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Abstract: The ability to accurately predict daily solar radiation reaching the earth’s surface is essential
in applications such as solar power generation. Given their ease of use, many empirical models have
been proposed based on different dependent variables such as cloud cover, daily temperature range,
etc. In this study we evaluate 23 of these models for the prediction of daily solar radiation in the
northern coastal zone of the Iberian Peninsula. Daily measurements during the period 2000–2018
from 16 meteorological stations spread over this area are used to adjust the parameters of each
model, whose predictive capacity is then evaluated using measurements made between 2019 and
2022. Using different statistical metrics to assess their predictive performance, it was found that
models based on hours of sunshine and level of cloudiness are significantly more accurate than
those based on maximum and minimum daily temperature and day of the year. Specifically, the
sunshine-based model by SBM3 obtained the highest Global Performance Indicator at 5.05. The
results offer insight on the ability of each type of empirical model to accurately predict daily solar
radiation in the Mediterranean region.

Keywords: solar radiation; empirical models; regression; Mediterranean area

1. Introduction

In a context of growing global energy demand, the sun is a clean and inexhaustible
energy source that plays a central role in the generation of renewable power in relation to
global warming mitigation and sustainable development. The harnessing of solar radiation,
usually measured as the amount of radiant energy from the sun per square meter of the
earth’s surface, has driven major technological efforts in recent decades. The capacity
to accurately predict the local solar radiation reaching the earth’s surface is not only of
interest for energy generation purposes but is also relevant in other fields, including
architecture, urban development and agriculture. The understanding and modeling of
many of the natural processes that take place in the troposphere, such as photosynthesis,
evapotranspiration and cloud formation, depend on our ability to include correct estimates
of solar radiation intensity in hydrological and plant growth models [1], and are also
crucial in the design of new energy facilities. Remote satellite sensing makes it possible to
obtain detailed information on solar irradiance, which is used, in combination with surface
measurements, to develop mathematical models for estimating local surface radiation
fluxes [2]. Due to significant maintenance costs and the need for frequent calibration,
most meteorological stations do not have solar radiation measurement equipment, and
direct measurements are scarce. In addition, data validity decays as distance from the
measurement location increases, and data is considered unusable at distances greater than
50 km [3]. Over the years, different empirical mathematical models have been proposed
to predict the solar radiation reaching a certain geographical area, depending on different
factors such as the day of the year and/or meteorological parameters [4,5]. Extraterrestrial
solar radiation can be accurately estimated using geometrical parameters, namely, the
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relative distance between the sun and the earth (which depends on the day of the year)
and the geographical location of the measurement point [6]. Obtaining the percentage of
this radiative flux that travels through the atmosphere and reaches the earth’s surface at a
given time is somewhat more complicated, since it strongly depends on local atmospheric
conditions. Therefore, models that uniquely depend on the day of the year, i.e., on the
relative earth–sun position, typically fall short in providing reasonable estimations of
surface solar radiation, and corrections accounting for local meteorological parameters
are generally required. Regardless of their specific form and independent predictors, the
goal of the empirical models is to provide reasonably accurate predictions of surface solar
radiation using a small set of easily measured atmospheric variables. Although some global
models provide acceptable results for large geographical areas [7], the applicability of most
empirical models is restricted to relatively small regions. Some authors have carried out
an exhaustive analysis of the multiple solar radiation models available in the literature.
For instance, Mirzabe et al. [8] analyzed and classified up to 191 different models. By
comparing different models for the estimation of solar radiation collected from around
90 scientific articles, Teke et al. [9] ranked them according to their accuracy. Similarly,
Prieto and Garcia [10] reviewed a selection of 165 parametric models and quantified the
solar prediction variability among them. These authors concluded that a high degree of
complexity was not linked to increased accuracy. One of the most comprehensive reviews,
conducted by Chen et al. [11], analyzed the predictive capabilities of 294 models and
concluded that a universal model capable of accurately predicting local solar radiation
for any location and environmental conditions is not yet available. Exploring further this
trade-off between accuracy and complexity, which depends mainly on the purpose of
the model and the availability of data, Besharat et al. [4] analyzed the performance of
78 different models and classified them into four categories according to meteorological
input parameters, namely, sunshine-based, cloud-based, temperature-based and other
meteorological-parameter-based models. A common feature of these four types of models is
that they take into account latitude, solar declination, elevation, day length and atmospheric
transmissivity by including extraterrestrial radiation in the model.

• Sunshine-based models. These models are based on daily sunshine duration. Although
they allow accurate predictions of solar radiation, these models require data from
specific equipment not present at many meteorological stations. Despotovic et al. [12]
carried out an exhaustive analysis using 101 different sunshine-based models using
data from 924 sites around the world. The authors concluded that although they could
be used anywhere on the planet, their versatility was hindered by their limited accuracy.

• Cloud-based models. These models are based on daily measurements of average
cloudiness. As with the sunshine-based models, many meteorological stations are
not equipped with specific apparatus to measure cloudiness, and furthermore, such
instruments are usually regarded as highly subjective. Ahamed et al. [13] made an ex-
haustive review of this type of model, concluding that they could be a good alternative
for estimating solar radiation when sunshine hour data are not available.

• Temperature-based models. These models are usually based on daily maximum and
minimum temperature values. Their major advantage is that these two quantities are
measured by most meteorological stations.

• Other meteorological-parameter-based models. These models use a combination of
several meteorological variables that often include the ratio of daily and maximum
daily sunshine duration, relative humidity, air water content, average temperature,
precipitation, etc.

• Day-of-year-based models. In addition to the four previous groups, there is a family
of models based only on the day of the year. As they do not require meteorological
data to characterize the atmospheric conditions, they are readily usable, although they
offer predictions of limited accuracy compared to other model types.

The objectives of this study are to calibrate, validate and compare the daily solar
radiation predictions obtained from a collection of methods representative of the different
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types described above. For each model, the empirical coefficients will be fitted with
data obtained from several meteorological stations scattered across the northeast of the
Iberian Peninsula along the Mediterranean basin coast and the Balearic Islands. Models are
categorized according to the classifications of Besharat et al. [4].

2. Materials and Methods
2.1. Study Area and Data

The region of interest spans the eastern part of the Iberian Peninsula, including the
Catalan coast and the Balearic Islands, with local climates that are highly influenced by the
proximity of the Mediterranean Sea. Data is retrieved from several meteorological stations
scattered across this area, located at altitudes that, at most, barely exceed 1000 m above
sea level, with an average value of 200 m. The climate is temperate and warm, with little
rainfall in summer. The Köppen–Geiger climate classification of the area is mainly Csa,
which corresponds to the Mediterranean climate [14]. Data from 12 meteorological stations
located along 500 km of the Mediterranean coast of the Iberian Peninsula and 4 stations in
the Balearic Islands were analyzed. Table 1 lists the name and location of the 16 stations,
which are depicted on a map in Figure 1. In this study we considered meteorological data
between the years 2000 to 2022, retrieved from the European Climate Assessment & Dataset
project database [15].
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Figure 1. Geographical area studied and location of measuring stations. Map obtained from
https://mapswire.com/ (accessed on 6 March 2023).

Table 2 shows the annual daily mean values of some of the key meteorological variables
used in the calculation of solar radiation for each station for the period between 2000 and
2022. The average annual temperature is 16.5 ◦C, with values ranging from slightly negative
to over 36 ◦C in the summertime. The observed average annual rainfall is slightly less than
300 mm and the average relative humidity is 68%. The mean daily global solar irradiation

https://mapswire.com/
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is 16.5 MJ·m−2·day−1. The mean annual daily sunshine hours of the region is 7.9 h, with a
maximum around 14 h occurring in summer.

Table 1. Weather stations used and their location.

Station Name Station ID Latitude Longitude Elevation (m)

GIRONA/COSTA BRAVA S01 41.91167 2.763056 143
LLEIDA S02 41.62556 0.595 192

LLEIDA-AJUNTAMENT S03 41.61639 0.583056 169
BARCELONA/AIRPORT S04 41.29278 2.069722 4

REUS/AIRPORT S05 41.14944 1.178889 71
TORTOSA—OBSERVATORIO DEL EBRO S06 40.82056 0.491389 44

CASTELLON DE LA PLANA S07 39.98917 0.040556 25
CASTELLON S08 39.95 0.071389 35

MENORCA/MAO S09 39.85444 4.215556 91
VALENCIA/AEROPUERTO S10 39.48667 0.473056 69

VALENCIA S11 39.48056 0.366389 11
ALICANTE S12 38.3725 0.494167 81

ALICANTE EL ALTET S13 38.28278 0.570556 43
PALMA DE MALLORCA/SON SAN JUAN S14 39.56056 2.736667 8

PALMA DE MALLORCA CMT S15 39.55556 2.626389 3
IBIZA/ESCODOLA S16 38.87639 1.384167 6

Table 2. Annual meteorological averages of some variables at each study station.

Station ID T Max (◦C) T Min (◦C) T Mean (◦C) Precipitation
(mm) Humidity (%) Daily Solar Radiation

(MJ m−2 Day−1)
Sunshine
Hours (h)

S01 37.0 −5.9 15.3 405.5 71.3 14.8 7.2
S02 38.8 −5.6 16.2 227.2 66.5 17.0 8.4
S03 38.0 −5.6 15.9 217.6 — 17.0 8.4
S04 33.1 −0.1 17.1 315.8 68.1 15.8 6.8
S05 35.8 −4.0 16.6 269.4 66.5 16.0 7.7
S06 38.4 −0.8 18.5 315.8 64.6 15.9 7.9
S07 35.8 1.5 18.2 263.9 — 16.7 8.2
S08 35.8 1.5 18.2 261.1 63.4 16.7 8.2
S09 34.3 1.9 17.6 412.9 74.1 15.9 7.4
S10 38.5 −1.8 18.1 239.1 63.0 16.9 8.2
S11 36.7 1.9 18.8 246.6 65.3 16.5 7.8
S12 36.5 0.6 18.7 212.7 67.4 17.7 8.5
S13 36.9 0.2 18.5 202.2 62.9 17.4 8.1
S14 37.7 −2.2 17.3 298.6 73.2 16.4 7.8
S15 35.0 3.2 18.8 342.1 73.6 16.6 8.0
S16 34.2 1.5 18.4 279.6 72.6 16.8 7.8

Mean 36.4 −0.8 17.6 281.9 68.0 16.5 7.9

2.2. Data Quality

To ensure the quality of the meteorological data (temperature, relative humidity,
precipitation), all observations with invalid or spurious values were first removed. In the
case of surface solar radiation values, the daily sky brightness index (KT) has been used
as a quality indicator. This parameter is defined as the ratio between the measured daily
radiation and the extraterrestrial solar radiation. Jiang [16] recommends KT values between
0.015 and 1.0. A value of KT = 0.015 corresponds to a day with very intense cloudiness
maintained throughout the day, while a value of KT = 1 corresponds to a completely clear
day with surface radiation equal to extraterrestrial radiation. Only data within the interval
0.015 ≤ KT ≤ 1.0 were considered. In addition, data with a daily insolation duration longer
than the theoretical maximum duration have also been removed.
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3. Modeling of Global Solar Radiation
3.1. Extraterrestrial Daily Global Solar Radiation

The amount of solar radiation reaching the upper layers of the atmosphere is well
defined and can be calculated quite accurately from the relative positions of the sun and
the earth (Julian day) and the geographic location of the point where the value of solar
radiation is calculated. According to Duffie and Beckman [6], extraterrestrial solar radiation
can be calculated as

Ho =
24·60

π
Gsc·dr·(ws· sin ϕ · sin δ + cos ϕ · cos δ · sin ws ) (1)

where Gsc is the solar constant, ϕ is the latitude (rad), dr is the inverse of the relative
distance between the sun and the earth, δ is the solar declination and ws is the sunset hour
angle calculated as

ws = arcos(− tan ϕ· tan δ ) (2)

dr = 1 + 0.033· cos
(

2π

365
J
)

(3)

δ = 0.409· sin
(

2π

365
J − 1.39

)
(4)

where J is the Julian day.
Additionally, the maximum possible sunshine duration of the day is calculated as

So =
2

15
· ws (5)

Due to absorption, reflection and scattering processes during its travel through the earth’s
atmosphere, the radiation that ultimately reaches the earth’s surface is a fraction of the incoming
solar radiation at the upper layers of the atmosphere. Figure 2 compares the variation of solar
radiation at the earth’s surface with extraterrestrial radiation at the REUS/AEROPORT site for
the year 2018. It is observed that 20–30% of the extraterrestrial radiation does not reach the
earth’s surface. This reduction of radiation increases under adverse meteorological conditions,
especially in the presence of high cloud cover. Since it accounts for the variability due to the
relative positions of the earth and the sun through the year, the value of extraterrestrial solar
radiation is an input parameter of most empirical models.
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3.2. Empirical Models for Estimation of Solar Radiation

In recent years, many empirical correlations have been developed to determine the
amount of solar radiation reaching the earth’s surface based on different geographical
and atmospheric parameters. Several publications exhaustively collect and classify a
vast number of models according to the variables used in the calculation of daily solar
radiation [4,8,10]. In this study, we compared the accuracy of some of the most well-known
methodologies to compute local solar radiation in the Mediterranean area of the north-
east region of the Iberian Peninsula. The models considered here belong to any of the
following five categories: (1) day-of-the-year models, (2) sunshine-based models, (3) cloud-
based models, (4) temperature-based models and (5) other meteorological-parameter-based
models. The selection criteria took into account measurement availability, model simplicity,
and previously reported performance. Except for the model of Gariepy [17], all 23 models
considered here depend on several coefficients fitted using measurements of meteorological
variables. Gariepy’s model directly uses precipitation and temperature information to
calculate daily solar radiation with no need to fit any parameters by regression. As stated,
all models except day-of-the-year-based ones include extraterrestrial radiation as an input,
and therefore implicitly account for site latitude, solar declination and day length [4].

3.2.1. Day-of-the-Year-Based Models (DYBs)

As Figure 2 shows, daily solar radiation is a quasi-periodic yearly phenomenon [18].
Thus, these models assume that solar radiation can be readily estimated for each day of the
year. This methodology is thought to be the simplest approach, with only one parameter
required to get an estimation of the daily average solar radiation for a given location on the
earth’s surface. Despite their simplicity, the impact of local meteorological conditions that
may significantly affect the amount of radiation reaching the surface is not accounted for,
and their accuracy often decreases under cloudy conditions. Table 3 lists the five models
based on the day of the year considered in this study.

Table 3. Models based on day of the year used in this study.

Model ID Model Equations Reference

DYB1 H = a + b· cos
(

2π

364
·J + c

)
[19]

DYB2 H = a + b· sin
(

c· 2π

365
·J + d

)
+ e· cos

(
f · 2π

365
·J + g

)
[20]

DYB3 H = a + b· exp

[
−0.5·

(
J − c

d

)2
]
+ e· exp

[
−0.5·

(
J − f

g

)2
]

[21]

DYB4 H = a + b·
∣∣∣sin

[ π

365
·(J + 5)

]∣∣∣1.5
[22]

DYB5 H = a +
2
∑

n = 1
bn· cos

(
n· 2π

365
·J
)
+ cn· sin

(
n· 2π

365
·J
)

[23]

3.2.2. Sunshine-Based Models (SBMs)

As shown in Figure 3, solar radiation is highly correlated with hours of sunshine. This
figure shows radiation at the earth’s surface, normalized by extraterrestrial radiation (H/Ho)
as a function of normalized sunshine hours and S/So for an arbitrary location in the region of
interest. The significant correlation between the variables suggests that under unfavorable
meteorological conditions (for example, high humidity or a cloudy day) associated with
low values of S/So, the amount of radiative energy arriving at the earth’s surface decreases.
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AIRPORT station (S04) for the period 2000 to 2018.

Solar radiation calculation models based on the S/So ratio exploit this relatively strong
correlation and are among the most popular, along with those based on temperature [24].
The Angstrom-Prescott model [25] is one of the simplest and most widely used methods.
This model is a modification of the Angstrom model [26] in which the use of clear sky
radiation is replaced by extraterrestrial radiation. Several authors have modified the basic
linear form of this model by extending it with higher order polynomial terms and also
exponential and logarithmic forms.

The main drawback of this type of model (see the list of those considered in this study
in Table 4) is the need to know the length of the solar day, the measurement of which
requires specific equipment not available at all weather stations.

Table 4. Sunshine-based models used in this study.

Model ID Model Equations Reference

SBM1
H
Ho

= a + b· S
So

[25]

SBM2
H
Ho

= a + b· S
So

+ c·
(

S
So

)2

[27]

SBM3
H
Ho

= a + b· S
So

+ c·
(

S
So

)2
+ d·

(
S
So

)3

[28]

SBM4
H
Ho

= exp (a) ·
(

S
So

)b

[29]

SBM5
H
Ho

= a + b· log
(

S
So

)
[30]

3.2.3. Cloud-Based Models (CBMs)

As discussed above, the number of daily hours of sunshine is a meteorological parame-
ter that is highly correlated with total daily solar irradiance. When insolation measurements
are not available, CBMs estimate the solar radiation using the cloud cover. The total cloud
cover index is often estimated by eye and reported in octas, with 0 corresponding to clear
sky and 8 to overcast conditions [31]. Ahamed et al. [13] presented a comprehensive review
of cloud-cover-based models and analyzed the hourly variation of solar radiation. Table 5
shows the cloud-cover-based models considered in this study.
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Table 5. Cloud-cover-based models used in this study.

Model ID Model Equations References

CBM1 H
Ho

= a + b·CC [32]

CBM2
H
Ho

= a + b·CC + c·(CC)2 [32,33]

CBM3
H
Ho

= a + b·CC + c·(CC)2 + d·(CC)3 [32]

3.2.4. Temperature-Based Models (TBMs)

Temperature-based models use maximum and minimum daily temperatures to esti-
mate the daily solar radiation for a specific site. This type of methodology assumes that
temperature difference can be used as a proxy for cloudiness [34]. Clear skies increase
maximum temperature due to higher shortwave radiation, and the temperature minimum is
lower due to higher transmissivity [35]. Thus, clear skies indicate higher temperature differ-
ences, while cloudy skies imply lower values for temperature changes. Notably, variations
in temperature are also affected by many other factors than cloudiness, such as precipitation,
wind velocity, elevation, soil evaporation, etc. Therefore, this type of method can exhibit
significant levels of uncertainty and prediction error [34]. Recently, Qiu et al. [36] presented
an extensive review of 82 models for computing daily solar radiation based solely on tem-
perature data, along with 4 new proposed models. Their results were found to provide
reasonable accuracy when used in different geographical zones across China. Mohammadi
and Moazenzadeh [37] analyzed daily solar radiation estimates from 13 Peruvian meteoro-
logical stations using 7 empirical temperature-based models and proposed a new model
for the stations using precipitation and relative humidity as additional variables. These
models were developed on the basis of multiple linear regression analysis. They found that
the empirical temperature-based models usually overestimate solar radiation at most of the
stations. In the present study, the TBMs considered are listed in Table 6.

Table 6. Temperature-based models used in this study.

Model ID Model Equations Reference

TBM1
H
Ho

= a
√
(Tmax − Tmin) [38]

TBM2 H = a
√
(Tmax − Tmin)·Ho + b [39]

TBM3
H
Ho

= a·Tmax + b·Tmin + c [40]

TBM4 H = (a·Tmax + b·Tmin)·Ho + c [41]

TBM5
H
Ho

= a·
(
1− exp

(
−b·(Tmax − Tmin)

c))
[42]

3.2.5. Other Meteorological-Parameter-Based Models (OPMs)

Unlike the previous models, which are based on a single meteorological parameter, the
five methods in Table 7 combine several parameters in an attempt to improve the prediction
of solar radiation. The two first models (OPM1 and OPM2) combine daily sunshine hour
duration and relative humidity data. Methods OPM3 and OPM5 use daily sunshine hour
duration along with mean daily temperature. OPM3 also combines relative humidity
to estimate the atmospheric precipitable water vapor per unit volume of air using the
expression presented by [43]. OPM5 is a modification of the Angström-Prescott model [25]
that adds data on mean temperature and precipitation. OPM4 uses only the maximum and
minimum daily temperature and precipitation.
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Table 7. Other meteorological-parameter-based models used in this study.

Model ID Model Equations References

OPM1
H
Ho

= a·
(

S
So

)b
·RHc [44]

OPM2
H
Ho

= a + b· S
So

+ c·RH [44]

OPM3

H
Ho

= a + b· S
So

+ c·W

W = 0.0049·RH ∗
(

exp(26.23− 5416/Tmean)

Tmean

) [43,45]

OPM4 H = a·Ho(Tmax − Tmin)
0.5 + b·Tmax + c ∗ PPT + d·PPT2 + e [39]

OPM5

H
Ho

= a + b· S
So

a = 0.3791− 0.0041·Tmean − 0.0176·PPT
b = 0.4810 + 0.0043·Tmean − 0.0097·PPT

(PPT in cm)

[17]

3.3. Statistical Performance Validation

To assess the performance of the models in Tables 3–7 on the dataset described in
Section 2.1, we used up to nine statistical quantitative indicators. It should be noted that to
ensure independent validation of the models, they were fitted using meteorological data
from 2000 to 2018 and then tested with measurements taken between 2019 and 2022. The
quantitative indicators used were:

1. Mean absolute error or MAE (MJ m−2 day−1) is a statistical indicator used to deter-
mine how close the calculated values are to the measurements. It is the sum of the
absolute value of the differences between the measured values and the calculated
values, divided by the number of measures. Performance increases as this metric
tends toward zero.

MAE =
1
n

n

∑
i = 1
|Hm,i − Hc,i| (6)

2. Root mean square error or RMSE (MJ m−2 day−1) is often used in the literature,
although some authors have expressed concerns about its suitability for this type of
analysis given the large impact that a small set of large-discrepancy measurements
can have on this metric, which uses the square of the difference between observed
and predicted values [46].

RMSE =

√
1
n

n

∑
i = 1

(Hm,i − Hc,i)
2 (7)

3. The mean absolute relative error or MARE is calculated as the sum of the absolute value
of the relative differences between the measured and calculated data. Some authors
express it as a percentage. The lower this value is, the better the model performance.

MARE =
1
n

n

∑
i = 1

∣∣∣∣Hm,i − Hc,i

Hm,i

∣∣∣∣ (8)

4. Uncertainty at 95% or U95 puts the emphasis on model deviation. For the standard
normal distribution, a value of 1.96 implies that there is a 95% probability that a
standard normal variable will fall between −1.96 and 1.96 [47]. SD is the standard
deviation of the difference between calculated and measured solar radiation data.
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U95 = 1.96·
√

SD2 + RMSE2 (9)

5. Root mean squared relative error or RMSRE is often preferred over the RMSE, al-
though it is more sensitive to very low observation values [48]. This metric score
decreases as model performance improves.

RMSRE =

√√√√ 1
n

n

∑
i = 1

(
Hm,i − Hc,i

Hm,i

)2
(10)

6. Relative root mean squared error or RMSE. According to Li et al. [40] and Despo-
tovic et al. [12], the model can be considered excellent if RRMSE < 10%, good for
10% < RRMSE < 20%, weak for 20% < RRMSE < 30% and poor if RRMSE > 30%.

RRMSE =

√
1
n ∑n

i = 1(Hm,i − Hc,i)
2

∑n
i = 1 Hm,i

·100 (11)

7. Mean bias error or MBE is used to quantify the tendency of the model to overestimate
or underestimate the measured values. This indicator may not be an appropriate
metric when simultaneously overestimated and underestimated values can cancel
each other out.

MBE =
1
n

n

∑
i = 1

(Hm,i − Hc,i) (12)

8. The coefficient of determination or R2 is frequently used in statistics to estimate how
well model predictions capture trends in the observed data. Bounded between 0 and 1,
the larger the value of R2 the better the model performance.

R2 = 1− ∑n
i = 1(Hm,i − Hc,i)

2

∑n
i = 1(Hm,i − Hm)

2 (13)

9. The maximum absolute relative error or errMAX uses the largest relative difference
between predicted and observed values.

errMax = max
(∣∣∣∣Hm,i − Hc,i

Hm,i

∣∣∣∣) (14)

Each of the indicators listed above can measure different aspects of the similarity
between modeled and observed data. For this reason, it may be difficult to rank the
different models using each of the indicators separately [8]. To ameliorate the limitations
of model assessment based on individual scores, Behar et al. [47] defined the Global
Performance Indicator (GPI), which Despotovic et al. [12] later modified and expressed as

GPIi =
m

∑
j = 1

αj·
(
ỹj − yij

)
(15)

where αj is equal to 1 for all indicators except for R2, for which it takes the value of −1, yj
is the median of scaled values of indicator j, and yij is the scaled value of indicator j for
model i. The higher the value of GPI, the better the model performance in predicting daily
terrestrial solar radiation.

4. Results and Discussion

Figure 4 schematically shows the methodology of the present study. The fitting pa-
rameters of the 23 models selected in this study were adjusted to obtain the best prediction
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of daily solar radiation in the Mediterranean area of the Iberian Peninsula using daily
meteorological data obtained between 2000 and 2018 from 16 measurement stations. The
entire dataset for all the stations was used to determine each model regression coefficient.
Separate fits for each station were not considered.
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Table 8 shows the results for each model. Predictive accuracy is similar to that reported
in the literature [4,12].

Table 8. Regression coefficients for each of the models tested.

Model ID Model Equations a b c d e f g

SBM1
H
Ho

= a + b· S
So

0.283 0.457

SBM2
H
Ho

= a + b· S
So

+ c·
(

S
So

)2
0.233 0.714 −0.238

SBM3
H
Ho

= a+ b· S
So

+ c·
(

S
So

)2

+ d·
(

S
So

)3
0.223 0.829 −0.508 0.173

SBM4
H
Ho

= exp (a) ·
(

S
So

)b
−0.378 0.333

SBM5
H
Ho

= a + b· log
(

S
So

)
0.670 0.147

TBM1
H
Ho

= a
√
(Tmax − Tmin) 0.182

TBM2 H = a
√
(Tmax − Tmin)·Ho + b 0.174 0.986

TBM3
H
Ho

= a·Tmax + b·Tmin + c 0.019 −0.015 0.339

TBM4 H = (a·Tmax + b·Tmin)·Ho + c 0.026 −0.013 4.14

TBM5
H
Ho

= a·
(
1− exp

(
−b·(Tmax − Tmin)

c)) 0.673 0.220 0.990

DYB1 H = a + b· cos
(

2π

364
·J + c

)
16.60 −8.970 0.159

DYB2
H = a + b· sin

(
c· 2π

365
·J + d

)
+e· cos

(
f · 2π

365
·J + g

) 16.08 −9.259 −0.95 −5.03 0.21 −11.03 7.88
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Table 8. Cont.

Model ID Model Equations a b c d e f g

DYB3
H = a + b· exp

[
−0.5·

(
J − c

d

)2
]

+e· exp

[
−0.5·

(
J − f

g

)2
] 31.16 −140.20 164.15 164.06 134.50 165.93 −131.34

DYB4 H = a + b·
∣∣∣sin

[ π

365
·(J + 5)

]∣∣∣1.5
6.16 18.69

DYB5
H = a +

2
∑

n = 1
bn· cos

(
n· 2π

365
·J
)
+

cn· sin
(

n· 2π

365
·J
) 16.57 −8.862 1.509 −0.356 0.503

CBM1
H
Ho

= a + b·CC 0.724 −0.042

CBM2
H
Ho

= a + b·CC + c·(CC)2 0.675 0.00305 −0.00621

CBM3
H
Ho

= a + b·CC + c·(CC)2

+d·(CC)3
0.673 0.00751 −0.00777 0.00014

OPM1
H
Ho

= a·
(

S
So

)b
·RHc 1.007 0.324 −0.094

OPM2
H
Ho

= a + b· S
So

+ c·RH 0.321 0.445 −0.00046

OPM3
H
Ho

= a + b· S
So

+ c·W 0.285 0.453 −0.00032

OPM4 H = a·Ho(Tmax − Tmin)
0.5

+b·Tmax + c ∗ PPT + d·PPT2 + e
0.148 0.184 −0.290 0.002 −0.694

OPM5
H
Ho

= a + b· S
So

Parameters do not need to be adjusted and are a function of Tmean and PPT

The coefficients obtained for each model cannot be compared directly with those
existing in the literature, since most authors adjust the models to a specific geographical
area that does not coincide with the one studied in this study. However, a comparison has
been made between the values obtained by other authors and those found in this study.
For some of the models based on sunshine hours, Besharat et al. [4] collected values of
the coefficients obtained for different worldwide geographical locations. For example, for
the Angstrom-Prescott model (SBM1), these authors report 36 results, of which 2 present
negative values of the coefficient a that do not conform to those obtained by the majority of
authors. For the rest of the cases analyzed, the values of coefficient a are between 0.133 and
0.367, with a mean value of 0.256, while the values of coefficient b are between 0.311 and
0.696, with a mean value of 0.495. The mean values for this model are very close to those
obtained in our study (a = 0.283 and b = 0.457). These results are also in good agreement
with those reported by Page [49], who claimed the model to be usable anywhere in the
world with regression coefficients a = 0.23 and b = 0.48. For the other models studied, it
has been found that the value of the regression coefficients calculated in this study is of the
same order of magnitude as that observed in most of the literature consulted.

Each model and their respective parameters in Table 8 was used to predict the daily
solar radiation for the years 2019 to 2022. Table 9 shows, for each model, all the performance
scores computed using the predicted and measured values of daily solar radiation. The most
accurate scores are highlighted in bold type. Smaller values of each score are associated
with improved predictive capabilities, except for R2 and GPI. A value of 0 for the coefficient
of determination (R2) indicates no linear relationship between the predicted and observed
values, while a value of 1 corresponds to a perfect linear relationship. Regarding the upper
unbounded Global Performance Indicator (GPI), the higher the GPI the better the model’s
predictive capabilities.
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Table 9. Statistical indicators for the empirical models. The most accurate scores are highlighted in
bold type.

MAE RMSE MARE U95 MRSRE RRMSE MBE R2 errMax GPI

SBM1 1.23 2.32 0.101 6.42 0.268 13.78 0.050 0.909 6.264 4.814

SBM2 1.20 2.31 0.093 6.40 0.260 13.75 0.120 0.909 5.061 5.002

SBM3 1.19 2.31 0.092 6.39 0.259 13.73 0.110 0.910 4.827 5.048

SBM4 1.46 2.40 0.108 6.62 0.258 14.30 0.369 0.902 3.393 4.673

SBM5 1.70 2.61 0.134 7.22 0.293 15.54 0.287 0.884 3.737 3.822

TBM1 3.01 3.98 0.226 10.97 0.399 23.68 0.568 0.731 13.410 −1.752

TBM2 2.97 3.94 0.233 10.93 0.422 23.50 2.64 × 10−1 0.735 13.620 −1.722

TBM3 2.74 3.62 0.224 10.03 0.421 21.59 0.304 0.776 13.734 −0.827

TBM4 2.88 3.83 0.232 10.61 0.425 22.80 1.28 × 10−1 0.751 13.584 −1.353

TBM5 2.80 3.69 0.223 10.17 0.419 21.97 0.548 0.769 13.991 −1.080

DYB1 3.13 3.99 0.261 11.01 0.489 23.73 5.10 × 10−1 0.729 14.093 −2.437

DYB2 3.13 4.00 0.261 11.05 0.489 23.82 5.14 × 10−1 0.728 14.123 −2.478

DYB3 3.15 4.03 0.264 11.12 0.495 23.95 0.478 0.724 13.922 −2.556

DYB4 3.20 4.07 0.267 11.24 0.492 24.23 5.34 × 10−1 0.718 15.072 −2.813

DYB5 3.12 4.00 0.260 11.05 0.490 23.80 4.79 × 10−1 0.728 14.583 −2.494

CBM1 1.90 2.87 0.157 8.19 0.335 19.58 0.385 0.841 11.011 1.821

CBM2 1.86 2.85 0.149 8.10 0.318 19.42 0.472 0.844 10.910 2.000

CBM3 1.86 2.85 0.149 8.10 0.318 19.42 0.470 0.844 10.872 2.000

OPM1 1.30 2.28 0.097 6.50 0.245 15.48 0.297 0.899 3.365 4.855

OPM2 1.12 2.22 0.092 6.36 0.258 15.06 0.043 0.904 6.263 4.881

OPM3 1.13 2.22 0.093 6.37 0.259 15.10 0.061 0.904 6.293 4.847

OPM4 2.83 3.77 0.220 10.46 0.386 22.48 1.80 × 10−1 0.758 7.444 −0.479

OPM5 2.84 3.65 0.209 8.86 0.356 21.73 −2.486 0.774 4.792 1.348

Although, as shown in Figure 3, the relationship between solar radiation and the
fraction of sunshine hours has been found to be non-linear [50], the performance score
results suggest that the linear Angstrom-Prescott model (SBM1) provides reasonably
good estimates, as do the rest of the SBMs. Regarding MAE, RMSE and U95, the best
model for this geographical region is OPM2, with values of MAE = 1.12 MJ·m−2·day−1,
RMSE = 2.22 MJ·m−2·day−1 and U95 = 6.36 MJ·m−2·day−1. This model is an Angstrom-
Prescott model with an additional parameter accounting for relative humidity. The models
OPM2 and SBM3 are the best according to the values of the mean absolute relative error
(MARE = 0.092) but are very close to OPM3 and SBM2 (MARE = 0.093). The smallest root
mean squared relative error (RMSRE = 0.245) and the maximum absolute relative error
(errMax = 3.365) correspond to OPM1, a model that also uses daily sunshine hours and
relative humidity as input parameters. The third order equation based on daily sunshine
hours (SBM3) is considered the best regarding RRMSE (13.73%) and R2 (0.91). The only sta-
tistical indicator that points to a model not based on sunshine hours is the mean bias error.
In this case, the model with an MBE close to zero is TBM4 (MBE = 0.128 MJ·m−2·day−1).
Several models might seem to offer good predictions of solar radiation given the near-zero
values of this metric, but this statistical parameter does not allow discriminating between
small deviations and large deviations of similar magnitude but opposite sign.

The value of the GPI also indicates that sunshine-based models perform best for values
ranging between 3.82 and 5.04. Good performance is also found for OPM1, OPM2 and
OPM3. While OPM2 and OPM3 are modified versions of the Angstrom-Prescott model
that include relative humidity and atmospheric precipitable water per unit volume of air,
respectively, the OPM1 model uses the fraction of sunshine hours and relative humidity.
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This suggests that adding other meteorological variables to the models based on sunshine
hours has a limited impact on model performance. Cloud-cover-based models perform
slightly worse than SBMs, but still offer better predictions than the rest of the methods
considered in this study. As previously reported [51], the models based on temperature
(TBMs) and day of the year (DYBs) are found to be less accurate. The GPI values for this
type of models are all negative, since for all statistical indicators it was found that their
performance is worse than the median of the rest of the models. Among these, the present
results found TBM3 [40] to be the best-performing temperature-based model. The models
based on the day of the year (DYBs), with no input from local meteorology, exhibit the
overall worst performance.

Despite differences between scores among all models considered in this study, the
overall differences between them are relatively narrow. For instance, the R2 score ranges
between 0.72 and 0.91, suggesting that even the worst-performing model can provide
reasonably good estimates of solar radiation depending on the trade-off between accuracy
and data availability of the specific application.

To investigate model performance for each data collection site, we determined the GPI
score for each meteorological station. The results in Figure 5 confirm that when analyzed
separately, SBMs offer the best predictive capabilities, with the Angstrom-Prescott model
(SBM1) offering the best predictions.
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5. Conclusions

Solar energy is a clean, renewable energy source that offers a sustainable alternative to
the use of fossil fuels. Knowing the amount of solar radiation available in each geographical
area is important for the design of solar energy production systems. Empirical models are
the most widely used methods for obtaining such estimates of the solar radiation available
at the earth’s surface.

In this article, we focus on the area located on the Mediterranean slope of the Iberian
Peninsula and the Balearic Islands. The accuracy of 23 different models for predicting daily
solar radiation was analyzed. Depending on the variables used in the models, these were
grouped into five different types, namely: (1) day of the year, (2) hours of sunshine, (3) cloudi-
ness, (4) temperature and (5) other meteorological parameters. Based on meteorological
data measured at 16 different sites between the years 2000 and 2018, the coefficients of each
model were fitted by regression. The data set used to fit the models included all stations
simultaneously to obtain unique coefficients for the entire geographical region of interest. The
adjusted coefficients obtained were used to calculate daily solar radiation for the years 2019 to
2022. The predictive ability of each model was estimated using several scores quantifying the
differences between the observed and predicted values. The Global Performance Indicator
(GPI) was used to rank the models according to overall accuracy.



Energies 2023, 16, 2560 15 of 18

The models based on sunshine hours were found to be the most accurate, both when
all stations were considered together and individually. In the latter case, we found that the
classical Angstrom-Prescott model offers the best accuracy. The results suggest that adding
other meteorological parameters such as relative humidity or precipitation to the models
based on sunshine hours does not notably improve their performance. The OPM1, OPM2
and OPM3 models exhibit similar performance to those found for sunshine hour models.
The models based on cloudiness offer slightly lower accuracy than those based on sunshine
hours, with R2 values around 0.85. The models based on temperature and day of the year
exhibit the worst performance.

The analysis suggests that, when sunshine hour data are not available, cloudiness-based
models should be used. In cases where cloudiness data are not available, models based on
temperature or day of the year could be an alternative that would provide an acceptable
estimate of solar radiation. Although not all the models available in the literature have been
reviewed, the considered sample includes some of the most popular models that have been
found to offer reasonably good predictions of daily solar radiation in the studied area.

The use of artificial intelligence and machine learning is an aspect to be considered
in future research. The availability of massive data sets on meteorological conditions
(cloudiness, temperature, relative humidity) for a large number of locations opens the
possibility of using machine learning and artificial intelligence techniques to develop
new modelling tools for the prediction of local radiative energy. Moazenzadeh et al. [52]
compared different Support Vector Machine (SVM) algorithms for predicting daily solar
radiation at seven meteorological stations in Iran. Almizamir et al. [53] conducted a
comparative study of different machine learning models for solar radiation estimation in
two geographical areas: the United States and Turkey. Geshnigan et al. [54] used 7 different
artificial intelligence approaches for estimating daily solar radiation at 11 meteorological
stations in Illinois (USA). Satellite measurements have also been used to derive new data-
driven models for predicting local surface radiative energy flux. Mohammadi et al. [55]
used ERA-Interim (ECMWF) datasets in the three geographical locations in Iran with
promising results in terms of predictive accuracy.

Regarding our ongoing and future efforts, we want to take a step further and try
to replace both the empirical and the standard ML-based approaches with interpretable
closed-form mathematical models. To obtain them, we will feed massive datasets of daily
solar radiation measurements into a “machine scientist” [56] tool to obtain models capable
of capturing the physics of the problem without resorting to empirical approximations of
limited generalization.
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Nomenclature

a–g Model regression coefficients
CC Cloud cover index
dr The inverse of the relative distance between the sun and the earth
Gsc Solar constant (0.0820 MJ·m−2·min−1)

https://www.ecad.eu/
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H Daily global solar radiation (MJ m−2 day−1)
Hm Measured daily global solar radiation (MJ m−2 day−1)
Hc Calculated daily global solar radiation (MJ m−2 day−1)
Ho Daily extraterrestrial radiation (MJ m−2 day−1)
J Day of the year starting 1 January
KT Daily sky clearness index
PPT Accumulated precipitation (mm)
R2 Coefficient of determination
RH Relative humidity
S Daily sunshine duration (h)
So Maximum possible daily sunshine duration (h)
Tmax Daily maximum temperature
Tmin Daily minimum temperature
Tmean Daily mean temperature
U95 Uncertainty at 95% (MJ m−2 day−1)
W Atmospheric precipitable water per unit volume of air
ws Sunset hour angle (rad)
Greek Symbols
δ Solar declination (rad)
ϕ Latitude (rad)
Acronyms
ECMWF European Centre for Medium-Range Weather Forecasts
errMAX Maximum absolute relative error (MJ m−2 day−1)
GPI Global Performance Indicator
MAE Mean absolute error (MJ m−2 day−1)
MARE Mean absolute relative error
MBE Mean bias error. (MJ m−2 day−1)
RMSE Root mean square error (MJ m−2 day−1)
RMSRE Root mean squared relative error
RRMSE Relative root mean squared error (%)
SD Standard deviation
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