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Abstract: The highly variable power generated from a battery energy storage system (BESS)–
photovoltaic distributed generation (PVDG) causes harmonic distortions in distribution systems
(DSs) due to the intermittent nature of solar energy and high voltage rises or falls in the BESS.
Harmonic distortions are major concerns in the DS, especially when the sizes and locations of these
resources are sub-optimal. As a result, many studies are being performed on the optimal allocation of
BESS/PVDG systems in distribution network systems. In this regard, this paper seeks to review the
existing planning models, optimization methods and renewable energy resources that uncertainty
models have employed in solving BESS/PVDGs allocation problems in terms of obtaining optimal
solutions/allocations and curtailing the harmonic contents of the DSs. However, studies on optimal
allocation planning of BESS/PVDGs have achieved minimum cost but were not able to meet the
standard harmonic level of the DSs. The results identified GA, PSO and AIS as some of the most used
methodologies while LP, MILP and different configurations of NLP were used in the model formula-
tions of BESS/PVDGs problems. The results also revealed DC-link voltage and switching and grid
voltage harmonics as the notable causes and sources of harmonic distortions in BESS/PVDG systems.
The current allocation models presented in the recent literature for the planning of BESS/PVDGs do
not include the variables necessary for curtailing the harmonic contents in their planning formula-
tions. This paper, therefore, recommends an improved and all-encompassing planning model with an
efficient intelligent search algorithm capable of obtaining a global optimum solution and curtailing
harmonic distortions from the BESS/PVDG-connected DSs.

Keywords: photovoltaic distributed generation; battery energy storage system; distribution network
system; optimization methodologies; harmonic distortions

1. Introduction

The rapid expansion in socioeconomics has led to increasing global energy demand
and usage. To balance the resulting widening energy deficiency, renewable energy dis-
tributed generation (REDG) is considered as an effective approach to solve the rising energy
demand and other power system issues that are technical, economic and environmental in
nature [1–3]. REDGs are generation technologies integrated at distribution networks near
load users to satisfy immediate power demand, defer network upgrade, enhance power
quality and reliability, diversify energy resources, and to reduce power losses, distribu-
tion and transmission loading, distribution and transmission costs and on-peak operating
costs [4].

The battery energy storage system–photovoltaic DG (BESS/PVDG) is a viable re-
newable option because the resources are inexhaustible, complementary, economically
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profitable, environmentally friendly and bi-directional [5–8]. However, the power gen-
erated from BESS/PVDG depends on charge and discharge schedules of BESS, which is
associated with high voltage rise or fall, and temperature and irradiation of solar energy
that is intermittent in nature [6,9–11]. Hence, a substantial number of research studies have
unanimously agreed/concurred that harmonics occur in the distribution system when
BESS/PVDG units are absorbed due to the intermittent and variable nature of PVDG
output power and the high variability of voltage and frequency of BESS schedules. In
essence, current harmonics occur as a result of sudden disparity between the aggregate
output power of BESS/PVDGs and other generations and the total power demand at an
instant in a distribution system. The high rises and falls of the voltage and frequency from
battery charge/discharge schedules may result in voltage harmonics [11].

The harmonic distortions are a troubling power quality issue for BESS/PVDG power
generation, and they have significant consequences on the DNs. The extent of current har-
monics is determined by the active output power from BESS/PVDGs. Thus, the magnitudes
of current harmonics are enormous at utility-scale BESS/PVDGs penetration levels. The in-
termittency of PVDG units and the high voltage rise or fall from BESS/PVDG raise concerns
on distribution system harmonic distortions, which have negative effects on power quality,
stability and reliability of distribution systems [6,12,13]. The high harmonic contents in the
power system lead to increased losses in system elements such as transformers and generat-
ing plants; economic costs such as productivity, energy and device/equipment losses; and
fire hazards due to overheating of system elements [7,14,15]. The issues mentioned make
the integration of a large-scale BESS/PVDG into the distribution systems difficult [6,15,16].
Meanwhile, the locations and sizes of BESS/PVDG units could either improve or impair the
magnitudes current and voltage harmonic levels of the networks [17–19]. The mentioned
issues make the solution of BESS/PVDG allocation problems formulated using simple
mathematical models unrealistic. A realistic model, therefore, requires a dynamic model
representation of the network, the use of multi-period planning horizon as well as all the
necessary constraints. The problem then becomes a multi-objective one with a maximi-
sation of renewable active and reactive powers into the DNs and a minimisation of the
total cost subject to the capacity, investment, technical, stability and harmonic constraints
throughout the planning horizon.

Several studies have been performed to proffer optimal solutions for the planning
allocation of BESS/PVDG in distribution systems [11,13,16,20–23]. The studies on op-
timal planning of REDG allocation warrant detailed investigations on the prospects of
BESS/PVDGs for generating power, the impact on the DNs, and the effects on the in-
adequate availability and rising cost of energy, the global economy and environment.
Various researchers have reviewed some aspects of the BESS/PVDG allocation planning
(BESS/PVDGs-AP) problem. Many solution algorithms, planning models, and emerging
technologies deployed in BESS/PVDG-AP have been presented [24–28]. Zahraee et al. [24]
presented an analysis of some artificial intelligence optimum plans used in the optimization
and sizing of hybrid renewable energy systems. The main contribution of this work is
the extensive penetration of renewable energy features for economic performance of the
systems. The authors in [25] dealt with the review of some solutions that were used to
improve the ability of the distribution system to cope with variable renewable energy
source unpredictability such as energy storage technologies, PV and wind energy systems.
This study concluded that battery energy storage and pump hydro energy storage are
the most used technologies to improve the impact of the variable renewable power on
distribution systems. A review presented by Hannan et al. [26] on the planning of BESS and
renewable energy hybrid DGs discussed the optimal sizing objectives, various optimization
models, the BESS system constraints together with their advantages and weaknesses. A
detailed discussion of the BESS applications and shortage of optimal BESS sizing models
could be identified as the strong point of this study. In [27], a review of the latest research
developments and challenges on optimal planning of a BESS-PVDG connected distribution
system was presented. The authors suggested key parameters in the process of optimal
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planning for a PV–battery system such as economic and technical data, objective functions,
energy management schemes, design constraints, optimization algorithms, and electricity
pricing regimes.

In view of the contribution of the existing review works on the BESS/PVDGs-AP
problem, this study is distinct in these ways:

• Based on the authors’ awareness, no literature has presented the evaluation of harmonic
components of BESS/PVDGs during integration into distribution networks/systems.

• Unlike the existing reviews, this review presents an overview of harmonic distortions
in battery energy storage–photovoltaic hybrid distributed generation systems.

• This study provides a methodology for curtailing harmonic distortions from the
BESS/PVDGs-connected distribution systems.

• Moreover, a substantial and diverse number of optimization/solution algorithms
deployed in solving the BESS/PVDGs allocation problem is surveyed, comparing
all their characteristics to assist the researchers to utilize them successfully and in a
cost-effective way.

Despite numerous reviews and studies on BESS/PVDGs, some aspects have not been
adequately captured for investigation, review and research. These themes, bulleted above,
are comprehensively treated in this paper.

The remaining parts of this paper are organized as follows: Section 2 presents the
overview of harmonic components in the BESS/PVDG connected distribution networks.
Section 3 details a review of various optimization models and techniques published in
the existing research works and some promising algorithms that are recently introduced
and used for solving BESS/PVDG allocation optimization problems. The methodological
approach for curtailing the harmonic distortions in a BESS/PVDG connected distribution
system is presented in Section 4. The characteristics of all the models and techniques are
compared, and their shortcomings are discussed under Results and Discussion in Section 5,
to assist the researchers in choosing and applying them successfully and in a cost-effective
way. Section 6 is the concluding part of the paper, and the recommendations for future
research directions are also presented here.

2. Overview of Harmonic Components in BESS/PVDG Systems

Power system harmonic distortion is a major issue for power utilities throughout
the world. In recent times, statistical analysis reports have revealed that power system
harmonics has become a very troubling power quality issue in BESS/PVDG systems. These
harmonics have resonating impacts in generating other power quality problems in large-
scale BESS/PVDG [7,15,29–31]. The sources of harmonics produced in BESS/PVDGs are
broadly classified into DC-link voltage harmonics, switching harmonics and grid voltage
harmonics [7,32].

2.1. DC-Link Voltage Harmonics

The DC-link voltage ripples have become a major source of harmonics produced
by BESS/PVDGs [32]. The DC-link voltage harmonics are generated by PVDGs due to
solar irradiation intermittency and the high rises or falls of BESS voltage. Du et al. [32]
illustrated this phenomenon with the experimental setup simulated in MATLAB Simulink.
The experimental results in Figure 1 show that the harmonic distortion increases as DC-
link voltage increases. However, these harmonics are usually taken as constant in the
analyses and designs of BESS/PVDG inverters. They are not always so in the practical
sense. This accounts for the odd harmonic frequencies discovered in the spectrum of
BESS/PVDG inverter’s output current [33]. In addition, Mansor et al. [34] investigated
harmonic generation in three-phase BESS/PVDG inverters and found that the second-
order harmonics in the DC link produced the third-order harmonic discovered on the
AC side of the inverter. [34]. Many methods have been proposed by the researchers to
eliminate the current harmonics generated by the DC-link voltage ripple [35–39]. Some of
the proposed methods reduced the dynamic performance of the system, and many lack
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quality information on the connection between the output current harmonics and DC-link
voltage ripples [32].

Energies 2023, 16, x FOR PEER REVIEW 4 of 23 
 

 

BESS/PVDG inverter’s output current [33]. In addition, Mansor et al. [34] investigated har-
monic generation in three-phase BESS/PVDG inverters and found that the second-order 
harmonics in the DC link produced the third-order harmonic discovered on the AC side 
of the inverter. [34]. Many methods have been proposed by the researchers to eliminate 
the current harmonics generated by the DC-link voltage ripple [35–39]. Some of the pro-
posed methods reduced the dynamic performance of the system, and many lack quality 
information on the connection between the output current harmonics and DC-link voltage 
ripples [32]. 

 
Figure 1. Impact of BESS/PVDG DC-link voltage ripples on harmonics [32]. 

2.2. Switching Harmonics 
Switching harmonics is one other cause of current harmonics in BESS/PVDG inverter 

output. It occurs due to a mismatch in thee generation of switching pulses. The switching 
harmonics in PWM inverters always double their switching frequency [40,41]. Switching 
harmonics are very difficult to control and require an appropriate control strategy and 
optimized BESS/PVDG units; otherwise, system instabilities, harmonic generation and 
power losses ensue [32,42,43]. Various researchers have presented different methods to 
control or eliminate the switching harmonics of BESS/PVDG inverters [40,44,45]. 

Other research works maintained that the effects of quantization and resolution on 
control systems’ measuring instruments are another potent source of harmonics in 
BESS/PVDG systems [44,46]. Also listed are the inadequacies of the current controllers of 
inverters in reducing harmonic contents and the positioning of sensors and locations of 
BESS and PVDG units in the distribution networks [47–49]. The outer voltage control loop 
of a two-series control algorithm and the PLL system could be another cause of reference 
current harmonics. In addition, output current harmonics could emerge from the dead 
time for switching pulse of the BESS/PVDG inverters [32,43]. 

2.3. Grid Voltage Harmonics 
The BESS/PVDG inverter output current is produced due to the variation between 

the inverter’s AC output voltage and the distribution network voltage. The output current 
harmonics are generated from the grid voltage when the grid voltage waveform includes 
harmonic components. The field measurements and research literature revealed that the 
grid voltages consistently have harmonics in varying degrees at different locations of the 
network [7,31,42,43]. For example, Figure 2a,b show the measured individual voltage har-
monics up to the 31st order for one PVDG inverter at phase B of the grid and the combi-
nation of one PVDG and one BESS inverter for harmonics up to order 25 at phase B [31]. 
Grid voltage harmonics are usually low orders and are very difficult to annihilate by the 

Figure 1. Impact of BESS/PVDG DC-link voltage ripples on harmonics [32].

2.2. Switching Harmonics

Switching harmonics is one other cause of current harmonics in BESS/PVDG inverter
output. It occurs due to a mismatch in thee generation of switching pulses. The switching
harmonics in PWM inverters always double their switching frequency [40,41]. Switching
harmonics are very difficult to control and require an appropriate control strategy and
optimized BESS/PVDG units; otherwise, system instabilities, harmonic generation and
power losses ensue [32,42,43]. Various researchers have presented different methods to
control or eliminate the switching harmonics of BESS/PVDG inverters [40,44,45].

Other research works maintained that the effects of quantization and resolution on con-
trol systems’ measuring instruments are another potent source of harmonics in BESS/PVDG
systems [44,46]. Also listed are the inadequacies of the current controllers of inverters in
reducing harmonic contents and the positioning of sensors and locations of BESS and
PVDG units in the distribution networks [47–49]. The outer voltage control loop of a two-
series control algorithm and the PLL system could be another cause of reference current
harmonics. In addition, output current harmonics could emerge from the dead time for
switching pulse of the BESS/PVDG inverters [32,43].

2.3. Grid Voltage Harmonics

The BESS/PVDG inverter output current is produced due to the variation between
the inverter’s AC output voltage and the distribution network voltage. The output current
harmonics are generated from the grid voltage when the grid voltage waveform includes
harmonic components. The field measurements and research literature revealed that
the grid voltages consistently have harmonics in varying degrees at different locations
of the network [7,31,42,43]. For example, Figure 2a,b show the measured individual
voltage harmonics up to the 31st order for one PVDG inverter at phase B of the grid
and the combination of one PVDG and one BESS inverter for harmonics up to order 25
at phase B [31]. Grid voltage harmonics are usually low orders and are very difficult
to annihilate by the filters. Numerous methods have been presented to control current
harmonics generated from the grid voltage harmonics [50–53]. Du et al. [43] stated that the
current harmonics sourced from grid background voltage do not depend on the magnitude
of inverter output power. The grid voltage harmonics only reflect the magnitude of output
current harmonics [43].
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2.4. Harmonic Standards for Large-Scale BESS/PVDGs

Power quality is a power system requirement stipulated in all the international stan-
dards governing the grid connection of BESS/PVDG systems. Table 1 shows the IEEE
1547 and IEC 61727 standards as related to the requirements for current harmonics of the
grid-connected BESS/PVDG systems [42,54,55]. The total harmonic distortion (THD) of
generated current should not exceed 5% limit.

Table 1. Current harmonics limits by IEEE 1547 and IEC 61727 standards [54].

Harmonics Orders (IH) Corresponding to Fundamental (%)

A. Odd Harmonics

3, 5, 7, 9 Less than 4%
11, 13, 15 Less than 2%
17, 19, 21 Less than 1.5%
23, 25, 27, 29, 31, 33 Less than 0.6%
>33 Less than 0.3%

B. Even Harmonics (All) Less than 25% of various Odd harmonics

Total Harmonic Distortion (THD) Less than 5%
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During the conversion processes, the total harmonics produced by a BESS/PVDG sys-
tem are in high quantity, despite that the inverters are parallel connected and
multileveled [48,54]. This is a big issue when such inverter outputs are delivered into
the distribution network. The current magnitude of many high-power inverters together
with their harmonic contents can release large quantities of harmonics into a distribution
system. This is because the magnitudes of current harmonics is proportional to the active
output power of the BESS/PVDG system [7,31]. The loss of power in BESS/PVDG is
mostly due to harmonics produced during the BESS/PVDG power conversions. In this
sense, the proper location of BESS/PVDG units in the DN will result in network harmonic
reduction due to harmonic cancellation effects. Power losses as a result of harmonics is
seen as a very challenging issue worldwide due to technical damage and economic losses it
causes. The economic losses related to harmonics have been geometrically growing at a
high rate in recent years because of the high penetration of large-scale BESS/PVDGs into
the distribution system. Consequently, re-evaluating the existing optimization models and
algorithms used in the planning allocation of BESS/PVDGs to determine their effectiveness in
curtailing the harmonics produced by the BESS/PVDGs is important, while taking cognizance
of the huge amount of technical damage and economic losses occasioned by the harmonics.

3. Framework for Optimizing BESS/PVDGs into Distribution Networks

BESS/PVDG optimization is the methodological approach for obtaining optimal
locations, sizes and times of BESS and PVDG units and installing them in a distribution
network under network operating, investment and BESS/PVDG capacity constraints. The
sizing and placement of BESS/PVDG units is a highly constrained, complex, nonlinear,
mixed-integer and multi-objective optimization problem whose global optimum solution
is very hard to find. The optimization of hybrid BESS/PVDGs involves considering
contradicting objective functions such as maximising BESS/PVDG capacity and minimising
power quality index; complex decision variables such as DG type, size, location and time;
constraints such as network harmonic limits, DG voltage limit and power flow constraint;
and the required conditions for modelling the uncertainties, especially the intermittency of
the constituent distributed units (inaccurate mathematical model) [4,6,56]. Figure 1 provides
the framework for optimizing BESS/PVDG into the distribution networks.

3.1. Optimization Objectives

The BESS/PVDG optimization objective functions can be either a single objective or
multi-objective. The common single-objective functions used in the recent research works
are minimisation of costs, energy losses, power losses, copper losses, emissions, voltage
deviations, total harmonic distortions level (voltage and current); maximisation of benefits,
profits, revenue of distribution system, DG capacity, reliability metric; enhancement of
voltage profile, voltage stability; etc. The formulation of single-objective optimization prob-
lem can be from the perspectives of distribution system operator (DSO), the distribution
energy resources developer, etc. [2,4,6,57]. A multi-objective function optimization problem
requires the addition or combination of many single objectives that are conflicting and from
which a single solution obtained may not be able to solve all the different objectives. The
multi-objective function optimization involves simultaneous minimisation or maximisation
of decision variables to obtain a single-objective formulation.

3.2. Decision Variables for BESS/PVDG Optimization

The decision variables are the unknown design variables that are determined during
BESS/PVDG optimization procedures. The BESS/PVDG decision variables are formed
from one or an amalgamation of size, location, number of DG, DG type, generated power of
DG, installation year, real power and reactive power of DG or storage device, bus voltage
angle and bus voltage magnitude [2,4,6]. The bus voltage angle and magnitude are the
variables used for the decisions on the stability and power quality of the network.
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3.3. Constraints for BESS/PVDG Optimization

Constraints are used in DG optimization problems to impose restrictions on some
decision variables during the optimization of the objective function. Some of the commonly
applied constraints in the formulation of DG allocation problems are as grouped [2,4,57].

3.3.1. Investment Constraints

They are constraints enforced on investment variables. Investment constraints can
take on continuous, discrete or binary values. For example, the inequality constraints
imposed on budget limit, divestment and investment options.

3.3.2. Safety Constraints

These are constraints to guarantee network and people’s safety. Examples are the
inequality constraints imposed for right of way in the installation of DG units, etc.

3.3.3. Technical Constraints

These are the power generation, network power flow and reliability constraints. These
guarantee constant and continuous generation, transmission and distribution of power to
the consumers. Some of the technical constraints are:

• The equality constraints for power balance that are imposed on active and reactive
power of each network bus.

• The inequality constraints imposed on generations from DG units. e.g., DG penetration
limits, discrete sizes of DG units, DG capacity limits, DG unit’s constant power factor,
maximum number of DGs, etc.

• The inequality constraints imposed on transmission lines and other network equip-
ment/elements, e.g., transmission supply limits, transformer or line-overloading
limits, dedicated buses for DG installations, transformer or line capacity limit, etc.

• The inequality constraints imposed on the transmission of power to the consumers,
e.g., short-circuit constraints, maximum SAIDI, and radiality constraints.

3.3.4. Network Stability Constraints

Network stability constraints are imposed on the system to ensure power system
stability. They are the constraints imposed on voltage drop, bus voltage magnitude, volt-
age angle, etc. The network stability constraints are formulated based on two network
variables—voltage magnitude and voltage angle.

• The voltage magnitude constraints are imposed in the networks to ensure voltage
stability. Inappropriate voltage magnitude could lead to voltage instabilities in power
systems and cause damage to customers’ devices, equipment and apparatuses.

Vi(min) ≤ Vi ≤ Vi(max) OR ∆Vi(min) ≤ ∆Vi ≤ ∆Vi(max); i = 1, 2, . . . n. (1)

The inequality constraint presented in (1) is imposed on all the network buses to
enforce voltage stability of the network.

• The phase angle constraints are imposed on the network based on some stability
conditions to ensure dynamic stability such as small signal stability of the network.
Voltage angle limits are crucial to dynamic stability, as the voltage magnitude is related
to voltage stability of the network. Failure to maintain appropriate voltage angle
limits can cause enormous dynamic instabilities that can result in total power outage
and other serious economic losses. However, almost all the works on distributed
generation allocation expansion planning do not utilize voltage angle constraints in
the formulation models.

θmin ≤ | ∠Vi − ∠Vj | ≤ θmax; OR θmin ≤ θij ≤ θmax (2)
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This constraint (2) is imposed on all the network buses to enforce some stability
criteria.

3.3.5. Power Quality Constraints

These power quality constraints are imposed to ensure the quality of power integrated
into the distribution system. Different power quality indices such as total harmonic distor-
tion (THD), total demand distortion (TDD), displacement power factor (DPF), oscillation
power factor (OsPF) and transmission efficiency power factor (TEPF) could be used for
power quality evaluation. A single power quality index that represents these indices could
be formulated to evaluate the power quality of the distribution systems.

• The inequality constraints include voltage rise limits, voltage and current total har-
monic distortion (THD) bounds, voltage sag bounds, etc.

• The harmonic constraints can be formulated based on the most important distribu-
tion network’ constraints such as the voltage magnitude limits and voltage angle
constraints.

The voltage magnitude constraints of the system can be reformulated and extended
to impose constraints on the voltage harmonics of the distribution system during the
integration of BESS/PVDG systems.

THDv =

√
∑∞

h=2 V2
h

V1
(3)

Vh(min) ≤ Vh ≤ Vh(max) ; h = 1, . . . N (4)

Similarly, the phase angle constraints could be formulated considering some parame-
ters and assumptions that relate phase angle to active power (current) and can be extended
to distribution networks if current harmonics are expected to be curtailed.

THDI =

√
∑∞

h=2 I2
h

I1
(5)

θh(min) ≤ θh ≤ θh(max) ; h = 1, . . . N (6)

3.4. Modelling the Uncertainty of BESS/PVDGs

Modelling the uncertainties of BESS/PVDG units, including BESS and solar PV units,
and the uncertainties of loads are very important to obtaining accurate solutions for a
BESS/PVDG optimal allocation problem. The uncertain parameters that can be modelled in
the planning of an electric power system for accounting the uncertainties in the distribution
system are also presented in Figure 3. However, several previous research works place
the uncertainties of these resources into consideration in their formulation models. Some
of the uncertainties that are being considered and modelled in BESS/PVDG optimization
studies include uncertainties of solar irradiance, wind speed, PV modules, wind and solar
DG units, uncertainties of fuel, generated power, electricity market price, uncertainty of
BESS and uncertainty of loads [1,4,14].
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4. Optimization Models and Methods for BESS/PVDGs Allocation

The design and planning of battery energy storage system–photovoltaic distributed
generation system is a research area that has continued to generate a lot of interest from
many researchers, hence the large number of literature studies on the topic. The planning
problem mentioned above concerns the hybrid energy systems that have optimal patterns
and whose optimal sizes, placement/location and type of generation components/units can
be assigned with minimum costs over the lifetime of the technologies. Therefore, the planning
by the minimum net present value (NPV) of cost is called the optimal planning or optimal
allocation of all probable hybrid technologies that are in optimal transition [11,24,56,58].

There are several methods for obtaining an optimal planning solution and many real-
time, commercially available software applications for energy systems integration. In addi-
tion, various researchers have applied different optimal techniques to solve BESS/PVDG
allocation problems. Different optimization methods, such as conventional methods,
population-based intelligence search methods, some promising heuristic intelligence search
approaches and commercial software applications, have been applied by the researchers to
optimize hybrid BESS/PV distributed generation systems.

4.1. Conventional Optimization Methods

Conventional optimization methods are analytical and numerical techniques that
usually present numerical equations to resolve optimal allocation problems. The meth-
ods involve computations, mathematical and theoretical analysis. The accuracy of these
methods greatly depends on the efficacy of the model formulated. The advantages of these
methods are the ease of implementation and short computation time to obtain convergence
for the problem. However, under a complex problem, the accuracy of the solution may not
be satisfactory because of the hypotheses used in simplifying the problem. Some of the
conventional methods are discussed as [2,57–59].

4.1.1. Sensitivity Analysis Methods

Sensitivity-analysis-based methods use sensitivity indices used to optimally allocate
DG units. In these methods, the original nonlinear equations are linearized about their
starting operating points to lower the numbers of feasible solutions in the search space. The
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advantages of sensitivity analysis methods are reduced computation time, which is critical
for large practical systems, and good ability to assess the uncertainties of renewable energy
resources. Anuradha et al. [60] present a loss-voltage sensitivity index for optimizing the
renewable DG size, BESS capacities and power dispatch in distribution networks. The
objective is to simultaneously evaluate both minimum effects of network losses and voltage
variations for optimizing the DG size [60]. A hybrid of loss sensitivity analysis methods
and novel voltage stability index is applied by Murty and Kumar [61] to find optimal
sizes and locations of active and reactive power DGs. The objective is to minimise copper
losses and enhance network voltage profile. In Saini and Gidwani [62], a comprehensive
assessment of battery energy storage system installation and the placement of photovoltaic
(PV) units in a radial distribution network is performed utilizing different load models.
The objective is to minimise annual energy losses, control overvoltage and reverse power
flow problems in a distribution network. Nevertheless, the solutions obtained from the
sensitivity analysis methods solely found optimal placements of distributed generators,
but the levels of optimality of such solutions are not known [4,58].

4.1.2. Linear Programming

Linear programming (LP) is a method that uses a mathematical model with linear
mathematical relationships for optimizing the objective function(s). LP is used in power
system optimization problems to obtain optimal sizes of DG units, because it provides
precise solutions [2,56,57]. In Altintas et al. [63], the authors proposed a two-objective LP
algorithm to incorporate solar and wind renewable DGs as well as BESS into distribution
system expansion planning. The objective minimises the total cost of investment and
carbon emissions. This algorithm performed a sensitivity analysis test on the effect of
investment costs with respect to wind and solar DGs and BESS. Alturki et al. [64] presented
an LP method to obtain optimal hosting capacity of a distribution grid with the objective
to maximise the PVDG power using some fundamental variables and to minimise total
cost using some uncertain criteria. The results revealed that the computation time for the
proposed LP algorithm was very small, especially for large-scale problems. However, the
network harmonic level and stability were not considered for evaluation in these works.

4.1.3. Mixed-Integer Linear Programming

The mixed-integer linear programming (MILP) method uses a mathematical model
with linear objective function and linear constraints in which, at the minimum, one design
variable must be an integer. The implementation of MILP is difficult in large-scale problems
because it uses too much computation time. In Santos et al. [1], MILP is applied to determine
the optimal locations, sizes and timing of smart-grid technologies for minimising the net
present value of the total cost and for maximising the renewable DG integration. In
Mishra et al. [65], a chance-constrained stochastic MILP algorithm is modelled to determine
optimal investment decisions of DGs considering operational uncertainties, while an
evolutionary vertical sequencing protocol algorithm is used to further optimize the objective
function that minimises the total cost of investment and operation. Santos et al. [66]
proposed an improved model aimed at optimizing the system operation in a coordinated
way, where distributed renewable energy sources (DRES), energy storage systems (ESS)
and distribution network system reconfiguration (DNSR) are considered along with the
uncertainty of the resources. The objective function was modelled to incentivize the uptake
of DRES by considering the cost of emissions to decarbonize the power system. In Ajeigbe
et al. [67,68], the authors applied the MILP algorithm to maximise the optimal allocation of
solar, wind and biomass DGs into the distribution system by minimising the NPV of total
cost and by confining the small signal stability of the networks to a required level. All the
works reviewed here modelled uncertainties of renewable energy resources and evaluated
voltage stability of the network but were not able to evaluate the impact of BESS/RERDG
powers on the harmonic contents of the networks. Likewise, their results did not report
global optimal solutions to BESS/PVDG optimal allocation problems.
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LP and MILP suffer from a lack of flexibility. They normally require pre-conditions
such as convexity, linearity and continuity of objective functions, which are difficult to meet
in practice [2,57].

4.1.4. Nonlinear Programming

Nonlinear programming (NLP) is a mathematical programming method that uses
nonlinear objective function and solely continuous variables and constraints. The NLP
computation involves the differentials of objective functions and constraints. In solving
nonlinear problems, a search path is selected iteratively by defining the starting partial
differentials of the problem equation. This approach could be based on first-order or higher-
order methods such as the reduced gradient method [69,70] and other search methods [71,72],
Newton Raphson method [73] and successive quadratic programming [74,75] which are
used for solving DG allocation planning problems.

4.1.5. Mixed-Integer Nonlinear Programming

Mixed-integer nonlinear programming (MINLP) utilizes a mathematical model with
nonlinear objective functions and constraints and both continuous and discrete variables.
MINLP algorithms have been applied in power systems to determine the optimal sizes and
locations of DGs and BESSs. Some of the disadvantages of MINLP are long computation
time and a very large number of decision variables [2,56,57]. Salyani et al. [76] applied
MINLP in the mathematical modelling for the simultaneous optimal allocation planning
of high- and medium-voltage substations, robust medium-voltage feeder routing and re-
newable DG units. The authors used adaptive GA to find optimal locations and sizes while
the uncertainties of renewable DGs, fuel prices, electricity and demand were evaluated.
A mixed-integer nonlinear programming-model-based methodology is presented in Va-
lencia et al. [11] for the optimal location, selection, and operation of BESSs and renewable
distributed generators (DGs) in medium–low-voltage distribution systems.

4.1.6. Fuzzy Logic

The fuzzy logic (FL) method was developed in 1979 to solve power system problems.
The FL method is based on the concept of a classical set, such as the identification of a
membership function that is associated with each member as indicated by a binary number
0 and 1 [77]. The membership function dictates the resemblance level of a member in a
fuzzy subset. Some of the common membership functions are the triangular, trapezoidal,
piecewise-linear and Gaussian functions [2,57,59]. In Injeti and Kumar [78], FL is applied
to DG allocation problems, with minimisation of power losses and improvement in voltage
profiles as the objective function. Sharma et al. [79] proposed a FL controller in determining
the optimal sizes and locations of DGs in order to minimise power losses and to enhance
loadability and voltage profiles of distribution networks. However, the results from these
works did not report the optimality of their solutions, the evaluation of network stability or
harmonic contents.

The works discussed thus far on FL have not considered the impact of DGs and BESS
on the oscillatory modes and harmonic contents of the distribution networks. To achieve
practical solutions, dynamic networks must be simulated for the evaluation of distribution
system stability and harmonic contents.

4.2. Intelligence Search Methods for BESS/PV Distributed Generations

Artificial intelligence (AI) is the application of human intelligence to perform tasks
in machines [59]. AI is applied in the intelligence search methods (ISM) used in power
systems for optimal sizing and placement of DGs. Intelligence search methods are heuristics
algorithms that fasten up the processes of obtaining near-optimal solutions for complex and
large DG problems. The advantages of intelligence search methods over other conventional
methods is the simplicity of implementation and robustness. However, the accuracy and
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precision of ISMs are not reliable. They usually take much computation effort [2,56,57,80].
Some of intelligence search methods are presented below.

4.2.1. Genetic Algorithm

Genetic algorithm (GA) is an intelligence search algorithm that was introduced earlier
to solve optimization problems. GA is developed from natural selection and genetics
principles such as selection, mutation, inheritance and crossover [56,57]. In GA, a set of
selection rules is specified to allow a population to achieve a maximum state of fitness.
Then, the elements in a population are integrated into chromosomes to enable the potential
elements to achieve a better state. The first population of elements evolved through
the evolution of generations. The principle of mutation is applied to modify the chosen
element to evolve into a new population. The algorithm repeats this procedures until
an acceptable solution or the highest number of iterations is attained. [4,6,56]. Genetic
algorithms utilize continuous and discrete variables for implementation and work better at
obtaining global optimums of various functions. GAs can effectively solve poorly defined
and complex problems. GA is the most used optimization method to find optimal locations
and sizes of DGs in the literature [22,81,82]. In Liu et al. [22], the authors presented a
mixed-integer GA to obtain optimal sizes and locations of hybrid battery energy storage
and renewable energy DGs units with objective aiming to minimise system total cost, end-
user satisfaction loss caused by demand side management, and tie-line power fluctuation.
The methodology in Liu et al. effectively determined the solution of the multi-objective
optimization problem compared to others validated with it. However, neither uncertainties
of the renewable energy sources nor the voltage variability of the BESS were modelled. In
addition, the requirements for the evaluation of network stability and harmonic contents
were not included in the proposed methodology. Moreover, genetic algorithms have the
disadvantage of evaluating the repeated fitness functions that are time intensive for large
and complex problems. The various configurations of GA that are proposed to improve the
performance of the GA method in the DG allocation problems are quantum GA (QGA) [83],
adaptive genetic algorithm (AGA) [84], etc.

4.2.2. Simulated Annealing

Simulated annealing (SA) uses an iterative procedure for solving combinatory opti-
mization problems. SA employs the process of crystallization at a discrete search space of a
physical system [57]. The SA algorithm depends on the cooling criterion and uses initial
temperature (T), final temperature (Tmin) and cooling rate (β) variables. SA algorithms are
extensively proposed in the literature to allocate DG units at lower computational time.
Simulated annealing algorithms perform effectively in solving reliability-criteria-based
optimization problems [2,57]. The advantages of SA algorithms are robustness, simplicity
of implementation, and capability to provide feasible solutions to combinatorial problems.
Nevertheless, SA algorithms have large computation times without upper limits, terminate
at local minimums and lack details on the level of variation between a local minimum and
global minimum [56,85]. In Koziel et al. [86], the authors presented a feasibility-preserving
SA algorithm to obtain DN reconfiguration with the objective to minimise power loss and
improve voltage profile. This study concluded that the proposed algorithm was more
efficient than some published population-based intelligence search methods with respect
to computational cost and solution repeatability. However, the optimality of the solution
was not reported, and the harmonic contents and dynamic stability of the networks were
not evaluated in the proposed work.

4.2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) methods are developed based on the social adap-
tation of flocking bird and schooling fish. In PSO, single intersection of all dimensions
produces a particle, and these particles move randomly in a complex search space. The sys-
tem is then adjusted using a number of solutions that are randomly selected. During each
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iteration, the particles use their fitness level to assess their positions. Then, the contiguous
particles update their previous “best” position to upgrade the final solution [2,57,87]. The
advantages of PSO are robustness, simple implementation and running simultaneous com-
putations in less computation time. PSO algorithms use a couple of parameters to modify
and converge faster. PSO can also be effectively used to solve DG allocation problems with
inaccurate mathematical models. However, the initial design parameter are difficult to
define with PSO. During complex DG allocation problems, PSO may converge prematurely
and terminate at the local minimum [6,56]. In Prabpal et al. [88], the PSO technique was
applied to obtain optimal sizes and locations of multiple BESS and PVDG units with the
objective to minimise total cost, minimise the impact of large-scale penetration of BESS,
improve voltage profile and increase the stability of the power system. The results showed
that PSO and GA methods equally performed better in achieving fewer numbers of iter-
ations and quality of solutions. Shahzad et al. [23], Jamian et al. [89], Rathore et al. [90]
and Zeinalzadeh et al. [91] proposed multi-objective PSO methods for determining optimal
locations and sizes of BESSs/PVDGs to minimise power losses and improve voltage pro-
files. However, the uncertainties of the intermittent DGs and BESSs were not modelled,
and the impact of their variable output power on the dynamic stabilities and harmonic
contents of the distribution networks was not considered. Only the uncertainties related to
BESS/PVDG market scenarios were evaluated in Rathore et al. [90].

4.3. Promising Intelligence Search Methods

Promising intelligence search methods are the additional optimization algorithms
developed to effectively solve distributed generation optimization problems. Some of these
methods are as stated [2,57,59].

4.3.1. Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm was developed from the searching behaviour
of a swarm of honeybees. Khasanov et al. [16] proposed an application of hybrid teaching-
learning and artificial bee colony (TLABC) technique for determining the optimal allocation
of PV-based distributed generation and battery energy storage units in a distribution
system with the aim of minimising the total power losses. ABC algorithms are applied in
Mohandas et al. [92] and Dixit et al. [93] to find optimal DGs locations and sizes with the
objective of minimising power losses and of improving voltage stability of the network.
In Abu-Mouti and El-Hawary [94], the authors proposed an algorithm of ABC to adjust
the control inputs, iteration number and colony size in the DG allocation optimization. El-
Zonkoly and Kefayat et al. [95,96] utilized ABC algorithms to solve distribution expansion
planning problems and to obtain optimal reinforcement and commitment scheduling for
PVDG allocation. Padma Lalitha et al. [97] presented and compared the ABC and PSO
algorithms. The authors observed that the ABC algorithm outperformed PSO, having better
solutions and convergence. Notwithstanding, the works discussed here do not provide
indices to evaluate harmonic contents and dynamic stabilities of the systems.

4.3.2. Ant Colony Algorithm

The ant colony (AC) algorithm is adapted from ants’ social behaviours in searching for
the shortest route to obtain food. The AC algorithm process begins with random solutions
obtained from the ants’ random searches in their movements. Ants share information
about their movements by leaving chromosome trails behind during their movements.
Consequently, a path with trail density becomes the shorter path. This knowledge is utilized
in the optimization search to obtain feasible solutions [57]. The advantages of AC algorithms
are the ability to discover good solutions and guarantee convergence and the ability to
search among a population simultaneously and adapt to changes such as new distances.
However, AC optimization algorithms are weak in changing probability distribution,
uncertainty of convergence time, sequences of random decisions and theoretical analysis,
since they are highly experimental researches. These algorithms are variously used in
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the literature for optimal allocation of DGs [6,56]. In Gomez et al. [98], Vlachogiannis
et al. [99], Wang and Singh [100] and Amohadi and Fotuhi-Firuzabad [101], the variant of
AC and ant colony system (ACS) algorithms were presented. They found optimal sizes
of DGs, locations of DGs and re-closers in the radial DNs with an objective to use the
composite reliability index. Transient stability and reliability of the distribution systems
were evaluated to validate the proposed methods. ACS algorithms were observed to be
more satisfactory in many engineering applications. However, these works did not include
the installation of renewable DGs and could not access the impacts of integrating BESS/PV-
distributed generations on the harmonic distortion and oscillation of the networks.

4.3.3. Artificial Immune System Algorithm

The artificial immune system (AIS) algorithm is adapted from immunology, the im-
portance of the immune system and their values in the natural world [102]. The immune
system is an indispensable defence against self-approach to protect human health from
pathogens such as viruses and microbes. The procedure differentiates between self-cells
and non-self-cells. Thereafter, the immune system effects immune actions to destroy the
non-self-cells [103–105]. To apply the AIS optimization process in solving DG allocation
problems, the instructions in the search area (objective functions, design variables, con-
straints, etc.) are encrypted in an antigen population of an AIS algorithm. AIS algorithms
are proposed in Aghaebrahimi et al. [106] and Hatata et al. [107] to find the optimal lo-
cations and sizes of the DGs, with the objective to minimise the power losses of the DN
considering bus voltage limits and line current. Souza et al. [108] proposed an AIS algo-
rithm in expansion planning to allocate DG units into distribution network considering the
uncertainty of load demands.

4.4. Probable Hybrid Intelligence Search Methods

Hybrid optimization methods are a useful combination or collaboration of more
than one different intelligence search method. These approaches extract the benefits of
the component methods to obtain an optimum solution for a specific planning problem.
The allocation expansion planning of BESS/PVDGs problems is multi-objective in nature.
Hence, applying a hybrid method in their investigation begets an excellent planning
objective and a suitable alternative algorithm to solve the problems that involve better
understanding of the methods.

A summary of the various optimization techniques that are developed and applied by
the researchers for BESS/PVDGs allocation is presented in Table 2.

Table 2. Summary of optimization methods.

Optimization Method Optimized Factor Comment

Conventional Method
• Sensitivity Analysis [60–62]
• Linear Programming (LP)

[63,64]
• Mixed Integer Linear

Programming [65–68]
• Nonlinear Programming (NLP)

[69–75]
• Mixed-Integer Nonlinear

Programming (MINLP) [76]
• Fuzzy Logic [77–79]

Hybrid renewable energy sources
(solar, wind) and battery energy
storage, and cost

Using numerical equations that can be
applied to optimization problems due
to their capability to provide accurate
mathematical model formulation

Intelligence Search
• Genetic Algorithm [81–84]
• Simulated Annealing [85,86]
• Particle Swamp [87–91]
• Artificial Bee Colony [92–97]
• Artificial Immune System

[102–108]
• Ant Colony [98–101]

Hybrid renewable energy sources
(solar, wind) and battery energy
storage, and cost

Using the exhibition of intelligence in
machines to determine optimal
locations and sizes of hybrid DGs in
power system

Deterministic Approaches [59–63]
Standalone renewable energy sources
(solar, wind) with battery energy
storage, and cost

Using mathematical equations for
determining particular values when
fixed factors are set
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Table 2. Cont.

Optimization Method Optimized Factor Comment

Probabilistic Approaches [63–67,74,75]

• Efficiency of hybrid renewable
energy systems, and cost

• Uncertain parameters in power
system

Using statistical data gathering
methods for finding optimized factors

Software Based Methods [109–116]
• HOMER
• HYBRIDS, etc.

Hybrid solar/wind and or diesel
generators with battery energy storage

Using software applications that uses
input file with all necessary data

4.5. Commercial Software Applications for Allocation of (BESS/PV) Hybrid DG Systems

Several software applications have been developed and applied for the sizing of hybrid
renewable energy systems (HRESs) such as HOMER [109–111], HYBRIDS [112], HYBRID
2 [113], RET Screen [114], TRNSYS [115] and IHOA [116].

Comparatively, HOMER has a significant application in optimal sizing of HRESs
because of its capacity to quickly obtain optimal sizes of energy systems. In addition, it is
useful in investigating sensitivity analyses of some uncertainty parameters and changing
factors related to the HRESs. However, the mentioned software tools are incapacitated to
investigate major network system issues related to the integration of distributed HRESs
(DHRESs) such as harmonics and small signal and transient stabilities. A list of commer-
cially available software for the planning of HRES is presented in Table 3.

Table 3. Software applications for optimizing BESS/PVDGs.

Name of Software Optimization Input Optimized Output

HOMER

• Load command
• Resource input
• Cost details (capital, O&M,

replacement costs
• System control

• Optimize unit size(s)
• NPV and energy cost

HYBRIDS
• Wind turbine size(s) and type
• Solar size(s)
• Type and number of battery

storage

• NPV and energy cost
• Amount of green-house gases

HYBRID 2
• Resources input
• Load demand
• Cost details (O&M,

investment, components costs)

• Optimize unit size(s)
• NPV and energy cost
• Proportion of green-house

gases released.
• System payback time

RET SCREEN

• Load command
• Solar size(s)
• Climate data input
• Invention and hydrology data

input

• NPV and energy costs
• Economic capability
• Production rate
• Risk analysis
• Energy used and saved

IHOGA
• Load command
• Resources data input
• Components and economic

factors

• Improve multi-objective
optimization

• Cost of energy
• Life cycle release

TRYSYS • Climate data
• Ingrained models

• Dynamic simulation of
renewable energy resources

5. Results and Discussion

The increasing needs for energy and the resultant environmental issues arising from
fossil energy utilization have encouraged the extensive study of renewable energy tech-
nologies in place of traditional fossil fuels. Precisely, hybrid distributed generations, which
have been described as a collaboration of renewable energies and support systems, are a
significant alternative to confront the concerns over sustainability of energy demands and
environmental safety. The planning and optimization of hybrid distributed power systems
can meet the essential requirements of a geographical location in terms of availability of
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potential energy resources, area topography and various kinds of energy demands. Conse-
quently, the optimal allocation of renewable energy sources and storage systems relating to
environmentally friendly hybrid distributed systems considerably improves the technical
and economic aspects of the power supply system. The addition of storage technologies in
the allocation of distributed generations can smoothen output power and reduce REHDG
intermittent effects in the network. Including storage devices in the DGs allocation prob-
lems provides supporting services to the optimal solutions by eliminating the effects of
intermittency in the renewable sources power output. Several allocation methodologies
have been proposed to determine the best hybrid renewable energy system with respect
to the economy and technology. Determining the optimal allocation of hybrid battery
storage and PV-distributed generation systems and other hybrid renewable energy systems
is important to increase the technical and economic efficiency of the power distribution
system and to encourage the extensive use of environmentally friendly resources.

Various allocation methodologies presented in the recent literature with different
optimization algorithms are reviewed here. The GA, PSO, SA and AIS are some of the
feasible artificial intelligence algorithms used to investigate the planning and optimization
of DG allocation problems. The most important benefit of GAs are the ordered capability
to find the global optimal and the ease of achieving a local minimum when used in hybrid
system allocation. Another advantage that makes GA suitable for allocation planning
studies is code-ability because it is not accessible in other methods such as PSO. For
instance, when at most three parameters are to be coded such as in a wind/PV/BESS
system, both GA and PSO can perform effectively. However, when more than three
elements are involved, only the GA method would be more capable of obtaining optimal
solutions. Some other times, PSO has some advantages over GA, although both are very
effective in utilizing the same repeatable search approach. Moreover, employing SA in
hybrid distributed systems is not as common as GA and PSO methods, but presently,
SA is generating more research interest in some approved areas of application. The ACS
algorithms have been presented to reduce power losses and to improve power system
factors of a radial distributed system. Similar to GA, the AIS optimization algorithm
has “collection” and “transformation” operatives which improve the probability of the
algorithm to find the global optimum point.

AIS is bound to have a high application in sizing studies because it is similar to GA
and can be effective in finding the global optimum in difficult problems. However, GA
has greater application than AIS, especially in addressing a large number of parameters.
In addition, conventional methods such as LP, MILP and NLP are still being applied in
existing studies to detail the features of any physical system into a mathematical model
formulation. Often, hybrid optimization methods are applied by combining two or more
methods to take beneficial advantage of them in terms of their convergence time during the
optimization process. Hybrid methods are characterized due to their dynamic flexibility
during the allocation process. Hence, they are the most applied allocation methods.

The intermittent nature of photovoltaic and wind output power and the high voltage
rise and fall from BESS cause harmonic distortions which have a negative impact on the
power quality, reliability and stability of the distribution networks. The majority of the
current works do not include the uncertainties of the renewable and battery storage power
sources in their formulation models. They did not combine all the associated investment,
technical, safety, DG capacity, network stability, power quality and reliability constraints
in the formulation models for the DG allocation problems. In most of these works, the
minimum harmonic level and dynamic stability of the network are not constrained but
are only assumed, while the constraints for the right of way are neglected for the required
buses. All these necessary and associated constraints need to be incorporated to obtain a
practical solution from the REHDG allocation models. In essence, future research studies
should give adequate consideration to modelling of the impacts of renewable energy
intermittencies and the resulting variable output power to culminate in more feasible
solutions to BESS/PVDG optimization problems.
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In addition, the operations of hybrid DG systems are dynamic. Hence, the planning
and design of optimal sizes and placement of RERDGs should be optimized on dynamic
networks but not on static ones, as they are mostly performed in the existing planning
models. The dynamical issues such as harmonic and system instabilities are very visible
while using dynamic networks, since the real power networks are dynamic networks
whose load profile periods are estimated hourly during a dynamic planning horizon.
Future research needs to focus on the use of dynamic networks to entirely incorporate the
intrinsic characteristics of the distribution network such as the harmonic components and
dynamic stability of the network.

Moreover, the sizes and locations of battery energy storage, photovoltaic and wind
DG units in the distribution network (DN) affect the network harmonic contents by having
either positive or negative impacts on the magnitude of the current and voltage harmonics
of the networks.

6. Conclusions

This study presents a review of prior research on the optimization methodologies for
designing and planning hybrid renewable energy resource distributed generation such as
hybrid battery energy storage–photovoltaic DG and other hybrid distributed systems. This
paper reviewed more than one hundred papers published by renowned referenced journals
on battery energy storage systems and renewable energy resources as well as on robust
and efficient optimization methods for solving hybrid DG allocation planning problems.
Optimization studies, in the last decade, on DG allocation planning using conventional and
intelligence search methods have been analysed, and hybrid optimization algorithms have
been presented.

Intelligence search methods have been mostly used in the last decade due to their
capacity for shorter computation times, and because they provide better accuracy and have
better convergence than the conventional methods. In conclusion, at the beginning, this
study investigated a number of research works that have applied optimization methods to
solve renewable energy DG allocation problems, including solar, wind and battery energy
systems. Many research works use intelligence search methods, most especially GA, PSO
and AIS, to solve these allocation problems. Notwithstanding, conventional methods,
especially LP and MILP and different configurations of NLP methods are still being used in
current studies. In the case of curtailing harmonic distortions of the DNs, which indicate the
strength of this study, an optimal planning model is yet to be developed for optimal sizing,
placement and timing of renewable DGs and battery energy storage systems. Although,
in most cases, the optimal sizing and placement of BESS/REDGs may have attained a
minimum cost, the requirements for minimum harmonic levels are yet to be achieved. These
requirements are merely presumed in the existing works. Further research is required in
this regard to improve the current expansion planning model to obtain optimal allocation
of BESS and renewable energy DGs and to constrain the decision variables related to
harmonic distortions to a required level. A more comprehensive expansion planning model
together with an efficient intelligence search algorithm that has that capability to obtain a
global optimum solution is an important approach towards solving optimal BESS/PVDG
allocation problems and towards reducing harmonic components of distribution systems
during the integration of hybrid battery energy storage systems and photovoltaic DGs.
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