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Abstract: Aiming at the influence of wind power and load uncertainty on the transient stability
of a power system under low carbon mode, this paper first proposes a collaborative preventive
and emergency control model of transient stability by distribution preserving graph representation
learning (DPG). Second, the uncertainty set of wind power output and load demand is studied,
and the mathematical form of the two-stage robust transient stability collaborative control model is
proposed. Then, the latest artificial intelligence technology is embedded into the global optimization
algorithm of the model so as to further improve the solving efficiency of the algorithm. Finally, based
on the developed improved two-stage robust optimization framework, an effective collaborative
control method for transient stability is developed. The transient stability prediction and control
system developed in this project is not only conducive to large-scale wind power grid connection but
also expected to make academic contributions to development of power system transient stability
and practical simulation verification.

Keywords: power system; load shedding; robust optimization; distribution preserving graph
representation learning (DPG); coordinated control

1. Introduction

Power systems are undergoing a major “de-carbonization” transition from fossil
fuels to alternative energy sources, and this dramatic change will drive the whole socio-
economic development system into low-carbon mode [1]. The transition to a low-carbon
power system requires a significant increase in renewable energy. However, because of
the intermittent and uncertain nature of alternative energy, new energy generation will
more easily lead to great pressure on stability and reliability of modern power systems [2].
The randomness and dynamic complexity of wind power output have a great effect on the
transient stability of a power system. For example, in the power failure in South Australia
in 2016, a wind turbine tripped due to continuous voltage interference, which caused power
failure of the whole system [3].

Transient stability represents the ability of generators to maintain synchronization in a
power system after contingencies, which is the most popular stability rule [4]. In practice,
in order to enhance transient stability, control strategies can be divided into preventive
control (PC) and emergency control (EC) according to the different implementation time.
Preventive control, such as optimal scheduling of generator sets, aims to prepare the system
before unexpected events occur. Emergency control, such as load shedding, is to try to
avoid loss of synchronization of a power system after contingencies [5].

The existing classical transient stability research is mainly focused on simulation
models. Furthermore, the time domain simulation (TDS) method based on engineering
experience has been widely applied in industries [6–8]. This method has the disadvantage
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of a large amount of computation. Another method is to terminate time-domain simulation
in advance and determine the criteria for premature termination according to the character-
istics of transient stability [9]. However, these rules are only enhanced on the basis of direct
methods for transient stability analysis [10,11] including instantaneous energy function
(TEF) method [12,13], extended equal area criterion (EEAC) method [14], and trajectory
concave-convex method (TCC) [15].

Artificial-intelligence-based algorithms have also been used for transient stability
forecasting. In [16], the authors developed an improved decision tree (DE) for dynamic
test by synchronous phasors. In the literature [17], lasso regression (LR) was applied to
forecast stability interval. In [18], voltage, speed, and power angle of generator were used
by support vector machine (SVM) to forecast transient stability index (TSI). In [19], first-
order regression was used to investigate system uncertainty variables. Extreme gradient
boosting (XGBoost) and factorization machine (FM) were applied for transient stability
assessment of power systems [20]. Improved SVM was used for online system assess-
ment [21]. Further, [22] proposed a novel l deep-machine-learning-based model for power
system forecasting.

In addition, artificial neural networks (ANNs) have been applied for power sys-
tems [23,24]. However, the conventional artificial intelligence algorithms are very bounded
in their ability to deal with modern power systems. To overcome these problems, deep
learning models have been developed and applied to many fields. For example, in the liter-
ature [25–28], stack denoising autoencoder (SDA), convolutional neural network (CNN),
and reinforcement learning (RL) have been applied to transient stability prediction. How-
ever, when it comes to transient stability analysis, the performance of these conventional
algorithms will be weakened because the specific topological structure of the system data
and information transfer between bus nodes are ignored.

The best operation dispatch of the system before an accident can be achieved is by
optimal power flow calculation considering the transient stability constraint. Therefore,
optimal scheduling of the generator set in preventive control is very suitable for stability
enhancement of the power system [29–34]. The probability of an accident in a power system
is low in long-term operation, so the cost of preventive controls will be high. Short-term
emergency controls may also be costly, but the probability of implementation is very low.
Therefore, cost-effectiveness of emergency controls is also a factor to be considered. In [35],
an optimized load shedding scheme is proposed to improve the transient stability and
frequency/voltage stability of a power system. In [36], in order to improve the transient
stability of a system, a risk-based coordination model is adopted to model generation
rescheduling and emergency load reduction. However, these studies based on preventive
control and emergency control cannot consider uncertainties of alternative energies, such
as wind and PV. At the same time, the transient stability control model mentioned above
cannot guarantee complete robustness.

From the above literature review, it is clear that the research on transient stability
coordinated preventive and emergency control based on the latest artificial intelligence
algorithm is still in the initial stage, and there are many theoretical and technical difficulties
that have not been solved. For example, the algorithms used in the above research can-
not consider the specific data of electric power system topology, node, and information
transmission. In addition, some algorithms can lead to a huge amount of calculation, and
transient stability forecasting by traditional machine learning methods does not address
how to use the prediction results for future control. Even fewer studies have considered
cooperative control to improve transient stability.

Considering that the more diversified and generalized alternative energies in a mod-
ern system will easily affect the system stability, the existing transient stability research
models and optimization algorithms in the literature would not meet future requirements.
How to consider both preventive and emergency control has not been well dealt with in
the existing models. Some theoretical difficulties, such as global convergence of the op-
timization scheduling algorithm and stability and robustness of the control algorithm,
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are still lacking thorough study. Based on the above considerations, this paper will
systematically study coordinated preventive and emergency control based on the latest
artificial intelligence algorithm.

The proposed paper contributions are as follows:

(1) The main theoretical innovation of this paper is that it clearly points out the significant
influence of cooperative preventive control and emergency control on system stability
and proposes a two-stage robust cooperative control model based on distributed
preserving graph representation learning (DPG). According to the worst scenario
of the model, transient stability index (TSI) and robust global optimization results
can be accurately derived. This idea is obviously different from the existing studies,
which only control transient stability and do not pay attention to the special results of
the system.

(2) The main algorithm innovation is that this paper proposes a modified column and
constraint generation (C&CG) [37] method, which is the traditional C&CG framework
combined with deep-learning-based transient stability constraints. This method is our
original algorithm and has high theoretical value.

The rest of this paper is organized as follows. The proposed coordinated system
control strategy is introduced in Section 2. The proposed mathematical framework is
presented in Section 3. The solution method is presented in Section 4. The case studies are
developed in Section 5, and Section 6 provides the conclusion.

2. Cooperative Transient Stability Control Strategy
2.1. Two-Stage Robust Optimization Model

Two-stage robust optimization algorithm has been proven to be a valid method to
handle uncertainty and robustness. This method has been widely used in economic dispatch
considering uncertainty and economic dispatch with fault constraints [38–40]. At the same
time, when uncertainty is considered, the two-stage robust optimization algorithm also
shows good robustness in operation of microgrids [41–43].

Therefore, as shown in Figure 1, aiming at transient instability of the system consider-
ing uncertain wind output and demand load, this paper proposes a collaborative control
optimization method. The strategy is modeled as an adjustable robust optimization frame-
work with distributed preserving graph representation learning (DPG)-based transient
stability constraint. In the first stage, BESS construction is optimized before the contin-
gences. In the second stage, the decisions are generation scheduling and load shedding
after the contingences in the worst cases of wind generation and load changes. In order to
solve this proposed model, a novel solution method that constructs the stability constraint
in the columns and constraint generation algorithm framework is researched.

2.2. Uncertainty Set Modelling

It is considered that the fluctuation range of wind generation and load power can be
described as the uncertainty sets:

U =


u = [uW(t), uL(t)]

T , t = 1, 2, . . . , NT

uW(t) ∈ [
∧
uW(t)− ∆umax

W (t),
∧
uW(t) + ∆umax

W (t)

uL(t) ∈ [
∧
uL(t)− ∆umax

L (t),
∧
uL(t) + ∆umax

L (t)

 (1)

Here, uW(t) and uL(t) are the uncertain variables of wind generation and load.
4umax

W (t) and ∆umax
L are the maximum fluctuation range of wind power output and load.

2.3. Transient Stability Index (TSI) Prediction Algorithm Based on Distribution Preserving Graph
Representation Learning (DPG)

In distribution network analysis, distribution network is usually abstracted as a graph
model for the convenience of subsequent analysis. The power grid contains a variety of
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power equipment, such as bus bars, lines, transformers, generators, loads, switches, etc. In
the process of power grid modeling, the objects are all kinds of physical equipment of the
power system, such as lines, transformers, generators, etc. The system modeling can be
described in Figure 2. In the task scenario of this paper, an undirected graph model can be
constructed by selecting the configuration variable as the node in the graph and the lines
connected between each configuration variable as the edge in the graph.
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Figure 2. Constructing power system structure into graph structure.

In Figure 2, each node represents a bus with transient stability index (TSI) informa-
tion and the node attribute is TSI sequence data. Each bus is connected by a line. The
graph model can be used as an abstraction of the real power grid, which can facilitate
subsequent tasks.

Considering the special system topology and distribution information of bus nodes,
a graph neural network (GNN) model embedded with distribution preserving learning
(DPL), which is distribution preserving graph representation learning (DPG), is developed.
The pooling operation of DPG can accurately learn and describe the representation of the
entire node distribution (determination of the system state). The final representation will be
helpful to obtain a more accurate prediction and significantly improve the computational
efficiency while maintaining high accuracy. By means of DPG, we can determine the
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relationship between TSI and power system operation characteristics so as to ensure the
transient stability of the model under coordinated control.

TSI based for generator rotor angle is selected to describe system stability or fault
severity, and TSI is defined as follows [44–46]:

TSI =
(360− |∆δmax|)× 100

360 + |∆δmax|
(2)

where ∆δmax represents the maximum angle difference of the power system. When TSI > 0,
the system is treated as transient stable, including critical stable; otherwise, the system
becomes unstable.

3. Mathematical Formulation

Coordinated control model is developed in our paper. A transient stability constrained
optimization model of cooperative preventive control and emergency control is an adaptive
robust problem where the BESS investment plan is chosen in the prevention stage before
the contingence. In the lower stage, the contingence is considered. If a construction plan
of BESS can meet the fluctuation deviation of wind power output and load under the
contingence, the system can measure against all other scenarios.

min
x

(∑
i∈I

cBESS
i xi

max
u∈U

min
y∈Ω(x,u)

( ∑
gi∈G

∑
t∈T

cp
gi p

t
gi + ∑

i∈I
∑

t∈T
cd

i pdt
i )) (3)

Subject to:
∑
i∈I

cBESS
i xi ≤ ∏

BESS
(4)

(xi) ∈ {0, 1} (5)

∑
gi∈Gi

pt
gi −∑

j
Bi,j(θ

t
i − θt

j) + ∑
wi

pt
wi = dt

i + rt
ch,i/ηch − rt

dch,iηdch + pdt
i ,

∀i ∈ I, ∀gi ∈ G, ∀wi ∈ Gw, ∀t ∈ T
(6)

Fmin
i,j ≤ Bi,j(θ

t
i − θt

j) ≤ Fmax
i,j , ∀(i, j) ∈ L, ∀t ∈ T (7)

pmin
gi ≤ pt

gi ≤ pmax
gi , ∀gi ∈ Gi, ∀t ∈ T (8)

DR ≤ pt
gi − pt−1

gi ≤ UR, ∀gi ∈ Gi, ∀t ∈ T (9)

pdmin
i ≤ pdt

i ≤ pdmax
i , ∀i ∈ I, ∀t ∈ T (10)

θmin
i ≤ θt

i ≤ θmax
i , ∀i ∈ I, ∀t ∈ T (11)

SOCt
i = SOCt−1

i + rt
ch,i · ηch − rt

dch,i/ηdis, ∀i ∈ I, ∀t ∈ T\{1} (12)

SOC1
i = S0 + r1

ch,i · ηch − r1
dch,i/ηdis (13)

SOCT = S f = S0 (14)

[xi]SOCmin
i ≤ SOCt

i ≤ [xi]SOCmax
i , ∀i ∈ I, ∀t ∈ T (15)

rt
ch,i ≤ rmax

ch,i , ∀i ∈ I, ∀t ∈ T (16)

rt
dch,i ≤ rmax

dch,i, ∀i ∈ I, ∀t ∈ T (17)

∑
i∈I

pdt
i ≤∏

pd
, ∀i ∈ I, ∀t ∈ T (18)

∑
wi

pt
wi = uw(t), ∀t ∈ T (19)
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∑
i∈I

dt
i = uL(t), ∀t ∈ T (20)

L(Λt) > TSIB, ∀t ∈ T (21)

Equation (3) tries to minimize the construction cost of BESS in the preventive control
stage and the system operation and load shedding cost under the worst-case scenario
of wind energy and load in the emergency control stage. Constraint (4) represents the
budget constraints for the BESS investments. The 0/1 variables in Constraint (5) are used
to show whether a BESS construction is undertaken in a node (e.g., 1 means a construction
is chosen). Constraint (6) is the node power balance equation that represents DC power
flow at the preventive control state. Constraint (7) is the branch power flow limit equa-
tion. Constraint (8) presents the power output limits. Unit climbing constraint equation is
described in Constraint (9). Constraint (10) denotes the emergency load shedding limits
at the emergency control state. Constraint (11) limits phase angles of transmission lines.
Constraint (12) describes the charge and discharge stage of the BESS except for the initial
time. Constraint (13) presents the BESS state of charge in the first time step. Constraint (14)
means that the final BESS state of charge is equal to the initial BESS state of charge. Con-
straint (15) provides the BESS minimum and maximum capacity. Constraint (16) and (17)
describe the BESS charge and discharge rate limits, respectively. Constraint (18) limits the
load shedding budget. Constraint (19) and (20) mean that the wind energy and load are
equal to the values of uncertain variables corresponding to each time period. Equation (21)
is the developed transient stability constraint.

4. Solution Methodology
4.1. Compact Matrix Form

Normally, an adaptive robust optimization model can be solved by C&CG method.
However, this paper proposed a novel coordinated preventive and emergency control
framework with transient stability constraint. As a result, the traditional C&CG method
cannot be directly used. This paper investigated an improved C&CG algorithm that can
solve the modified two-stage proposed model.

The compact form of the coordinated transient stability control model can be repre-
sented as below:

min
x

(cT
1 x + max

u∈U
min

y∈Ω(x,u)
cT

2 y) (22)

where x and y are the requirement variables and the detailed form can be denoted as follows:
x = [xi]

T

y = [pt
gi, pdt

i , pt
wi, dt

i , θt
i , SOCt

i , rt
ch,i, rt

dch,i]
T ,

t = (1, 2 . . . NT)

(23)

where the requirement variable of the first stage is x and the requirement variables of the
second stage are u and y. The minimum problem of the inner layer is equivalent to objective
Equation (3), which represents the minimum system operation budget. The expressions of
x and y are shown in Equation (23). Ω(x, u) is the feasible zone of requirement variable y,
and the detailed expression can be described as follows:

s.t. Ω(x, u) = {Ax ≥ e, x ∈ {0, 1} → λ1 (24)

Dy ≥ d → λ2 (25)

Ky = k → λ3 (26)

Fx + Gy ≥ h → λ4 (27)

Hy = u → λ5} (28)
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Here, variables c1 and c2 are the parameter vectors of Equation (3). A, D, K, F, G, and H
are the parameter matrixes of the variables for the corresponding constraints, and e, d, k, h,
and u are the constant columns vectors. Equation (24) corresponds to Equations (4) and (5).
Equation (25) represents inequality constraints in the developed adjustable robust model,
including Equations (7)–(11) and (16)–(18). Equation (26) represents equality constraints
in the proposed model, including Equations (6), (12)–(14), (19), and (20). Equation (27)
corresponds to Equation (15). Equation (28) shows that, in the proposed model, the values
of wind energy and load are the corresponding uncertain values in each time period. Λ1, λ2,
λ3, λ4, and λ5 are the dual variables corresponding to each constraint in the lower stage.

4.2. Model Framework Reformulation

In terms of the developed adaptive optimization model, column constraint genera-
tion algorithm (C&CG) is used to solve the proposed problem. After decomposition of
Equation (22), the main problem can be written as:

min
x

cT
1 x + η (29)

s.t. η ≥ cT
2 yl (30)

Ax ≥ e, x ∈ {0, 1} (31)

Dyl ≥ d (32)

Kyl = k (33)

Fx + Gyl ≥ h (34)

Hyl = u∗l (35)

∀l ≤ j (36)

where j is the current iteration; yl is the solution of the subproblem after the lth loop. u∗l is
the value of variable u in the worst contingence achieved after the lth loop.

The subproblem can be expressed as follows:

max
u∈U

min
y∈Ω(x,u)

cT
2 y (37)

The Equation (22) can be converted into the following dual problem:

max
u∈U,λ1−λ5

eTλ1 + dTλ2 + kTλ3 + (h− Fx)Tλ4 + uTλ5 (38)

s.t. Aλ1 + Dλ2 + Kλ3 + Gλ4 + Hλ5 ≤ c2 (39)

λ1 − λ5 ≥ 0 (40)

The developed model is finally decoupled into the main problem corresponding to
Formulas (29)–(36) and sub-problem corresponding to Formulas (38)–(40) with mixed
integer linear form. However, the researched coordinated control model includes transient
stability constraint. As a result, the model cannot be directly solved by traditional C&CG
method. Therefore, we proposed a novel solution that combines the original C&CG method
with transient stability assessment to solve the developed model. The process of the
improved solution algorithm is as follows:

(1) Given the values of a group of uncertain variables as the initial worst contingence, set
the operational cost lower limit LB = −∞, the upper bound UB = +∞, corresponding
to the final dispatch scheme, and the iteration number k = 1;

(2) Solve the main problem formulas (29)–(36) according to the worst contingence u∗1 , and
obtain the solution (x∗k , η∗k ), where the objective equation value of the main problem is
taken as the new lower limit LB = cT

1 x + η;
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(3) Substitute the obtained main problem solution x∗k into Equations (38)–(40), solve the
subproblem, obtain the value of the objective equation f ∗k (x∗k ) of the subproblem, the
value of the corresponding uncertainty variable u in the worst contingency, which is
u∗k+1, and the second stage variable value of load shedding, which is y∗k ;

(4) If the system is unstable with the load shedding amount, add the DPG-based transient
stability constraint to the subproblem and solve it again until the system is stable;

(5) Update the upper limit UB = min {UB, f ∗k (x∗k )}, The convergence threshold is ε, If UB
− LB ≤ ε, then stop the loop and return solutions x∗k and y∗k ; otherwise, add variable
yk+1 and the following constraints to the master problem:

η ≥ cT
2 yk+1

Dyk+1 ≥ d
Kyk+1 = k
Fx + Gyk+1 ≥ h
Hyk+1 = u∗k+1

(41)

(6) Set k = k + 1; go to step 2 until the method meets the condition of the convergence.

The flowchart of the developed novel solution algorithm including the original C&CG
method with transient stability constraints is shown in Figure 3.
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5. Case Studies

The proposed coordinated transient stability control model is illustrated on the modi-
fied IEEE 30 and 39 bus system [47]. To build the data-driven model proposed in this paper,
data under various transient scenarios are needed for training. However, the probability
of fault scenarios in actual operation is very low, and it is difficult to collect data under
various transient fault scenarios. Therefore, MATPOWER [48] and Power System Analysis
Toolbox (PSAT) [49] are used for simulation. The improved IEEE 30 and 39 bus system are
adopted. On the basis of the original IEEE 30 bus system, a wind power plant model based
on PSAT software package and equivalent to multiple doubly fed wind turbines is added
at bus node 17, and the same wind power model is added at bus 32 of IEEE 39 bus system.

5.1. Construction of the Training Dataset

The developed two-stage robust optimization framework is implemented on the
improved IEEE 30 system. The test system includes 6 generators, 41 transmission lines, and
21 system loads. Select 10 lines from all lines of the benchmark system as the predicted fault
lines; set the single-phase short circuit fault to form the predicted fault set. The predicted
fault sets are shown in Tables 1 and 2.

Table 1. Contingency set of IEEE 30 bus system.

Fault Transmission Line Number Fault Lines

1 1–2
2 2–4
3 4–6
4 5–7
5 6–9
6 9–11
7 12–13
8 16–17
9 18–19
10 25–27

Table 2. Contingency set of IEEE 39 bus system.

Fault Transmission Line Number Fault Lines

1 1–2
2 2–4
3 4–6
4 5–7
5 6–9
6 9–11
7 12–13
8 16–17
9 18–19
10 25–26

The power generation is set to fluctuate within 90–110%. A thousand kinds of genera-
tor active power outputs are generated by Latin Hypercube sampling, and the system load
active power and reactive power fluctuate with the change in the total active power output
of the generator. The 1000 kinds of generator active power outputs and 10 expected fault
lines in the expected fault set are combined to form 10,000 kinds of expected fault data.
PSAT is used for time domain simulation calculation of the expected fault data, and the
fault removal time is set as 0.1 s and the total simulation time as 20 s. The corresponding
TSI is solved. The output of each generator corresponds to 10 TSIs, and the smallest TSI
among the 10 TSIs is selected. Together with the output of this generator, 1000 sample data
are formed for training the deep-learning-based transient stability predictor.
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5.2. Transient Stability Predictor

The 1200-sample dataset was divided into a 960-sample training dataset and a
240-sample test dataset. The transient stability predictor was trained using the training set,
and the accuracy of the model was verified by the test set.

As illustrated in Figure 4, considering the bus nodes as the vertices and the lines as
the edges, we can transform the power node system into a graph neural network structure.
Then, we use the GNN (graph neural networks) and ReLU (rectified linear unit) to obtain
the information for the bus nodes. According to the learned node characteristics, such as
active power, reactive power, voltage, and phase angle, we apply the proposed DPG model
to describe the information distribution among bus nodes so as to learn the information
graphic representation used to describe the state of the power system. Finally, the obtained
representations can be used as inputs to common prediction models to realize transient
stability analysis.
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Figure 4. The illustration of the proposed distribution preserving graph representation learning (DPG).

In order to verify the effectiveness of the proposed DPG method [50], we conducted
a comparative simulation test with six different popular machine learning algorithms. In
addition, different precision indexes, such as accuracy, F1 score, and true negative rate
(TNR), were used to measure performance.

From Table 3, we can see that the developed distribution preserving graph representation
learning (DPG) algorithm performs best for all the forecasting precision indexes. The main
reason is that the proposed DPG method considers the topology of power system data structures
as the main consideration, which can significantly improve the computation effectiveness.

Table 3. Comparison of prediction results of different machine learning methods on IEEE 30 bus system.

Algorithms Accuracy F1 True Negative Rate

Logistic Regression 93.9 95.2 85.1
support vector machine 85.8 91.0 85.9

random forest 98.9 98.6 97.1
XGBoost 98.6 99.1 97.5

artificial neural network 98.4 98.8 97.5
DPG 99.3 99.4 98.5

5.3. Analysis of Coordinated Transient Stability Control Results
5.3.1. Generators Active Power Outputs Analysis

The DPG-based transient stability predictor is embedded into the two-stage robust
optimization to control the outputs of transient unstable generators. In terms of IEEE 30
and 39 bus system, generators’ outputs before and after collaborative control are shown in
Tables 4 and 5, respectively.
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Table 4. Comparison of generators’ active power outputs before and after collaborative transient
stability control of IEEE 30 bus system.

Generator
Power Outputs

before
Collaborative
Control/MW

Power Outputs
after

Collaborative
Control/MW

Power Outputs
Adjustment/MW

Total Power
Outputs

Changed/MW

1 245.6 232.4 −13.2

−22.6

2 389.2 422.5 33.3
3 532.6 552.9 20.3
4 563.1 524.5 −38.6
5 528.4 553.4 25
6 631.3 589.7 −41.6
7 653.8 624.6 −29.2
8 846.6 868.0 21.4

Table 5. Comparison of generators’ active power outputs before and after collaborative transient
stability control of IEEE 39 bus system.

Generator
Power Outputs

before
Collaborative
Control/MW

Power Outputs
after

Collaborative
Control/MW

Power Outputs
Adjustment/MW

Total Power
Outputs

Changed/MW

1 258.6 272.1 13.5

−15.7

2 599.0 610.8 11.7
3 629.7 672.0 42.4
4 675.6 648.1 −27.5
5 519.5 471.9 −47.6
6 642.8 630.8 −11.9
7 610.3 588.1 −22.1
8 496.7 556.2 59.5
9 852.5 836.4 −16.1
10 955.6 938.0 −17.6

From Tables 4 and 5, the average generators power outputs decreased after the coordi-
nated transient stability control. It is also worth mentioning that the total operation cost
also dropped because of the decreased power outputs.

5.3.2. Transient Stability Index (TSI) Analysis

Finally, PSAT was used to verify the collaborative control strategy, and the time-
domain simulation method was used to calculate the TSI before and after the collaborative
control under each expected fault. The TSI pairs before and after the collaborative control
of the IEEE 30 and 39 test systems were shown in Tables 5 and 6, respectively.

Table 6. Comparison of TSI before and after collaborative transient stability control of IEEE 30 bus system.

Fault Number Before Collaborative
Control

After Collaborative
Control TSI Adjustment

1 65.7 66.5 0.8
2 65.9 66.6 0.7
3 65.3 66.9 1.6
4 66.5 67.2 0.7
5 65.8 66.4 0.6
6 67.0 67.5 0.5
7 −98.7 69.6 168.3
8 67.6 68.7 1.1
9 68.3 69.0 0.7
10 −97.3 68.9 166.2

As can be seen from Tables 6 and 7, the faults that are transient unstable before
collaborative control become transient stable after collaborative control, while the faults
that are transient stable before collaborative control remain transient stable. It also can
be seen that TSIs are slightly improved, which can indicate that the coordinated control
strategy also appropriately increases the system transient stability margin for the full
fault set.
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Table 7. Comparison of TSI before and after collaborative transient stability control of IEEE 39 bus system.

Fault Number Before Collaborative
Control

After Collaborative
Control TSI Adjustment

1 68.7 69.5 0.8
2 68.9 69.4 0.5
3 68.9 69.3 0.4
4 69.5 70.2 0.7
5 68.8 69.4 0.6
6 69.0 69.5 0.5
7 −99.7 69.9 169.6
8 68.6 69.6 1.0
9 69.3 70.0 0.7
10 −98.3 69.5 167.8

5.3.3. Rotor Angles and Voltage Curves Analysis

Table 8 shows two contingency scenarios for different fault lines of IEEE 39 bus system.
We perform scenario 1 and scenario 2 for the simulation, and the generator rotor angles
and voltages are shown in the following figures.

Table 8. Contingency scenarios of IEEE 39 bus system.

Scenario No. Fault Line Fault Time Fault Clear Time

1 25–26 0.1 s 0.311 s
2 26–29 0.1 s 0.3 s

Figures 5 and 6 show the power angle curves before and after collaborative control
of the IEEE 39 system under single-phase short circuit fault of the lines (bus 25 to bus 26;
bus 26 to bus 29); it is clear that the benchmark test system is unstable since the collabora-
tive transient stability control is not performed. However, the system changed to stable
after the collaborative control.
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Figures 7 and 8 show the voltage curves before and after collaborative control of
the IEEE 39 bus system under single-phase short circuit fault of the line (bus 25 to bus
26; bus 26 to bus 29); the test system is unstable since the collaborative transient stability
control is not carried out. However, the system changed to stable after the collaborative
control. The voltage curves further validate the effectiveness of the proposed collaborative
transient stability control.
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6. Conclusions

In this paper, distribution preserving graph representation learning (DPG) and
two-stage robust optimization framework were introduced into a transient stability cooper-
ative control model and a deep-learning-driven improved algorithm for transient stability
coordinated control of power systems was proposed. The proposed improved algorithm
includes a set of transient stability predictors based on DPG and accurately fits the mapping
relationship between generator outputs and transient stability index (TSI) by the training
method of “unsupervised pre-training-parameter optimization”. Different from conven-
tional artificial intelligence algorithms, this paper embedded the trained transient stability
predictor as a “black-box constraint” into the iterative optimization process of two-stage
robust optimization. A data-driven optimization technique for the cooperative control
strategy of generation rescheduling and load shedding with the goal of controlling cost
minimization was proposed in this paper.

This research work developed a novel approach for transient stability collaborative
control. It also provides reference for embedding similar power system stability rules into
corresponding control models.
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Nomenclature

A. Set
I Set of all buses.
G Set of generators.
T Set of time horizon.
B. Parameters
∏BESS Construction budget for BESS.
∏pd Upper limit of load shedding.
Bi,j Susceptance of branch (i, j).
cBESS

i Construction cost for BESS at bus i.
cp

gi Generation cost of generator g at bus i.
cd

i Cost of load shedding at bus i.
Fmin

i,j Lower bound of branch power flow capacity.
Fmax

i,j Upper bound of branch power flow capacity.
pmax

gi Upper generation limit of generator g at bus i.
pmin

gi Lower generation limit of generator g at bus i.
pdmax

i Upper load shedding limit at bus i.
pdmin

i Lower load shedding limit at bus i.
θmax

i Maximum rotor angle at bus i.
θmin

i Minimum rotor angle at bus i.
SOCmax

i Maximum state of charge at bus i.
SOCmin

i Minimum state of charge at bus i.
rmax

ch,i Maximum charge amount at bus i.
rmax

dch,i Maximum discharge amount at bus i.
ηch Charge factor of BESS.
ηdch Discharge factor of BESS.
C.Decision Variables
xi On–off variable for BESS construction.
θt

i Phase angle at bus i in time step t.
SOCt

i State of charge at bus i in time step t.
pdt

i Load shedding at bus i in time step t.
pt

gi Power output of unit g at bus i in time step t.
rt

ch,i The charge power of BESS at bus i in time step t.
rt

dch,i The discharge power of BESS at bus i in time step t.
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