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Abstract: Power losses (PL) are one of the most—if not the most—vital concerns in power distribution
networks (DN). With respect to sustainability, distribution network reconfiguration (DNR) is an
effective course of action to minimize power losses. However, the optimal DNR is usually a non-
convex optimization process that necessitates the employment of powerful global optimization
methods. This paper proposes a novel hybrid metaheuristic optimization (MO) method called the
chaotic golden flower algorithm (CGFA) for PL minimization. As the name implies, the proposed
method combines the golden search method with the flower pollination algorithm to multiply their
benefits, guarantee the best solution, and reduce convergence time. The performance of the algorithm
has been evaluated under different test systems, including the IEEE 33-bus, IEEE 69-bus, and IEEE
119-bus systems and the smart city (SC) network, each of which includes distributed-generation (DG)
units and energy storage systems (ESS). In addition, the locations of tie-switches in the DN, which
used to be considered as given information in previous studies, are assumed to be variable, and
a branch-exchange adaption is included in the reconfiguration process. Furthermore, uncertainty
analysis, such as bus and/or line fault conditions, are studied, and the performance of the proposed
method is compared with other pioneering MO algorithms with minimal standard deviations ranging
from 0.0012 to 0.0101. The case study of SC is considered and the obtained simulation results show
the superiority of the algorithm in finding higher PL reduction under different scenarios, with the
lowest standard deviations ranging from 0.012 to 0.0432.

Keywords: flower pollination algorithm; golden search; hybrid algorithm; loss minimization;
network reconfiguration; radial distribution system; smart cities

1. Introduction

The three sides of a power system (PS) triangle’s distribution zone for power are
extremely important today. It is composed of generation, transmission, and distribution
because it is nearest to the end-user or customers. However, PL at the distribution stage
is more effective due to the low voltage and high currents greater than 13% of the total
power generation. Numerous solutions have been proposed to address this, such as
distributed-flexible AC transmission (D-FACTS) devices installed in a distribution network
(DN) [1], distributed-generation (DG) units [2] or capacitors [3], and distribution network
reconfiguration (DNR) [4]. In this regard, DNR, considered to be the least expensive
solution, is a process that entails changing the on and off states of switches at the various
DNs regarding demand variations in such a way that the new configuration is more suitable
and more efficient [5].
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One of the more efficient operational options is to use DGs to deliver active and
reactive power to the power network in order to maintain the voltage profile and lower the
PL. However, the reconfigurations of the DN are a big challenge for obtaining the optimal
results in minimizing the PL and maintaining the voltage profile. Radial DN are often
composed of a normally open (NO) tie switch and a normally closed (NC) sectionalizing
switch. Changing the status of these switches alters the network configuration if the
network is radial. This can lead to a new configuration for the network and to a transfer of
the demand among different feeders. The determination of the best configuration for the
specific demand of the system at each feeder can be introduced as an optimization process,
the so-called optimal reconfiguration.

On other hand, smart city (SC) development can be conceptualized as an incorporation
of technical and social applications that highlight major aspects of today’s world community,
such as mobility, smart health care, and smart PSs [6]. Smart cities in today’s global era
include the collection of abundant data and the development of sophisticated techniques
to utilize data gathered through various digital sensing devices. The sensors collect the
data from various application devices using communication networks such as the Internet,
which renders the whole SC network as an IoT-based reconfigurable network [7], as shown
in Figure 1.
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A proper plan, design, and advanced architecture are required for SC operation. Smart
transportation system issues and information and communication technology (ICT) issues
have been considered by many researchers. However, the application of the SC in real
cases has been neglected. The adoption of ICT for smart traffic management has been
discussed, while the idea of smart parking development using genetic algorithms (GAs) has
been presented [8]. The impact of physical processes and environments while designing
SC architecture has been analysed [9]. However, there are some constraints on physical
structures that need to be addressed in the designing phase of the SC.

Meanwhile, in the development of advanced and social infrastructure, PSs have
played a vital role and cannot be ignored in the SC revolution. In recent decades, the main
sources of power have been based on fossil fuels, and almost every energy sector and
every industry were dependent on them. However, with the rapid increase in demand,
the concept of renewable energy systems was introduced, where the energy sector obtains
power from different energy sources, such as batteries [10], photovoltaic (PV) systems [11],
and wind [12]. The notion of microgrids, smart grids [13], and an energy internet have
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been introduced because of their better communication and control infrastructures, which
are crucial for the growth of smart cities.

The intelligent design of power grids is only possible if the different factors that
affect it and its important role in SC development are carefully analysed. If those factors
are not considered during design, a smart PS might lead to economic and operational
instability in SC. One possible solution to that problem is the use of hierarchical energy and
control management based on microgrids [14]. The microgrid concept in SCs is illustrated
in Figure 2. These scenarios make the design and control of SCs more complex, and if
mismatches in communication occur, the whole SC infrastructure will be less reliable in
the sense that power will not be delivered. For that scenario, a reconfigurable network is
required, as discussed in this paper.
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The rest of this paper is structured as follows. Section 2 incorporates some related
works and Section 3 proceeds with problem formulation. Section 4 describes the proposed
approach for computing the optimal reconfiguration in a power system. Section 5 illustrates
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the outcomes of the proposed methodology. Section 6 provides a conclusion and discusses
future work.

2. Related Works

As there are copious possible switching combinations for a DN, each of which is mod-
elled on a binary variable, a complex combinatorial optimization problem is presented [15].
In addition, the power flow equations are non-convex and have non-linear constraints.
Hence, the entire optimization problem is a non-convex combinatorial problem. Therefore,
establishing the optimal DNR necessitates applying global optimization methods to handle
large-scale problems with non-convexities in the constraints. One of the best strategies for
addressing non-convex problems, which are otherwise challenging with the use of other
techniques, is the use of metaheuristic optimization (MO) algorithms [16]. These algorithms
are usually easy to apply, do not need the objective function gradient, and often find a
sufficient solution. However, the performance and convergence speed of these algorithms
vary according to the size and the constraints of the problem. Therefore, finding the best
algorithm for optimal reconfiguration has received considerable attention in PS research.

To resolve this problem, a variety of MO algorithms have been used, including genetic
algorithms (GA) [17], the particle swarm optimization (PSO) algorithm [18], the ant colony
optimization (ACO) algorithm [19], the butterfly optimizer algorithm [20], the gravitational
search (GS) algorithm [21], the cuckoo search algorithm (CSA) [22], the artificial bee colony
(ABC) algorithm [23], the teaching–learning-based optimization (TLBO) algorithm [24],
and the flower pollination algorithm (FPA) [25]. The efficiency of these algorithms has been
found to be low. The GA, the PSO, the ABC, and the FPA have efficiencies of 37.74%, 33.5%,
49.36%, and 31.12%, respectively, in achieving loss reduction, according to an analysis
of the relevant literature. The lowest percentage, that of the FPA, is considered here for
hybridization for the purpose of enhancing its efficiency.

The main drawback of these algorithms, in addition to their comparatively long
simulation times, is that they cannot be guaranteed to locate the global optimum solution
and, therefore, they may become trapped in a local optimum. This drawback can be
increasingly significant when applied to large-scale problems with many variables and non-
convex constraints [26]. To better understand the ideal DNR, multiple studies have mainly
focused on optimizing the efficacy of various promising metaheuristic algorithms. In this
regard, a modified PSO [27] has been proposed to solve the problem and demonstrated
that the method converges to a solution like that of the PSO, but in fewer iterations.
Other authors [28] have developed an enhanced GA, in which the crossover and mutation
operators have been modified to solve the DNR problem. An enhanced GA can assist in
the solution of the DNR problem by combining with a DG placement. Additionally, the
improved harmony search algorithm (IHSA) [29] has been recommended to solve the DNR
problem, as it helped to show that a regular harmony search algorithm (HSA) does not
have satisfactory performance in addressing this problem. According to another study [30],
a modified TLBO algorithm demonstrated the necessity of improving the original TLBO. A
modified fireworks algorithm (MFA) was suggested, and the algorithm was contrasted with
other algorithms to show the dominance of the combinatorial approach. A hybrid Fuzzy-
FPA [31] has been devised, which showed that this combinatorial approach guarantees a
solution that is almost universally applicable. Although improved versions of metaheuristic
algorithms can improve the algorithms’ performances and solve the DNR problem, they
still have some shortcomings, such as long convergence times and heavy computational
burdens [32]. A comparison of these algorithms, based on merits and demerits, is provided
in Table 1.
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Table 1. Comparative studies on the merits and demerits of algorithms, as found in literature.

Algorithms Objectives Merits Demerits

Evolutionary PSO
[26,32] Cost minimization

Segregation of
different DN

scenarios has been
validated in a proper

manner.

Computational
burden seems to be

greater.

Modified PSO [27] Loss minimization
Simplified modelling

of constraints is
considered.

Power balance limits
are missing.

Enhanced GA [28] Loss minimization DNR cope with
meshed conditions.

Short-circuit
consequences might

be present.

Improved HSA [29] Loss minimization
Larger systems could
be managed with this

method.

The iterative method
looks to be complex.

Modified TLBO [30] Benefit maximization

Bus injection to
branch current matrix
formulation has been

formulated clearly.

However, the
computation method

requires more
memory space.

Fuzzy FPA [31] Loss minimization
Switching probability

is made to be
adaptive.

Local trapping of
solution might occur.

Recent studies have taken a step forward and focused on integrating optimization
algorithms to build new hybrid algorithms [33] that benefit from the specific advantages of
the individual algorithms and mitigate their inherent drawbacks. In this regard, authors [34]
have developed a hybrid PSO–ACO algorithm and proved that the hybrid algorithm takes
advantage of both algorithms and shows better performance than the individual algorithms.
The integration of the PSO algorithm and the dragonfly algorithm (DA) has been proposed,
in which the optimization problem has been broken down into two parts, each of which is
sequentially solved by one of the algorithms. The PSO and GA algorithms [35] has been
compared, and a performance evaluation has been developed. The results suggested that
the PSO algorithm outperforms the individual algorithms and diminishes their inherent
drawbacks. A combination of the PSO and GS algorithms [36] has been proposed, and
the combined algorithm’s efficiency has been discussed. These integrated algorithms
have usually shown better performance than the individual algorithms or the improved
versions of the MO algorithms in solving the optimal DNR problem. They generally require
lower iterations to converge and find a better solution in a lower simulation time. The
literature includes various methods that significantly reduce PLs in DNs based on an
optimal reconfiguration of DNs with DGs. The long convergence time, the complexity in
implementation, and the high costs were the main drawbacks of the methods discussed in
the literature review.

However, there is still a research gap in finding an algorithm that can solve the large-
scale optimal reconfiguration problem, which has so many continuous and integer variables,
in a reasonable time, such as in a smart city network. In this study, a novel hybrid algorithm
called the chaotic golden-search-based flower algorithm (CGFA) is recommended. It
involves the integration of the FPA and the golden search algorithm (GSA). In this integrated
algorithm, the GSA efficiently reduces the interval using the golden search ratio in each
interval, and the FPA searches the updated interval to come up with a solution. This means
that the FPA explores the global search space and is determined by the GSA’s unimodal
local search conditions. This helps the integrated algorithm to carry out deep searching
with a lower convergence time. The main advantages of the CGFA over other algorithms
are fast and guaranteed convergence and easy implementation. To determine how the
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CGFA performs, we compared it with widely used optimization algorithms, including the
FPA and modified versions of the FPA, such as the chaos-enhanced FPA (CFPA) [37] and the
golden-search-based FPA (GSFA) [38], and its superiority was thoroughly demonstrated.

In addition, this study went beyond consideration of the regular DNR, and a branch-
exchange adaption was also included in considering the reconfiguration process. Adaptive
tie-switch combinations incur marginal reductions in maintenance costs, due to ageing
effects that could be economical. Tie-switches, which are in the DN, used to be considered
given information in previous studies, are assumed to be variables in this study, so a
thorough DNR process and re-designing are conducted simultaneously. This leads to a
larger optimization problem that is more difficult to solve, indicating the effectiveness
of the proposed algorithm. The proposed algorithm’s performance was evaluated under
different test systems, including the IEEE 33-bus system [39], the IEEE 69-bus system [40],
the IEEE 119-bus system [41], and the Indian 52-bus system [42] assigned to the smart
city network, including DG units and energy storage systems (ESSs). In addition, further
uncertainty analyses, such as bus analysis and/or line fault condition analysis, were also
carried out.

3. Problem Formulation

After the exhaustive review of the literature, as discussed in the previous section,
we introduced a novel method for minimizing power losses through reconfiguring the
distribution network. The main idea was to use the CGFA and compute the optimal
reconfiguration of the main feeder located within the radial distribution system (RDS) to
reduce the power losses, in order to manage fair operation. The average power loss of the
system was identified with the assistance of the forward–backward-sweep technique [43].

3.1. Objective Function

As a single objective, our primary aim was to reduce the power loss [44] of the system.
This objective function is determined via Equation (1).

OBJF = MIN (PLoss) (1)

where,

PLoss is the power loss and
OBJF is the objective function.

The brief mathematical notation of the power loss is represented in Equation (2).

PLoss =
NBR

∑
I=1

RI ×
P2

I + Q2
I

V2
I

(2)

where,

NBR is the distribution network’s total number of branches,
V2

I is the voltage magnitude at Ith bus,
P2

I is the active power load at Ith bus,
Q2

I is the reactive power load at Ith bus, and
RI is the resistance of the Ith branch, respectively.

The optimal reconfiguration of the distribution network is achieved with the pro-
posed algorithm. In addition, all the constraints of the power system are detailed in the
next section.

3.2. Power System Constraints

Power system limitations are connected to the PL’s goal function. These constraints
should meet in the PS to maintain efficient power flow operation [45]. The primary
constraints are formulated as follows:
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3.2.1. Feeder Capacity Limits

In the PS, the branch current flow should be within the maximum limit, which is
formulated in Equation (3):

0 ≤ I I ≤ IMAX,I ; I = 1, . . . ., NBR (3)

where, IMAX,I is the maximum current flow in the PS with the branch details and I I can be
defined as the current passing in the Ith branch.

3.2.2. Bus Voltage Limits

In the PS, the bus voltages must follow within their maximum and minimum, as set
out in Equation (4):

VMIN,I ≤ V I ≤ VMAX,I ; I = 1, . . . ., NB (4)

where,

VMAX,I is the maximum voltage of the Ith bus, and
VMIN,I is the minimum voltage of the Ith bus, respectively.

3.2.3. Real and Reactive Power Balance

In the PS, real and reactive power should be within their limits, as set out in
Equations (5) and (6):

PSLACK +
NDG

∑
I=1

PDG,I =
NB

∑
I=1

PD,J +
NBR

∑
I=1

PL,K (5)

QSLACK +
NDG

∑
I=1

QDG,I =
NB

∑
I=1

QD,J +
NBR

∑
I=1

QL,K (6)

where,

PL,K is the active PL in the Kth branch,
QL,K is the reactive PL in the Kth branch,
PD,J is the real power load demand of the Jth bus,
QD,J is the reactive power load demand of the Jth bus,
PDG,I is the real power output of the Ith DG unit,
QDG,I is the reactive power output of the Ith DG unit,
PSLACK is the real power provided from the slack bus,
QSLACK is the reactive power provided from the slack bus,
NB is the total number. of buses in the DN, and
NDG is the total number of DG units in the PS, respectively.

3.2.4. Radial Configuration Constraint

To minimize the fault level while saving energy to protect the device, the distribution
network must be operated as a radial network. Thus, it is necessary to determine the
configuration of the radial network when working on a reconfiguration problem, mainly
for the distribution networks. The proposed approach is feasible for the radial configuration
of power distribution networks. The proposed approach could not be applied to a meshed
distribution system because negative short circuit consequences would result. The number
of branches and tie switches could be fixed as set out in Equations (7) and (8).

NBr =
(

NB − 1
)

(7)

NTS = Nloop
L − Nradial

L (8)
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where,

NTS is the total number of tie switches in the DN,

Nloop
L is the total number of lines in the loop network, and

Nradial
L is the total number of lines in the RDS.

The power network should provide clarity about radial configuration and supply
complete loads after reconfiguration. The proposed system should meet the mentioned
constraints set out in Equations (3)–(8) beforehand, while selecting the optimal tie-switch
connections in a power system. The suggested algorithm calculates the best positions of
feeders for reducing the power loss of the system. A detailed description of the proposed
algorithm is presented in the next section.

4. Proposed Methodology

Using the CGFA, the problem of optimal reconfiguration is solved by identifying the
innovative tie-switch connections that help in PL minimization. The FPA and the GSA with
chaos were combined in the suggested algorithm. Notably, the chaotic GSA (CGSA) was
used to make it possible for the FPA to operate effectively in the feeder allocation. The
following section lists the properties of the FPA, the GSA, and the CGFA.

4.1. Flower Pollination Algorithm

In 2012, Xin-She Yang [46] developed the FPA method. It draws most of its principles
from the pollination process in flowering plants. Undoubtedly, the FPA has helped to solve
optimization problems. There are four main principles in FPA optimization:

Rule 1: Global pollination is noted to be a process of cross-pollination and biotic
pollination. Based on levy flight operation, it moves away to carry pollinators.

Rule 2: Local pollination relies on abiotic and self-pollinating activities.
Rule 3: Insects/pollinators are considered to have flowers constancy that is equivalent

to the probability of reproduction. The likelihood of reproduction is inversely correlated
with the resemblance functions of the two flowers in question.

Rule 4: Based on the switch possibility, the global and local substituting or interaction
of pollination should be controlled and biased lightly toward local pollination.

These four rules are modified into accurate updating computations when formulating
the updating functions in the FPA. Pollinators that lick, such as insects, help in carrying
flower pollen during the worldwide pollination process [47]. Additionally, the pollen can
migrate because long-distance insects can move or fly a longer distance. Hence, the first
rule is mathematically formulated as set out in Equation (9):

XT+1
I = XT

I + γ L(λ)
(

g∗ − XT
I

)
(9)

where,

L(λ) is the levy flight step size, which is correlated with pollination strength,
γ is the scaling factor used to regulate step size,
g∗ is the current best solution,
XT

I is the pollen I or solution vector, X − I, at iteration T,
XT+1

I is the pollen I or solution vector, X − I, at iteration T + 1.

In the FPA, insects could fly and move in different-sized steps for a great distance. Levy
flight is a moving scenario that is used to best simulate the movement feature. Therefore,
L > 0 is regarded as a levy distribution, which could be expressed in Equation (10):

L ∼
λΓ(λ)sin

(
πλ
2

)
π

1
M1+λ

, (M� M0 > 0) (10)

where, the symbol for the common gamma function is Γ(λ), Additionally, this distribution
function holds true for the lengthy process M > 0. In theory, this is necessary, but this value
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is thought to be as low as 0.1. Additionally, it avoids the pseudo-random step sizes that are
an issue for this levy-distribution function (8). Various techniques are available to manage
random numbers [47].

The local pollination can then be considered, collaborating with Rules 2 and 3 set out
in Section 4.1. The local pollination can be mathematically determined via Equation (11).

XT+1
I = XT

I + ε
(

XT
J − XT

K

)
(11)

where,

XT
J and XT

K are the various flowers of the same plant varieties, and
ε is the scaling factor for controlling the step size.

The pseudocode of the FPA is determined via Algorithm 1.

Algorithm 1: Pseudocode of the FPA

objective MIN function
initialize population
find the best solution
define a switch probability
while (t > max generation)
for I = 1 : N

if random > p,
draw a step vector L using levy distribution
global pollination-based Equation (9)
or else
draw uniform distribution
local pollination-based Equation (11)

end if
compute new solutions
if new solutions are best, carry out an updating process
end for
compute the current best solution
end while
output the best solution

In a limited neighbourhood, this pseudocode completely mimics flower constancy [48].
A similar population, which is also a local random walk with uniform distribution in
[0, 1], might be used by the same species to make its selection. The GSA is used in the
FPA to improve the local pollination process. Below is a detailed breakdown of the GSA
information.

4.2. Golden Search Algorithm

This method is recommended for computing objective functions that are not subject
to variation or that are difficult to distinguish. The golden section ratio is calculated via
Equation (12).

C =
−1 +

√
5

2
(12)

The main objective is to find the lowest possible F(X), X ε R, within the period [l, u].
Two boundaries’ points X1, X2 ε [l, u] can be computed via Equations (13) and (14):

X1 = Cl + (1− C)u (13)

X2 = Cl + Cu (14)

where,

X1 and X2 are boundaries at unimodal optimization curve,
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The lower and upper constraints for the interval points are denoted by l and u, and

C is a golden ratio.

The objective function is evaluated at these two points as functions f (X1) and f (X2),
respectively. If f (X1) < f (X2), then the optimal variants are related to [l, u]. Otherwise,
the most advantageous options relate to [X1, u]. This process should be repeated until
one of the termination conditions is fulfilled. The search sections [X1, u] and [l, u] in each
iteration must be determined [49]. After that, the successive iterations are reliant on
the selection procedure. The initial iteration of the GSA is computing the minor point
within the interval [l, u]. Several rounds are used to determine the convergence rate.
Therefore, the performance of the convergence progress is improved by using the golden-
search-based technique along with tent chaos mapping. Additionally, it is used in the
process of improving local search results. The following subsection discusses the suggested
algorithm’s detailed process.

4.3. Hybrid Golden Flower Pollination Algorithm

The hybrid algorithm is a grouping of the FPA and the GSA with tent chaotic map-
ping [50]. In the FPA, the local pollination process is enhanced with the help of the
golden-section ratio. A poor optimization strategy that causes stagnation and traps local
optima, together with premature convergence, may lead to the worst balance between
exploitation and exploration. The GSFA is created to enhance global convergence and
prevent traps on a local solution of the FPA. The local pollination of the FPA is improved in
the suggested algorithm and is expressed similarly to Equation (11). However, instead of
randomly determining the scaling factor ε, it can be considered as dependent on the value
of X1 and X2, respectively. The scale factor affects the generation of a new source, which is
a black-box operation. Updating the scale factor and creating solutions that are tied to a
specific likelihood are the major goals. The scale factor is the best option for picking better
options. The local search of the FPA is optimally processed with a new scaling factor in the
suggested algorithm to obtain the best performance. The technique proceeds and finally
generates two intermediate points, which are presented as set out in Equation (15).

ε1 = l − l − u
C

; ε2 = u +
l − u

C
(15)

The GSA is used to choose the scaling factor in the best possible way. Figure 3 depicts
the overall procedure of the CGFA algorithm.

The FPA is processed with local and global pollination. The golden-search strategy,
which expedites convergence, enhances local pollination by maximizing the scaling factor.
We tested this CGFA with mathematical test functions. Its results were proven to be fine.
Here, the proposed algorithm CGFA is developed to optimally allocating tie switches in
the PS to reduce active PL. With the objective function of PL minimization considered, the
best power network reconfigurations were identified.

The proposed algorithm provides the best reconfiguration in the PS by minimizing
the PL. The credibility of consumers on the PS is also enabled to consider the proposed
algorithm through the distribution system’s optimal reconfiguration.

The process starts by reading the data of the test bus system, including the data of the
lines and buses. Shortly after, the CGFA solves problems associated with load flow using
the forward and backward sweep technique and calculates the PL. Then, the optimum
configurations are calculated based on the CGFA by minimizing the PL, as the main goal. It
then examines the satisfaction of the constraints. If some conflicts arise with the constraints,
the process will be repeated. Otherwise, the optimum configuration results are saved
and the process stops. The performance parameters are investigated and shown in the
next section.
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5. Results and Discussion

MATLAB R2020 software was used for the simulation and modelling work on a system
with the specifications of 4 GHz Core i7 CPU of Intel with RAM of 16 GB. It reduced the
PLs by optimizing their feeder connections in the RDS. The said approach is related to
existing algorithms such as the FPA, the CFPA, and the GSFA. The main objective was to
reduce the PLs of the system. It was tested via three major scenarios:

• Scenario 1: bus fault (BF)
• Scenario 2: line fault (LF)
• Scenario 3: bus and line fault (BLF)

The proposed algorithm was validated by applying these cases in the four bus systems.
In the first scenario, the bus with a higher load was being disconnected. In comparison, the
line with higher resistance was being disconnected in the second scenario. The third case
combined scenarios 1 and 2. The disconnected bus and line for all test systems are set out
in Table 2.

Table 2. Description of scenarios 1, 2, and 3 for all test systems.

Scenario 1 Scenario 2 Scenario 3

IEEE 33 Bus 29 Line 19 Bus 29 and Line 19

IEEE 69 Bus 60 Line 33 Bus 60 and Line 33

IEEE 119 Bus 50 Line 23 Bus 50 and Line 23

Indian 52 Bus 27 Line 16 Bus 27 and Line 16

The main reason to study these uncertainty conditions was to assess the resiliency of
the RDS. The implementation criteria of the proposed technique are outlined in Table 3.
Table 4 lists the specifications of the four test bus systems, including the base kV and the
MVA, the bus locations of the DG and the ESS, the tie switches, the power of the DG and
the ESS, and the base case power loss. Here, a real power modelling of the DG and the ESS
is considered.

Table 3. Implementation parameters of the proposed algorithm.

S. No Description Notation Value

1 Maximum number of
iterations Niter 1000

2 Golden ratio C 0.618
3 Probability switch P 0.8
4 Population Ns 60

Table 4. Specifications of the test systems.

Bus
System Base kV Base MVA Tie

Switches

Bus
Locations

for DG

Bus
Location
for ESS

DG Power
(kW)

ESS Power
(kW)

Base Case
Power

Loss(kW)

IEEE 33 12.66 100 5 22, 25, 33 18 10, 20, 30 30 284.2052
IEEE 69 12.66 100 5 35, 46, 65 27 10, 20, 30 30 225.5454

IEEE 119 11 100 15 28, 78, 114 55 10, 20, 30 30 1661.4
Indian 52 11 1 6 15, 31, 52 26 10, 20, 30 30 434.7279

5.1. Validation Studies on IEEE Systems

The suggested technique’s performance was tested with the IEEE 33-bus system, as
shown in Figure 4 for three test cases. The dotted routes represent the tie switches that are
to be connected or disconnected for the dynamic allocation of feeders. The average actual
active power loss was 284.2052 kW. Initially, the power loss was computed and minimized
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with the power network optimal reconfigurations. Further, the proposed technique was
evaluated to determine the optimal feeder connections.
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The optimal tie-switch connections were obtained, as shown in Table 5, for all pre-
vailing techniques and the proposed technique. Table 5 lists the average performance,
best performance, worst performance, and standard deviation of the power losses for the
IEEE 33-bus system for all validated techniques as well for the proposed technique. In
addition, Figure 5 depicts a reduction in power losses for different outage conditions, for
the validated techniques and the proposed technique. The system’s maximum power loss
savings were found to be 10.23% with line-outage conditions. Similarly, the BF and the LBF
condition meant that the system power loss savings were 0.9% and 10.62%, respectively.
Using the suggested technique, there was a significant reduction in power loss, compared
to those of the other techniques.
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Table 5. Optimal tie-switch connections and power losses through the DNR in the IEEE 33-bus
system.

Description Performance Scenario 1 Scenario 2 Scenario 3

Optimal switch connections
6–28, 17–26,
20–14, 18–23,

27–2

6–21, 10–27,
16–26, 11–5,

17–12

11–12, 22–14,
16–15, 13–9,

21–17

FPA

Best PL (kW)

251.9702 282.9817 251.8790

CFPA 251.9781 281.9715 251.8650

GSFA 251.9755 282.8092 251.8836

CGFA 251.8613 281.5402 251.7712

FPA

Worst

252.3170 283.0750 252.2258

CFPA 252.3001 283.0500 252.1845

GSFA 252.2170 282.9750 252.1258

CGFA 252.0752 282.7756 252.0756

FPA

Mean

252.1384 282.9957 252.0472

CFPA 252.1234 282.8912 252.0231

GSFA 252.0773 282.8424 251.9857

CGFA 252.0631 282.7452 251.7812

FPA

Standard
deviation

0.0869 0.0342 0.0869

CFPA 0.0721 0.0332 0.0732

GSFA 0.0105 0.0680 0.0105

CGFA 0.0012 0.0054 0.0101

The proposed technique was tested via the IEEE 69-bus system, as configured in
Figure 6. The three test cases were executed. The system’s average actual power loss was
225.5454 kW. The bus system’s power loss was reduced significantly, due to the proposed
technique. Initially, identifying and minimizing power losses were based on an optimal
reconfiguring of the power network. The suggested technique was validated, with various
techniques for verification and demonstrations of the improvements.
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The suggested method demonstrated an important convergence speed in all cases,
including all bus systems, compared to those of other validated techniques, such as the
GA, the PSO, the ABC, the GSA, the FPA, the CFPA, the GSFA, and the CGFA. Using
the IEEE 69-bus system as an example, Figure 7a compares the convergence speed of the
proposed method to that of other methods for all test cases. The proposed method is shown
in yellow; without question, it can converge faster than all the other techniques. With total
iterations of 1000, all other algorithms delayed their convergence, while the CGFA settled
quickly to the global optimal zone. The local trapping of the solution was diminished by
avoiding pre-mature convergence. The tolerance error was less maintained at 0.0005. The
magnified view of scenario 5 visualizes all curves of the algorithms for the reader’s clarity.
The minimized view of the CGFA represents its own efficacy, as shown in Figure 7b.
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Figure 8 depicts the reduction in power losses in the IEEE 69-bus system for different
outage conditions, using the validated techniques and the proposed technique. Here, the
system’s maximum power-loss savings was 0.43% with line outage conditions. Similarly,
in the BF and the LBF conditions, the system’s power-loss savings were 0.44% and 0.43%,
respectively.
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The suggested technique’s performance was tested using the IEEE 119-bus system, as
shown in Figure 9, for three test cases. The three real-powered DGs and one ESS were placed
at buses 28, 78, 114, and 55, respectively. The dotted routes represent the tie switches that
were to be connected or disconnected for the dynamic allocation of feeders. The system’s
total reactive and actual power loads were 17.04 MVAr and 22.7097 MW, respectively. The
optimal tie-switch connections for this system were obtained as shown in Table 6. Initially,
the PLs were identified and minimized with the power network optimal reconfigurations.
Further, the proposed technique was utilized to determine optimal feeder connections.
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Table 6. Optimal tie-switch connections through reconfiguration in an IEEE 119-bus system.

Tie Scenario 1 Scenario 2 Scenario 3

1 49–58 107–22 20–39

2 62–118 24–105 29–62

3 98–53 43–56 22–91

4 30–40 110–89 65–106

5 114–14 26–5 21–68

6 56–60 47–66 51–119

7 91–104 7–45 110–92

8 11–66 8–41 47–27

9 2–73 64–87 78–93

10 67–16 68–70 77–44

11 27–69 3–94 115–19

12 44–88 75–67 89–90

13 106–113 29–49 8–117

14 61–82 72–117 79–113

15 38–89 60–13 73–105

The percentage of power-loss savings in the bus system denoted for IEEE 119 is
illustrated in Figure 10. The highest power-loss savings of this system was 15.89% with
line outage conditions. Similarly, the BF and the LBF condition showed power loss savings
as 4.84% and 17.22%, respectively. The computation time of all algorithms were compared,
as plotted in Figure 11. The reduced computation complexity was one of the advantageous
features of the CGFA.
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5.2. Validation Studies on Practical Indian Smart City Network

The performance of the proposed technique was tested with a smart city network. The
process is well illustrated in Figure 12 for the three cases that were tested. The test system
had 52 buses, 51 branches to feed the total network load, and three feeders. The dotted
routes in Figure 12 represent the tie switches that are to be connected or disconnected for
the dynamic allocation of feeders. The optimal tie-switch connections were obtained, as
shown in Table 7, for all equipped techniques and the new proposed technique. Table 7 also
provides the average performance, best performance, worst performance, and standard
deviation in the smart city network bus system’s power losses for all validated techniques
and for the proposed technique. The test system’s power factor was 0.9, which was lagging.
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Table 7. Optimal tie-switch connections and power loss with the DNR in an SC network.

Description Performance Scenario 1 Scenario 2 Scenario 3

Optimal switch connections
45–40, 5–41,
36–16, 47–34,
10–31, 33–6

49–34, 15–42,
39–33, 5–23,
25–48, 6–40

33–52, 14–40,
5–3, 47–24,

45–10, 15–37

FPA

Best PL (kW)

403.3059 427.9742 401.6888

CFPA 403.2012 427.8812 401.5564

GSFA 402.8933 427.8438 401.2764

CGFA 402.7712 426.2341 401.0012

FPA

Worst

403.8846 428.6163 402.2675

CFPA 403.8512 428.4321 402.2512

GSFA 402.8933 427.8438 401.2764

CGFA 402.7765 427.5432 401.1234

FPA

Mean

403.4506 428.2615 401.8335

CFPA 403.3432 428.1245 401.77654

GSFA 403.3023 428.0792 401.6854

CGFA 402.1123 427.1343 401.5462

FPA

Standard
deviation

0.2571 0.2724 0.2571

CFPA 0.2912 0.3242 0.1232

GSFA 0.3852 0.3291 0.3850

CGFA 0.01234 0.0321 0.04321

The system could be plugged in to the smart city developing zone. Renewable source-
based DG and ESS were embedded with the network to make the system smarter and to
provide uninterruptible power. When fault occurred, the power could be served by the DG
and the ESS. Since the evolution of smart cities, a step has been taken to integrate Indian
52-bus practical distribution network as a small portion of the system. It has many sources,
fed from both conventional and non-conventional energy; therefore, it may incorporate in
smart cities in addition to the existing substation, as shown in Figure 12.

The practical distribution network of smart power system is shown in Figure 13. In a
smart city network, data are generated from sensor devices installed in different devices.
Those data were transferred to a main centre, where the data were processed and useful
information or a control signal was transmitted back to the devices working in the physical
process. This whole scenario made the network smarter and more intelligent. Hence, it
increasingly demonstrated the credibility and efficiency of the system.

Additionally, the base MVA and the kV for the preferred test system were 1 and 11,
respectively. The highest and lowest limits of the bus voltage magnitude were 0.9 p.u. and
1.05 p.u., respectively. For 52-bus practical distribution systems with the DG, the active
power losses totalled 434.7279 kW. Initially, the system power loss was identified and
minimized with the optimal reconfiguration of the power network. Further, the proposed
technique could find optimal tie-switch connections.

Figure 14 charts the reduction in power losses of the smart city network at different
outage conditions. The maximum power loss savings of the system was 2.43% with line-
outage conditions. Similarly, the BF and LBF conditions meant that the system’s power
loss savings were 1.70% and 2.57%, respectively. With the proposed algorithm’s help, the
power loss was minimized, compared with the original system’s power loss. Notably, the
selection of optimal allocation of specific feeder connections helped in reducing the power
loss in the power systems. In this study, the proposed technique achieved excellent optimal
outcomes for reducing power losses.
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To verify the correctness of the proposed system and investigate its performance
parameters, it was compared with other systems with the same network configurations
regarding load demands and power generation. The proposed technique was mostly
equated with the existing systems’ power losses, for all four test systems. The Indian 52-bus
system of the smart city was used as an example to show, as in Figure 15, the clear power
losses in the test cases. Hence, the individual line losses could be viewed clearly.
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The simulation studies were run 100 times to validate the performance. Through quan-
titative analysis, best performance, worst performance, mean performance, and standard
deviation values were computed for all three cases. From the comparative studies on all
four test systems, we concluded that the proposed technique achieved excellent outcomes
for reducing power losses during LBF. The computation rate was also found to have good
characteristics.

6. Conclusions

This article addressed the optimal reconfiguration issue with an objective focus on
absolute power-loss minimization. A new technique, based on the CGFA, was developed to
compute the optimal reconfiguration settings in the RDS to achieve the objective function.
The performance of the proposed technique was tested with IEEE 33, IEEE 69, and IEEE
119 systems and exhibited low standard deviation ranging from 0.0012 to 0.0101, and
the smart city practical Indian 52-bus system had the standard deviations from 0.012 to
0.0432. The different conditions were checked in each network, such as the LF, BF, and
LBF conditions. The proposed technique was validated by analysing the system’s power
loss via performance and comparison analysis and also based on the convergence speed.
By comparing the results of the proposed technique and other validated techniques, we
found that the proposed method was fastest in convergence and superior in reducing
power losses.

To sum up, the proposed technique (the CGFA) was quickly converged to achieve
power loss minimization in the RDS. Through this method, adaptive tie-switch combina-
tions were obtained, resulting in reduced maintenance costs that are due to ageing effects.
In future studies, it is proposed that optimal DG and parking lot allocation be integrated
with reconfiguration studies, and cost-consideration analysis could be carried out.
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Nomenclature

ABC Artificial bee colony
ACO Ant colony optimization
BF Bus fault
CFPA Chaos-enhanced flower pollination algorithm
CGFA Chaotic golden flower algorithm
CGSA Chaotic golden search algorithm
CSA Cuckoo search algorithm
DA Dragonfly algorithm
DG Distributed generation
D-FACTS Distributed-flexible AC transmission
DN Distribution network
DNR Distribution network reconfiguration
ESS Energy Storage System
FPA Flower pollination algorithm
GA Genetic algorithm
GSFA Golden-search-based flower algorithm
GS Gravitational search
GSA Golden search algorithm
HSA Harmony search algorithm
ICT Information and communication technology
IHSA Improved harmony search algorithm
LBF Line and bus fault
LF Line fault
MFA Modified fireworks algorithm
MO Metaheuristic optimization
NC Normally closed
NO Normally open
PL Power loss
PS Power system
PSO Particle swarm optimization
PV Photovoltaic
RDS Radial distribution system
SC Smart city
TLBO Teaching Learning-based optimization
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