to a PEM fuel cell system. In this work, the fuel cell is modeled
as a two-input/two-output system, in which the inputs are air and hydrogen, and the
outputs are voltage and current. The output voltage of the fuel cell is controlled by keeping
the output resistance constant and adjusting the air flow. In Ref. [16], a model based on
a second-order algorithm is presented for a polymer electrolyte membrane air cell fuel
supply system. The goal of the control strategy is to maximize the net power of the fuel cell
and prevent oxygen deprivation by adjusting the excess oxygen ratio to a desired value
during rapid load changes. In Ref. [17], the design and implementation of a PEM fuel cell
controller is presented. In Refs. [18,19], in light of the lack of electricity networks in remote
and hard-to-reach areas due to the high construction costs of transmission lines, a hybrid
system independent of the network is a good solution to meet electricity needs. Direct
hydrocarbon proton-conducting solid oxide fuel cells are reviewed in [20]. By introducing
the basic principles of direct hydrocarbon P-SOFCs and the unique properties of proton-
conducting oxides, the authors summarize the achievements and the current challenges of
P-SOFCs while proposing strategies to advance the development of direct hydrocarbon
SOFCs.
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Finally, in Ref. [21], nano-composite catalysts are studied for high performance and
durability in intermediate-temperature methane-fueled metal-supported solid oxide fuel
cells.

1.3. Motivation and Structure of the Paper

Most of the aforementioned studies use an energy source (sometimes with a resistor
and a capacitor) to model the fuel cell, which does not consider the real properties and
behavior of the device and is not suitable for simulation in many applications. Therefore, a
new strategy is needed, which is why this paper proposes fuzzy control.

Thereupon, it is very important to consider the transient state behavior of the fuel
cell. In this research, this transient state is studied using a fuel cell model and a fuzzy
controller, which has not been thoroughly addressed in the literature. The goal of this work
is to obtain specific values regarding the output voltage and current of a one-in-one fuel
cell system in the shortest possible time and with minimal overshoot. The created control
signal is, in fact, the duty cycle required for the key used in the boost converter.

This paper is structured as follows: Section 2 describes the employed materials and
methods; Section 3 outlines the fuzzy strategy; Section 4 describes the studied system;
Section 5 presents the simulation results; and Section 6 states the main conclusions derived
from this work.

2. Materials and Methods
2.1. Solid Oxide Fuel Cell Models and Equations

The operating temperature range of solid oxide fuel cells is between 600–1000 ◦C. For
this reason, a variety of fuels can be used (Figure 1). Each solid oxide fuel cell consists
of three main parts: cathode, electrolyte, and anode. In this type of battery, fuel (usually
hydrogen) is introduced to the anode and oxidant (oxygen in the air) to the cathode. When
hydrogen enters the anode, the hydrogen oxidation reaction occurs and the hydrogen is
converted into electrons and protons. Electrons pass through the anode and travel to the
cathode through the external circuit, generating an electric current. Then the electrons in
the cathode react with oxygen molecules and cause the decomposition of oxygen molecules
and the production of oxygen ions. In fact, the oxygen reduction reaction occurs. Oxygen
ions move through the electrolyte to the anode, where they react with protons, and water is
produced.
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Considering the high performance of solid oxide fuel cells, this type of fuel cell is
regarded as attractive for power plant applications. These fuel cells entail a series of
advantages, which include diversity in fuel consumption (gasification of coal, gases from
industrial processes, and other sources), the possibility of directly converting hydrocarbon
fuels without the need for a high-efficiency fuel converter, and the possibility of being used
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in power and heat generators (thermal recycling for heating) or a steam turbine to create
steam. The need for expensive materials limits the applications of these devices, but, with
the increase in performance, it becomes possible to convert the fuel inside the fuel cell. The
heat generated by this process can also be utilized. Due to the high operating temperature
of solid oxide fuel cells, they are produced in large power plants and used in cycle power
plants.

The main process and the processes taking place at the anode and cathode are pre-
sented below:

H2 → 2H+ + 2e− Anode reaction (1)

2H+ + 2e− +
1
2

O2 → H2O Cathode reaction (2)

2H2 + O2 → 2H2O Overall reaction (3)

2.2. A Fuel Cell Unit Produces a Voltage of Less Than 1 V

To produce higher voltages, fuel cells are connected in series to form a stack. The
number of cells in a stack depends on the desired output power and the individual behavior
of each cell. Stacks vary in size (from less than one to several hundred kW).

In fuel cells, the movement of electrons between the outer circuit and the movement
of protons between the membranes for a single cell produces a voltage difference between
the terminals of the cell. This voltage is expressed by the following equation:

Vcell = ENernst −Vact −Vohm −Vconc (4)

In this equation, there is a decrease in the thermodynamic potential of the cell. In
this model, ENernst is calculated from the Nernst equation, which expresses a relationship
between the standard ideal cell potential E and the ideal equilibrium potential at other
temperatures and partial pressures of the reactants (E). Knowing the ideal potential under
standard conditions, the ideal voltage at other temperatures and pressures can be deter-
mined. According to the Nernst equation, the ideal potential of the cell increases at a given
temperature at higher pressures of the reactant, and an improvement in the behavior of
the fuel cell is observed at higher pressures. The ideal standard potential of a fuel cell (E)
H2/O2 is 1.229 V with a liquid water product and 1.18 V with a gas water product. ENernst
is calculated from the Nernst equation [22]:

ENernst = 1.229− 0.858 ∗ 10−3(T − 298.15) + 4.3085 ∗ 10−3 ∗ T[ln(PH2)
+ 1

2 ln Po2)]
(5)

where PH2 and Po2 are the partial pressures of hydrogen and oxygen (atm), and T is the order
of the cell’s temperature value. To facilitate the mathematical calculations, Equation (5) is
expressed as follows:

ENernst = k1 + k2

(
T − Tre f

)
+ K3Tln(PH2) + K4Tln(Po2) (6)


k1 = ∆G

2F
k2 = ∆S

2F
k3 = k4 = RT

2F

where ∆G represents the change in the Gibbs free energy of reaction (j/mol), F is Faraday’s
constant (96,485.309 c·mol−1), ∆S is the change in the reaction entropy (j/mol), R is the gas
constant (R = 8.314472 J K−1 mol−1), and T and Tre f are the temperature of the cell and the
reference temperature (k).

The second term of Equation (6), Vact, is the activation potential, which is expressed
by the following equation:

Vact = −(ζ1 + ζ2T + ζ3Tln(Co2) + ζ4Tln(IFC)) (7)
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
−1.0076 < ζ1 < −0.8951
0.00292 < ζ2 < 0.00331

−0.000195 < ζ3 < −0.000178
6.7× 10 −5 < ζ4 < 8.1× 10 −5

where IFC is the static current passing through the cell and ζ1, ζ2, ζ3, and ζ4 are constants
that depend on each cell type. The oxygen concentration (Co2) at the surface between the
cathode and the catalyst (mol/cm3) is obtained via the following equation:

Co2 =
Po2

5.08 ∗ 106 exp
(
−498

T

) (8)

Because the third term in Equation (7), i.e., ζ3Tln(Co2), is so small when compared to
the others, it can be neglected. Thus, Equation (7) can be rewritten as follows:

Vact = ζ1 + ζ2T + ζ4Tln(IFC) (9)

The third term in Equation (4) is a significant voltage drop caused by the transfer
resistance of electrons between electrodes and the transfer of protons between membranes.
This voltage drop is expressed by the following equation:

Vohm = IFC(RM + RC) (10)

where RC represents the electron transfer resistance between the electrodes and it is usually
a constant value. The equivalent membrane resistance (RM) is expressed by the following
equation:

RM = ρM
l
A

(11)

where ρM is the specific resistance of the membrane (Ωcm), A is the active area of the cell
(100 cm2), and l is the thickness of the membrane (178 µm). The resistivity is obtained from
the following equation (see [22,23] for more details):

Pl
M =

181.6[1 + 0.03
(

IFC
A

)
+ 0.062

(
T

303

)2( IFC
A

)2.5

[ϕ− 0.634− 3
(

IFC
A

)
exp

(
4.18

(
T − 303

T
)) (12)

with ϕ being an adjustable parameter with a maximum value of 23. This parameter
depends on the membrane manufacturing process and is a function of the relative humidity
and the stoichiometric ratio of the gas at the anode. Under ideal humidity conditions
(100%), this parameter is between 14 and 25. For the sake of convenience regarding the
mathematical operations, Equations (11) and (12) are substituted into Equation (10), as
shown below [24,25]:

Vohm = IFC

181.6[1 + 0.03
(

IFC
A

)
+ 0.062

(
T

303

)2( IFC
A

)2.5

[ϕ− 0.634− 3
(

IFC
A

)
exp

(
4.18

(
T − 303

T
)) + RC

 (13)

The last component in Equation (4) is the concentration drop voltage. This decrease is
mainly due to the excess reaction concentration near the catalyst surfaces.

Vconc = −Bln
(

1− J
Jmax

)
(14)

B = −RT
2F
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where B is a parameter that depends on the type of cell and the density of the current
passing through the cell at any given moment (A/cm2). It is defined as follows:

J =
IFC
A

(15)

For information on the details of the equations and dynamic model, refer to [26].

3. Designing a Controller Based on Fuzzy Logic

A knowledge base is a set of rules in which rules use language variables. On the other
hand, a fuzzy rule base is a collection of fuzzy if–then rules [27,28]. A fuzzy rule base is the
heart of a fuzzy system, in the sense that other components of the fuzzy system use these
rules effectively and efficiently to implement it.

The fuzzy inference engine is the core of a fuzzy logic controller. After obtaining
the fuzzy rules and forming the knowledge base, an inference engine is needed to create
the appropriate fuzzy output by accepting the fuzzy inputs based on the rules of the
knowledge base. Usually, there is an overlap in the condition of the fuzzy rules. In other
words, the membership function of the input variable has a relative match with two or
more membership functions of the linguistic variable expression. As a result, it can be
inferred with two or more rules from the knowledge base. There should be a competitive
strategy in the inference engine, so that it can create a suitable fuzzy output. In the fuzzy
inference engine, the if–then rules of the database are used to map the fuzzy input sets to
the fuzzy output ones.

In this section, a fuzzy controller with two inputs (power and voltage) and one output
(one output unit) is designed (Figures 2 and 3). The main advantage of the fuzzy controller
is that it does not need accurate information about the system. The Mamdani fuzzy model
is used in the fuzzy controller, and if–then rules are used for the inference engine. Tables 1
and 2 show the fuzzy controller designed for the system based on the control law, fuzzy
variable language.
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Table 1. Rule base for fuzzy controller [27,28].

Number of Rule
1 2 3 4 5 6 7

NB NM NS ZE PS PM PB

1 NB ZE ZE ZE NB NB NB NB

2 NM ZE ZE ZE NM NM NM NM

3 NS NS ZE ZE NS NS NS NS

4 ZE NM NS ZE ZE ZE PS PM

5 PS PM PS PS PS ZE ZE PS

6 PM PM PM PM PM ZE ZE ZE

7 PB PB PB PB PB ZE ZE ZE

Table 2. Fuzzy variable language.

PB PM PS ZE NS NM NB

Big
positive

Medium
positive

Small
positive Zero Small

negative
Average
negative

Big
negative

The appropriate domain for each period and the number of membership functions
can be defined based on experiments and the system’s configuration. Figure 4 shows the
output membership function for the controller.

When a fuel cell is connected directly to an external load, its output power depends
on the internal electrochemical reaction and the external load impedance. The operating
point of the system is located at the intersection of the I-P curve of the fuel cell and the load
line (Figure 5).

Thus, there is only one operating point at which the fuel cell produces maximum
power. The output power of the fuel cell nonlinearly depends on the current and voltage
applied to it, and there is only one maximum power point.
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value.

4. Studied System

Figure 6 shows a single simulation of the system under study, which has a fuel cell, a
boost converter, and a load. The information from this model is given in Table 3. The aim is
to investigate the power of two loads in two scenarios. The main purpose of using a fuel
cell is to generate electricity, while a secondary goal could be to utilize the heat generated
by the reaction. Therefore, the electrical energy generated by the fuel cell must be easily
usable by the consumer, who, in practice, cannot be connected directly to the fuel cell, as
its output voltage is DC, and consumers are usually AC. In this sense, to use the electrical
energy output of the fuel cell, a power optimization unit must be used to produce the
adequate voltage.
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current output from the fuel cell is applied to the input of the fuzzy controller, and the 
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Table 3. Information of the studied system.

Nominal operating point [Inom(A), Vnom(V)] [111.3, 45]

Nominal power (kw) 5

Maximum operating point [Iend(A), Vend(V)] [202, 37]

Maximum nominal power (kw) 7.5

Number of cells 65

Nominal stack efficiency (%) 55

Operating temperature (Celsius) 65

Nominal air flow rate (lpm) 300

Nominal supply pressure [Fuel (bar), Air (bar)] [1.5, 1]

Nominal composition (%) [H2, O2, H2O (Air)] [9.95, 21, 1]

Figure 7 simulates the fuzzy control and control subsystem depicted in Figure 8. This
model is designed very simply but functionally. Based on the concept of the previous
model that was reviewed, to use the fuel cell, the appropriate control model is applied to
obtain the maximum power. In the case of the fuzzy controller, the voltage and current
output from the fuel cell is applied to the input of the fuzzy controller, and the output
of this controller is the input of the boost converter. With this method, it is possible to
track the control of the maximum delivered power to the load, as well as to obtain the
operating point of the fuel cell at different voltages and currents. It tests the output power
for each sample and determines the power changes in terms of voltage (dp/dv). If dp/dv
is positive, it is continued in the same direction until we reach a point where dp/dv is zero.
If dp/dv is negative, we must continue in the opposite direction to reach the desired point.
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Figure 8. Proposed fuzzy structure.

Figure 9 shows the amount of error and changes in power and voltage based on the
phase controller obtained by the Mamdani method, which works based on the changes in
power and voltage of the output source. A total of 49 rules have been extracted for fuzzy
inference.
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5. Analysis of the Results
5.1. Simulation Results in Normal Mode with the Controllers

This section examines the results obtained while using Perturb and Observe (P&O)
and the fuzzy controllers. According to the data, the voltage in the normal state is 45 V,
which is well depicted in Figure 10. It can be observed that, in the absence of control
strategies, this voltage exceeds the limit.
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Figure 10. Output voltage of the fuel cell.

Both voltage controls approximate the current to the nominal value of the fuel cell,
which is 111.3 A. Figure 11 shows that, without the controller, the current is very low (60 A).
In the presence of the fuzzy controller, the current improves and comes close to the nominal
value.
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Figure 11. Output current of the fuel cell.

Figure 12 shows the power of the fuel cell with and without a controller. The voltage
and current have been successfully controlled in the previous steps, and the nominal values
have been reached. The voltage and current control, through which the rated power of the
fuel cell (5000 W) has been reached, is clearly visible.
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Figure 12. Output power of the fuel cell.

In Figures 13 and 14, the DC voltage and current of the converter are shown. Despite
the controller’s actions, the current and voltage of the boost converter increase, applying
more power to the load.
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5.2. Simulation Results in Transient Mode with the Controllers

This section examines the results obtained for the transient state. If a fuel cell is to be
connected to the load at some point, it must be able to exit this state with the controller and
reach stability state in the face of overcurrent and overvoltage. In this study, the fuel cell
was connected to the load for 5 s, and its reaction was observed. In the previous section, it
was observed that the battery voltage reached a value of around 45 V. While connected to
the load without the controller, this voltage dropped, and this value was not reached after
connection (Figure 15).
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However, the fuzzy controller prevented large voltage drops, and the nominal value
was reached. Figure 16 shows the results obtained regarding the current. It can be seen that
without the controller, there is a high current while connected to the load, which does not
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reach the normal state after some time. The controller was able to prevent the high current,
and the normal state was reached after connection. By controlling the current and voltage,
the power was also controlled (Figure 17). Figures 18 and 19 show the current and voltage
of the boost converter. It is important to point out that if the current of the converter is not
controlled, the converter will be seriously damaged (it might even burn). According to the
results, a normal operation of the converter in the transient state was also achieved.
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Figure 20 shows the behavior of the fuzzy system for the output regulator mode in
terms of inputs.
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6. Conclusions

Model fuzzy control is an optimal control strategy in which future inputs and outputs
are predicted by explicitly using the system model and optimizing it at repeated intervals
relative to a performance measure. This computational method has been widely used to
improve control performance in both research and industry. The reason for this increasing
use is this controller type’s ability to operate without the intervention of experts for ex-
tended periods of time. This research attempted to use fuzzy control to achieve appropriate
current and voltage values in a fuel cell. To this effect, different scenarios were presented,
and nominal values were determined without the presence of a fuzzy controller. In the
first scenario, the output power of the fuel cell was approximately 3 kW. In the second
one, i.e., with the fuzzy controller, this value was about 5 kW. The results obtained from
studying the voltage flow in the normal and transient states of the fuel cell showed that
fuzzy control is a suitable option to achieve ideal operation. Note that fuzzy is not an
individual technique, but a set of different methods whose computational formulas are very
broad. In comparison with other strategies, model fuzzy controllers have the following
features:

1. They can be used for wide controls of systems, such as non-minimum phase systems,
as well as unstable, delayed, nonlinear, and hybrid systems.

2. They can be easily generalized to multivariate systems.
3. We can easily determine the vote control process.

The following can be stated about these control assets:

1. If the exact model is not selected for the actual process, then the difference between
the model and the system can cause uncertainty in the output response and even its
instability.

2. If the system dynamics change during the control algorithm, the computational
volume will increase.

In the future works, we can use the structure of this model on solar systems and
hybrid systems and compare it with other methods. We can also combine this model with
algorithmic methods.
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