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Abstract: Due to the lack of historical output data of new wind farms, there are difficulties in the
scheduling and planning of power grid and wind power output scenario generation. The randomness
and uncertainty of meteorological factors lead to the results of traditional scenario generation methods
not having the ability to accurately reflect their uncertainty. This article proposes a RAC-GAN-based
scenario generation method for a new wind farm output. First, the Pearson coefficient is adopted
in this method to screen the meteorological factors and obtain the ones that have larger impact
on wind power output; Second, based on the obtained meteorological factors, the Grey Relation
Analysis (GRA) is used to analyze the meteorological correlation between multiple wind farms with
sufficient output data and new wind farms (target power stations), so that the wind farm with high
meteorological correlation is selected as the source power station. Then, the K-means method is
adopted to cluster the meteorological data of the source power station, thus generating the target
power station scenario in which the cluster information serves as the label of the robust auxiliary
classifier generative adversarial network (RAC-GAN) model and the output data of the source power
station is considered as the basis. Finally, the actual wind farm output and meteorological data of
a region in northeast China are employed for arithmetic analysis to verify the effectiveness of the
proposed method. It is proved that the proposed method can effectively reflect the characteristics of
wind power output and solve the problem of insufficient historical data of new wind farm output.

Keywords: RAC-GAN; scenario generation; wind farm; clustering; Grey Relation Analysis

1. Introduction

With the increasing depletion of fossil resources and the aggravation of environmental
pollution problems, renewable energy has been vigorously developed. In recent years,
renewable energy such as wind power is connected to the distribution grid. However,
the uncertainty of renewable energy and its high penetration to the grid have brought
huge challenges. Due to the insufficient historical data of new wind power stations, it
is difficult to evaluate their operation performance. Therefore, scenario generation is of
great importance. Most scenario generation methods require a number of training samples,
which is difficult to collect for new power plants, so the analysis of neighboring wind farms
with high similarity to new wind farms is a possible way to assist scenario generation.

A crucial factor that restricts the reasonableness of wind power output scenario gener-
ation is the insufficiency of operational data, which may be affected by new construction,
expansion, or renovation of the stations. Therefore, it is necessary to explore a new method
to analyze the correlation between the newly built wind farms and their neighboring wind
farms and gain enough output data [1]. Most of the existing literature focuses on historical
output data. For instance, there is a study in which a time-varying regular vine mixed
Copula model is developed to analyze the Spatio-temporal correlation between multiple
wind farms [2]. Meanwhile, some studies incorporate a non-separable covariance function
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in the scenario generation method, thus capturing the complex correlations between the
Spatio-temporal components of wind power generation [3]. In addition, the Mutual In-
formation, Spearman, and Kendall correlation coefficients are adopted in the correlation
analysis of multi-wind farms with good results [4]. However, besides the historical output
data, other factors such as time-series data of multiple meteorological features should
be considered, for the consistency of its changing trends plays an important role in the
correlation analysis of different wind farms, which has not been discussed in the current
studies.

As for the renewable energy scenario generation, the current main idea is to generate
new samples similar to the historical output scenarios after learning a given number of
historical output data [5]. According to whether it is necessary to assume the probability
distribution obeyed by the actual output data, the existing stochastic scenario generation
methods can be divided into the explicit density model and the implicit density model [6].
The explicit density model requires an artificial assumption of the probability distribution
obeyed by the output data, but the probability distribution obeyed by the wind power out-
put data is usually unknown and difficult to model accurately with mathematical formulas,
which leads to the inapplicability of the explicit density model to the wind power output
scenario generation [7]. Therefore, generative methods that do not require probability
distribution assumptions, such as variational autoencoders and generative adversarial
networks, have been widely used in power system scenario generation. Some studies have
proposed a GAN-based joint scenario generation method for wind and photovoltaic power
generation [8]. In addition, a Gibbs sampling-based dynamic method is proposed in a study
to overcome the difficulty of generating scenarios for multi-renewable energy plants [9].
Although the above literature analyzes a large amount of historical actual output data, the
influence of meteorological features on the generation of wind power output scenarios
has not been analyzed, and little research has been conducted on the generation of output
scenarios for newly built wind farms.

To address the above problems, this paper proposes a scenario generation method
based on RAC-GAN. First, in order to determine what meteorological information has a
larger impact on wind power output, the Pearson correlation coefficient is used to screen
multiple meteorological features. Second, based on the above screened meteorological
features, the GRA method is adopted to analyze multiple wind farms with sufficient data
close to the target power station, and thus the wind farm with the highest correlation
is selected as the source power plant. Then, the K-means method is adopted to cluster
the historical meteorological data of the source power plant, and the cluster information
is used as the label of the robust multi-label generation adversarial network to generate
scenarios based on the output data of the source power plant. Finally, the actual wind farm
output and meteorological data of a region in northeast China are employed for arithmetic
analysis to verify the effectiveness of the proposed method. The probability distribution
characteristics and three evaluation indexes are used to analyze the generated results, and
the proposed method in this paper can better generate scenarios for new wind farms and
fill the historical data gap of new wind farms.

2. Selection of Source Power Station Based on GRA
2.1. Screening of Meteorological Features Considering the Correlation of Wind Power Output
Influencing Factors

Wind power output may be affected by several factors such as wind speed, wind
direction, temperature, humidity, pressure, and historical wind power. The Pearson cor-
relation coefficient is also called the Pearson product-moment correlation coefficient. As
one of the most commonly used linear correlation coefficients, it can analyze small local
differences in patterns [10] without normalizing the wind power output data, which makes
it a better way to analyze the correlation between the wind power output and various
meteorological categories. The equation, denoted as R, is used to reflect the degree of
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linear correlation between two variables. The Pearson correlation coefficient quantifies the
correlation between variables on the basis of covariance, which is calculated as follows:

R =
cov(X, Y)

σXσY
=

∑n
i=1(Xi − X̄)(Yi − Ȳ)√

∑n
i=1(Xi − X̄)

2
√

∑n
i=1(Yi − Ȳ)2

(1)

In the equation, R denotes the correlation coefficient of X and Y. cov(X, Y) denotes
the covariance of the two variables. X and Y denote the standard deviation of σX and σY,
respectively. The larger the absolute value of the correlation coefficient with an R-value
between −1 and 1, the stronger the correlation between the variables, which is usually
judged by the strength of the correlation of the variables in Table 1 [11].

Table 1. Criteria for judging the strength of relevance.

Absolute Value of Correlation Coefficient Strength of Correlation

[0.8, 1.0] Extremely strong correlation
[0.6, 0.8] Strong correlation
[0.4, 0.6] Moderate correlation
[0.2, 0.4] Weak correlation
[0, 0.2] Very weak or no correlation

The Pearson coefficient can effectively analyze the influence of each factor on wind
power output. The absolute values of Pearson coefficients for each factor and wind power
output are shown in Figure 1.
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Figure 1. Pearson coefficient meteorological correlation analysis. 
Figure 1. Pearson coefficient meteorological correlation analysis.

Figure 1 shows the Pearson coefficients between wind power output and various
meteorological factors such as wind speed and wind direction. The first row of Figure 1
indicates the correlation between wind power output and each meteorological factor. It
indicates that wind speed is the most direct and fundamental factor in determining wind
power output. In addition, an analysis of the correlations using multiple years of data
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found that the correlation can vary slightly year by year but does not change the overall
level of correlation. Wind speed was selected as a meteorological feature for the analysis.

2.2. Source Power Station Determination Considering the Consistency of Meteorological
Data Trends
2.2.1. Steps of GRA

A measure of the magnitude of the correlation between the meteorological data of two
wind farms over time or with different objects is called the correlation degree. During the
system development process, two factors will be considered to be highly correlated if their
changing trends are consistent, i.e., the degree of synchronous change is high. Conversely,
the correlation degree is low [12]. GRA is a method to measure the degree of correlation
between factors based on the degree of similarity or dissimilarity of their development
trends, i.e., the “GRA”. According to the above-mentioned, wind power output is mainly
influenced by wind speed, and the historical wind speed of multiple wind farms in a
specific region has certain similarity. Therefore, in this paper, the GRA method is used to
analyze the wind speed correlation between multiple wind farms and the target power
station. The steps for selecting the source power station are as follows.

(1) Construction of meteorological data set

The wind speed time series data selected above are used as the data set, and each
scenario day is regarded as a feature vector. In this paper, 12 months of historical data in the
year of 2014 are selected as the training set, and the eigenvector Xi equation is constructed
based on the mean value of wind speed for each historical day as well as the wind speed at
each moment.

Xi =
[

Fi
1, Fi

2, · · · , Fi
g, · · · , Fi

av

]
(2)

In this equation, Fi
g is the wind speed at the gth moment of the ith day; Fi

av is the
average wind speed on the ith day.

(2) Normalization of data

The wind speed data were normalized as follows [13].

x’ =
x− xmin

xmax − xmin
(3)

In the equation, x, xmin, and xmax are the arbitrary values in the original data, the mini-
mum values in the original data, and the maximum values in the original data, respectively;
x’ is the normalized data. The normalized eigenvectors of the target power station and
each neighboring power station are as follows:

xi
0 =

[
xi

0(1), xi
0(2), · · · , xi

0(n), · · ·
]

(4)

xi
j =

[
xi

j(1), xi
j(2), · · · , xi

j(n), · · ·
]

(5)

In this equation, xi
0 is the eigenvector of the target power station on day i. xi

j is the

eigenvector of the ith historical day of the jth proximity power station. xi
0(n) refers to

the eigenvector of the target power station, and xi
j(n) refers to the nth element of the ith

historical day of the jth proximity power station.

(3) Calculation of correlation degree

Calculate the number of correlation coefficients between xi
0 and xi

j at the nth compo-
nent, respectively.

ξi(n) =
miniminn∆ + rmaximaxn∆

∆ + rmaximaxn∆
(6)

In the equation, ξi(n) is the number of correlation coefficients. ∆ = |x0(n)− xi(n)|.
r is the resolution factor, generally taken as 0.5. As there are many scattered correlation co-
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efficients that are not easy to compare, they are generally processed by means of averaging.
The GRA between xi

0 and xi
j is defined as follows [14]:

Ri =
1
N ∑N

n=1 ξi(n) (7)

In this equation, N is the total number of correlation coefficients for each component.

2.2.2. Selection of Source Power Station

Six actual wind farms in northeastern China are selected, and the longitude and
latitude of the wind farms are shown in Table 2.

Table 2. Wind farm latitude and longitude information.

Power Station Latitude (◦N) Longitude (◦W)

Newly built wind farm 39.70 121.66
Wind Farm 2 39.78 121.56
Wind Farm 3 40.02 121.82
Wind Farm 4 42.01 121.84
Wind Farm 5 39.84 121.66
Wind Farm 6 39.54 121.57

In the table above, assuming that Wind Farm 1 is a newly built power station with
sufficient meteorological data but no output data, experiments are conducted with the GRA
method based on the historical wind speed and other meteorological data, and the results
captured are shown in Figure 2.
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As can be seen from the overall trend of the data in Figure 2, the GRA values of the
neighboring wind farms are greater than 0.75, which is a high level of similarity. It can
prove that the historical wind speed temporal trends among multiple neighboring wind
farms in a specific geographic area are consistent, while the wind farm with the highest
consistency with the target power station is Wind Farm 2, with a GRA value of 0.93. Since
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wind speed is the most direct factor affecting wind power output, Wind Farm 2 can be
selected as the source power station for the generation of wind power output scenarios for
newly built power plants.

3. RAC-GAN-Based Scenario Generation of Wind Power Output
3.1. Clustering of Meteorological Historical Data Based on K-Means Method

Since the wind power output is mainly determined by the wind speed, the transforma-
tion of wind speed and wind power output can be described by the following formula [15]:

PW(v) =


0, 0 ≤ v ≤ vin

PWT
v−vin
vr−vin

, vin < v ≤ vout

PWT, vr < v ≤ vout

0, vout ≤ v

(8)

In the formula, v is the wind speed; PWT is the rated power of the wind turbine; vr is
the rated wind speed; vin is the cut-in wind speed; vout is the cut-out wind speed.

It can be seen in the formula that the wind speed is the most direct and critical factor
affecting wind power output. The algorithm clustered by K-means is used to classify
the historical meteorological scenarios and model the wind power output of the source
power plants corresponding to the dates within different meteorological categories, with
the obtained information of the clusters as the labels and RAC-GAN as the method for
scenario generation. The basic unit of clustering on the time scale is the day, and each unit
contains the meteorological data of that day. Altogether, the data cover 365 days in a whole
year, and each scenario contains 24 h. Eventually, k typical meteorological categories are
captured during the clustering process.

The clustered meteorological data set used in this paper is an unlabeled data set, and
the categories of the data are not given in advance. Therefore, the internal indicators of
clustering were chosen to evaluate the clustering results when selecting the clustering
indicators. In this paper, the Silhouette Coefficient (SC) clustering index is selected to
quantitatively analyze the clustering effect, and it determines the optimal number of
clusters, following by the principle that ‘the higher the intra-cluster similarity and the
lower the inter-cluster similarity, the better the clustering effect’. Assuming the data set has
m samples k clustered into m classes, the number of clusters should not exceed 20 according
to historical experience, i.e., K ∈ [2, 20] [15]. The equation for calculating the above metric
is as follows:

s(k) =
b(k)− a(k)

max{a(k), b(k)} (9)

In this equation, b(k) is the minimum average distance from sample k to the samples
of other clusters, and the larger b(k) is, the less sample k belongs to other clusters. a(k) is
the average distance from the sample to other samples in the same cluster, and the smaller
a(k) is, the more reasonable it is for sample k to be classified into this class. s(k) should have
a value between [−1, 1], which means the closer it is to 1, the more reasonable the sample
clustering is; the closer it is to −1, the more reasonable it is for sample k to be classified
into other classes; the closer it is to 0, the more reasonable it is for sample k to be on the
boundary.

The mean value of all samples is the SC, and the larger the value is, the better the
clustering effect is. Figure 3 shows the values of the SC coefficients for the number of
clusters from 2 to 20, in which the best clustering is achieved when K = 6. When K = 5,
the wind speed of the target power station is clustered, and the wind speed trends of
some clusters in the clustering results will be more complicated, thus not having specific
characteristics to meet high intra-cluster similarity. In this case, the SC coefficient is 0.14,
which is obviously lower than the SC coefficient (0.25) when K = 6. Therefore, the clustering
effect is better when the number of clusters is 6. Figure 4 represents the clustering results of
the data from 1 January 2014 to 31 December 2014 for the target power station under the
optimal number of clusters, while Figure 5 depicts the characteristics of the wind speed
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data distribution within each cluster through a box line plot of the target power station.
Similarly, Figures 6 and 7 show the analysis results of the source power stations. The solid
blue lines refer to the clustering centers under each cluster.
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In Figures 4–7, the horizontal coordinate represents the time with a resolution of
1 h and the vertical coordinate is the wind speed. From Figures 4 and 6, it can be seen
that the distribution characteristics of the clustering results of the two power stations are
extremely similar, while the distribution of each cluster has its own unique characteristics.
Figures 5 and 7 indicate that the clustering centers of each cluster are able to envelop within
the box line diagram and are able to match the trend of wind speed for each day. Among
them, Cluster 1 has a high overall wind speed level with a large peak wind speed and a
large range of wind speed fluctuations, which shows an overall accelerated upward trend
from 7:00 to 16:00 as well as an upward followed by downward trend with a significantly
higher wind speed at noon than at night. Cluster 2 shows a continuous upward trend, with
less fluctuation in wind speed and more outliers. Cluster 3 shows the opposite trend to
Cluster 2, that is, a general downward trend from 0:00, with a slightly lower overall wind
speed level than Cluster 2 in only few scenarios. Cluster 4 has a similar trend to Cluster
1 with a relatively greater horizontal fluctuation and a much smaller vertical fluctuation
range, showing that the wind speed is greater at noon than at night, and there are more
outlier points. Cluster 5 has a smooth wind speed variation and a lowest overall wind
speed level with a maximum value of 4.4 m/s, but the cluster has the largest number of
scenario days at 136, which shows that the wind speed level in the region is generally
low and varies steadily. Cluster 6 has a similar trend to Cluster 2 with relatively much
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less volatility and overall level of wind speed. The unique differential distribution among
clusters proves that the clustering results can effectively reflect the wind speed distribution
characteristics of the region, and that there are strong similarities between source and target
power plants.

3.2. RAC-GAN-Based Wind Power Output Scenario Generation
3.2.1. Aided Classification Generates Adversarial Networks

Generative adversarial networks (GAN) are deep learning models that contain two
parts: a generator (G) and a discriminator (D). In the scenario generation model, the purpose
of G is to generate data as close as possible to the real sample distribution by learning the
distribution characteristics of the wind power output data distribution, and the purpose of
D is to maximize the difference between the sample generated by G and the real sample x.
The two play a two-person zero-sum game and finally reach a Nash equilibrium state [16].

Specifically, the historical scenario data is defined as real data. For the G network,
a set of random noise data z is defined as the input to the generator, and the probability
distribution of z is denoted by PZ while the real distribution of historical data is denoted by
PX . The output of G is the learned generated data sample G(z) with probability distribution
PG. Thus, the training objective of G is to make PG as identical to PX as possible [17].

For the D network, its input is the real data x or the data G(z) generated by G. The
output is a scalar D(G(z)), which represents the probability that the input data samples
obey PX. The training goal of the discriminator is to discriminate the correctness of the
input data compared to the real data.

According to the training objectives of the generator and the discriminator, the loss
functions LG and LD of the generator and the discriminator are constructed, respectively,
as follows:

LG = −Ez∼pz(z)[log(1− D(G(z)))] (10)

LD = −Ex∼pdat (x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (11)

The optimization objective of the generator is to minimize Equation (10), and the objec-
tive of the discriminator is to maximize Equation (11). Combining Equations (10) and (11),
the objective function in the GAN training process is obtained as follows:

minGmaxDV(D, G) = Ex∼pdat(x)[logD(x)] + Ez∼ps(z)[log(1− D(G(z)))] (12)

In this function, E(·) represents the expected value.
The auxiliary classifier generative adversarial network (AC-GAN) can add random

noise signal labeling and multi-classification function to the generative adversarial network
and can generate samples of specified types according to the labels [18]. By adding the
random noise signal z and the corresponding label c of the generated samples to the
generator G of AC-GAN, the generator purposely generates the corresponding category
samples Xfake = G(c, z). The samples X output by the discriminator D are derived from
the real samples Xreal and the probability P(S | X) of the generated samples Xfake as well
as the probability P(C | X) of belonging to different categories, i.e.,

D(X) = (P(S | X), P(C | X)) (13)

In this equation, P(·) is the probability function; S is the source of the sample, which
has two possibilities (real (real) and generated (fake)). C = c. Where c ∈ {1, 2, · · · , M}, M
is the number of sample classes. In AC-GAN, the objective function of G is to maximize LC
− LS, and the objective function of D is to maximize LC + LS. The expressions of LS and LC
are, respectively, as follows:{

LS = E(logP(S = real | Xreal)) + E(logP(S = fake | Xfake))
LC = E(logP(C = c | Xreal)) + E(logP(C = c | Xfake))

(14)
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In the equation, E(·) is the Expectation function; LS is the correct source loss function,
which can discriminate the correctness of the data source; LC is the correct class loss
function, which can discriminate the correctness of the output class. Through the internal
game between the generator and the discriminator, the generator is alternately optimized
in the iterative process, and the scenario generation capability of the generator is finally
improved.

In order to meet the need for multi-label wind power scenario generation, firstly, the
data encoder is introduced to the generator input of AC-GAN, thus making its model
pre-learn the shallow raw data features based on the real wind power output and its
characteristic data to obtain the random noise input [19] instead of directly using random
noise signal. Then, the signal is input to the generator so that it can generate a large amount
of target-oriented data that meet the real sample probability distribution characteristics.
After that, the generated samples, together with the original samples, are input to the
discriminator to discriminate their quality, thus expanding the training sample data. During
the iteration of the RAC-GAN model, the game optimization is carried out under the
principle of reducing the noise impact, so robust scenario generation with multiple labels
under noise interference is realized.

3.2.2. RAC-GAN-Based Wind Power Output Scenario Generation

There are different scenario characteristics among each day in the original data set
of the source power plant. To improve the effectiveness of wind power output scenario
generation, wind speed is clustered to obtain multiple cluster labels and assign labels
to each scenario in the original data set to achieve targeted scenario generation in the
corresponding cluster labels. The RAC-GAN model is proposed in a complex scenario
where no historical output data are available for newly built power plants, and the target
power plant output scenarios need to be generated with the assistance of source power
plant output data, i.e., the scenarios with noise, as shown in Figure 8. In the Figure 8, DP
denotes the dropout layer, TC denotes the deconvolution layer, and FC denotes the fully
connected layer [19].
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Based on the above RAC-GAN scenario generation model, a large number of wind
power output scenarios are generated by the K-means clustering method, in which 365
historical samples are input, each containing 24 h of power output data in a day.

4. Evaluation of Scenario Generation Effects

The evaluation of scenario generation effects requires an analysis of the probability
distribution characteristics of the scenarios. Therefore, the following characteristics should
be considered to judge the quality of scenarios generated with the method proposed in this
paper:

1. the power output data of the selected source power station should be similar to that
of the target power station (no power output data of the target power station are
assumed during the experiment, but they should be analyzed during the evaluation);

2. the probability distribution of scenarios generated by the power output data of the
source power station should be similar to that of the target power station;

3. the method proposed in this paper should be more advantageous when compared
with other existing deep learning-based scenario generation methods.

Accordingly, this paper firstly compares the similarity of the probability density
function and cumulative probability distribution of the proposed method and verifies (1)
and (2) above, and the comparison subjects contain the probability density function and
cumulative probability distribution of the output data of the source power station, the
output data of the target power station, and the output data of the generated scenes. Then,
a variety of comparative experiments are set up to analyze the superiority of the proposed
method compared with other methods, during which the evaluation indicators such as
probability distribution characteristics are used.

4.1. Characterization of Probability Distributions

The probability density functions and cumulative probability distributions of the
source power plant output data, the target power plant output data, and the output data of
the generated scenarios are experimented, and the results are shown as Figure 9a,b below.
In Figure 9, the horizontal coordinate represents the wind power output with a maximum
value of 75 MW, and the vertical coordinate is the probability distribution and cumulative
probability distribution. Since the probability of low output in Cluster 5 in Figure 9a is too
large, the maximum value of the vertical coordinate in Cluster 5 is 0.3 and the maximum
value of the vertical coordinate in other clusters is set to 0.2 for the convenience.

In Figure 9a,b, it can be seen that the probability density distribution and cumulative
probability distribution between the generated wind power output data of each cluster
and the source power station are very close, which demonstrates the effectiveness of the
proposed scenario generation method in this paper. In Cluster 2, there is a difference in
the probability density of the high wind power output part, and the historical output of
the target plant has a higher probability in the high wind power output part, while the
generated output probability is lower; in Cluster 1, there is a gap between the probability of
the target plant and the generated data when approaching 75 MW, and the target plant has
a lower probability of high output; on the contrary, the level of probability of high output
is higher in the target plant in Cluster 6. In terms of source power plant output scenarios
and generation scenarios, the above three differences have good fitting performances. The
reason for this is that the scenario generation method proposed in this paper is based on
the data of the source power plant, which are well fitted to the source power plant, while
there is a difference in the output distribution between the source power plant and the
target power plant in Cluster 2. In general, the scenario generation method proposed in
this paper is able to generate scenarios for newly built wind farms well, in spite of minor
differences.
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4.2. Comparison of Methods of Scenario Generation

In order to demonstrate the superiority of the proposed scene generation method, the
new method is compared with the existing scenario generation methods based on a deep
learning framework and other methods to determine the source power station, and several
comparison experiments are set up. Model 1 is the proposed scenario generation method.
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Model 2 uses the clustering results as cluster labels, and the C-GAN method is used for
scenario generation. Model 3 selects the source power station by geographical location
and uses the RAC-GAN method for scenario generation. Model 4 selects the source power
station by altitude and uses the RAC-GAN method for scenario generation.

4.2.1. Properties of the Probability Distribution of the Comparison Experiment

The probability density function curves and cumulative probability distribution curves
for each model are shown below in Figure 10a,b. Similar to Figure 9, the maximum value
of the vertical coordinate in Figure 10a is 0.15 except for Cluster 5, and the maximum value
of the vertical coordinate in Cluster 5 is 0.3.
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The following results can be seen from Figure 10:

1. From the comparison of Model 1 and Model 2, it can be seen that the difference
between Model 1 and Model 2 is small in Clusters 3 to 6 in terms of probability
distribution characteristics. Model 1 is slightly better than Model 2, and the generated
data fit the real data better. From the probability distribution characteristics of Cluster
1 and Cluster 2, it can be seen that both Model 1 and Model 2 are more effective when
Cluster 1 is near 25 MW and Cluster 2 is near 45 MW, except for these two places,
where Model 1 is much stronger than Model 2 overall. Combined with Figures 4 and 6,
it can be seen that both Cluster 1 and Cluster 2 are characterized by a small number of
scenes, only 18 and 19 days, respectively, i.e., the number of historical data is small,
while Model 2 uses the C-GAN method for scene generation, which is not effective in
generating scenes with little historical data. Therefore, the proposed method in this
paper can achieve a better fitting effect when there are less data.

2. Comparing Model 1 with Model 3 and Model 4, it can be seen that Model 1 is signifi-
cantly better than Model 3 and Model 4 in scenario generation for each cluster. This is
because the method used in this paper for the selection of source power stations can
analyze whether the time-series wind speed data are consistent in terms of change
trends, and the selection of source power plants is based on the changing characteris-
tics of wind speed data, while Model 3 and Model 4 are based on geographical factors
in the selection of original power plants, which are similar in terms of geographical
location or altitude, but cannot reflect the characteristics of wind speed data, which is
the most critical factor for wind power output. Therefore, the generated data do not fit
the historical data well in terms of probability distribution characteristics. Meanwhile,
under the premise that both RAC-GANs are used for scene generation, the scenes
generated by using Model 3 and Model 4 to select source power plants have poor
performance in each cluster, which can indicate that the appropriate selection of
source power plants is an important factor.

4.2.2. Evaluation of Scenario Generation Effects

In order to furtherly compare the wind power output scenario generation effects of the
model proposed in this paper with that of each model in comparative experiments, the Root
Mean Squared Error (RMSE), the Mean Absolute Error (MAE), and the coefficient of deter-
mination R2 are selected in this paper. RMSE, MAE, and R2 are defined as follows [20–22].

RMSE =

√
1
T ∑T

t=1(x̂t − xt)
2 (15)

MAE =
1
T ∑T

t=1|x̂t − xt| (16)

R2 =
∑T

t=1(x̂t − x̄)2

∑T
t=1(xt − x̄)2 (17)

In the equation above, T denotes the total number of generated scene data; x̂t, xt and x̄
denote the average of generated scenario value sampling points, real scene value sampling
points, and real scene data, respectively. The RMSE and MAE are used to evaluate the error
between the generated scene data and the real scenario data. The smaller the error is, the
closer the generated data are to the real data. The closer R2 is to 1, the more the generated
scene data can correctly represent the real scenario data. The scenario data generated by
each model are tested by each statistical index, and the test results are shown in Figure 11
below.
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It is notable in Figure 11 that,

1. From the comparison of Model 1 and Model 2, it can be seen that the RMSE in Model
1 is smaller with the average value of 1.153 and the maximum value of 1.8, which is
much lower than Model 2 (the average value is 4.23 and the maximum value is 6.8);
similarly, the MAE in Model 1 (the average value is 0.801 and the maximum value is
1.4) is much smaller than that of Model 2 (the average value is 3.02). Therefore, the
scene generation using RAC-GAN has good results.

2. The comparison between Model 1, Model 3, and Model 4 shows that the three evalu-
ation indexes of Model 1 outperform those of Model 3 and Model 4. Moreover, the
generation results of Model 2 are stronger than those of Model 3 and Model 4, which
indicates that the selection method of source power plants is important for scene
generation results. The selection of source power plants by using the GRA method is
more effective than that of using geographical factors.

Each evaluation index of Model 1 can numerically show that the proposed scenario
generation method as well as source power plant selection method has a good performance
in new wind farm scenario generation.

5. Conclusions

This paper constructs a RAC-GAN-based scenario generation method for new wind
farms, which is the first of its kind in terms of meteorological factors selection, source
power plant selection for scenario generation, and scenario generation with labeling, in
response to the problem that there are few power data for new wind farms and it is difficult
to study the planning and scheduling of power farms. The proposed scenario generation
method can better realize the scenario generation of new wind farms, effectively filling the
data gap of new wind farms.

The paper uses the Pearson correlation coefficient to filter the meteorological factors af-
fecting wind power output, where wind speed is the most critical factor and the correlation
coefficient between them is 0.8, indicating a very high correlation. GRA is used to select
the source power station, and the source power station is selected based on the principle
of consistency of the change trend of time series data. In the scenario generation part,
based on the historical output data of source power plants, the K-means clustering method
is used to cluster the wind power output, and the cluster information of the clustering
result is used as a label to generate the wind power output scenario of new wind farms
by the RAC-GAN method. The proposed method performs better with each evaluation
index, and the values of RMSE, MAE, and R2 are significantly better than in other scenario
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generation methods and source plant selection methods; thus, the probability distribution
characteristics are closer to the target plant.

The limitations of this paper are mainly reflected in that when analyzing the consis-
tency of meteorological data between source and target power stations, the time-shifted
characteristics of the data due to geographical location are not taken into account, i.e., the
data consistency between two power stations is stronger at a certain time interval, which
will lead to the same characteristics of wind power output. Therefore, the length of the time
interval and its influencing factors should be focused on the analysis of the consistency of
the wind speed and wind power output time series data trends in the future, which will
have a positive impact on the scenario generation effect. In addition, subsequent studies
will use shorter time scales (30 min, 15 min, or 5 min) of data for scenario generation and
analyze scenario generation methods with larger data volumes.
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Nomenclature

R Correlation coefficient of two variables.
cov(X, Y) Covariance of the two variables.
σX , σY Standard deviation of X and Y.
X̄, Ȳ Average of X and Y.
Fi

g Wind speed at the gth moment of the ith day.
Fi

av Average wind speed on the ith day.
x, xmin, xmax Arbitrary values, minimum values and maximum values in the original data.
x′ Normalized data.
xi

0 Eigenvector of the target power station on day i.
xi

j Eigenvector of the jth historical day of the ith proximity power station.
xi

0(n), xi
j(n) nth element of the jth historical day feature vector of the target power station,

the ith proximity power station.
ξi(n) Number of correlation coefficients.
r Resolution factor.
N Total number of correlation coefficients for each component.
v, vr, vin, vout Wind speed, the rated wind speed, the cut-in and cut-out wind speed.
PWT Rated power of the fan.
m Number of clustered samples.
k Number of clusters.
b(k) Minimum average distance of sample k to the samples of other clusters.
a(k) Average distance of sample k to other samples in the same cluster.
G(z), D(G(z)) Output ofs G and D network in GAN.
E(·) Expected value.
LS, LC Correct source loss function and class loss function.
x̂a, xa, x̄ Average of generated scene value sampling points, real scene value

sampling points, and real scene data.
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