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Abstract: The shape design of the Tubular Linear Synchronous Motor (TLSM) is a critical engineeri
ng optimization problem which was handled as single- and multi-objective optimization frameworks.
However, the different practical constraints for the TLSM design must be efficiently guaranteed. This
paper proposes a developed multi-objective shape design of the TLSM to maximize the operating
force and minimize the flux saturation. In this regard, a Multi-objective Grey Wolf Optimizer
(MGWO) is developed, including an outside archive with a predetermined size that is integrated
for storing and retrieving Pareto optimal solutions. Using this knowledge, the grey wolf social
structure would then be established, and, in the multi-objective searching environments, grey wolf
hunting behavior would then be replicated. The superiority and effectiveness of the developed
MGWO is assessed in comparison to the Multi-objective Flower Pollination Algorithm (MFPA), Multi-
objective Lichtenberg Algorithm (MOLA), and Multi-objective Grasshopper Optimization Algorithm
(MGOA). The outcomes illustrate that the developed MGWO provides an average improvement of
73.46%, 19.07%, and 15.15% compared to MFPA, MOLA, and MGOA, respectively. The validation
of the developed MGWO is extended for a multi-objective form of welded beam design (WBD) by
simultaneously minimizing the deflection and the manufacturing costs. Similar findings are obtained
with different reference points, the developed MGWO provides an average improvement of 2.8%,
0.7%, and 3.04% compared to MFPA, MOLA, and MGOA, respectively.

Keywords: grey wolf algorithm; pareto archive; multi-objective shape design of tubular linear
synchronous motor; maximizing the operating force; minimizing the flux saturation

1. Introduction

Nature presents several multi-objective design problems in the real world. Even for
scientists and engineers with a wide range of specialties, multi-objective optimization
problems have become quite important. Nonetheless, despite significant progress, the
robustness and effectiveness of existing techniques for addressing multi-objective opti-
mization issues remained largely insufficient [1]. As a result, there is constant space for
improvement. This is required for multi-objective optimization problems to continue to be
an interesting study topic.

Swarm intelligence, evolutionary algorithms, physics-based techniques, and human-
based algorithms make up the four fundamental categories of meta-heuristic methods.
At first, swarm intelligence approaches, such as particle swarm optimization (PSO) [1],
jellyfish search technique [2,3], Aquila optimization algorithm [4,5], hunter prey-based op-
timization [6,7], gorilla troops algorithm [8], and honey badger algorithm [9,10], have been
inspired by swarming and animal group behaviors. Second, evolutionary computer algo-
rithms have been developed based on the representation of biological evolutionary aspects,
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such as crossovers, mutations, and selections [11–13]. Additionally, physics-based tech-
niques are motivated by physical laws, such as Archimedes optimization algorithm [14,15],
electromagnetism-like algorithm [16], big bang-big crunch algorithm [17], and gravita-
tional search algorithm [18], Henry gas solubility method [19], and motivate physics-based
strategies. Finally, human behavior and evolution provide people the ability to become
quite familiar with their environments, leading to the development of human-inspired
optimizers, such as heap-based optimizers [20], teaching learning-based optimization [21],
imperialist competitive algorithms [22], and social network search techniques [23].

In recent years, multi-objective optimization techniques have evolved dramatically.
They attempt to provide a range of benefits, including the capacity to identify multiple
solving options inside a single test, non-reliance on derivatives, quick convergence, precise
Pareto-optimal set, and exhibiting the flexibility in managing both continuous and com-
binational parameters simultaneously with ease [24]. They also aim to make people less
vulnerable to the form or continuity of the Pareto front [25]. To solve the multi-objective
optimization challenges, several evolutionary strategies have been investigated [26–30].
Rizk-Allah et al. [31] presented a multi-objective fruit fly technique to solve the TLSM
optimizing design. The fruit fly algorithm is initially started using a swarm of randomly
selected fruit flies. During the early stages, the nearest non-dominated fruit fly assumes
the role of the dominated individual. The fruit flies eventually engage in an evolutionary
process by arbitrarily moving around the non-dominant alternative for each target. After
that, either from the prior non-dominated position or the reference point, the fruit flies are
upgraded to the closest place. The reference point is utilized to emphasize the convergence
of the non-dominated alternatives, and the weighted sum approach has been included
to modify the prior optimal positions of fruit flies. Despite its significant application in
acquiring diversified Pareto solutions, its ability to meet design restrictions was called
into doubt. The JAYA optimization algorithm has been utilized by Rao et al. in [32] to
optimize several design constraints where its strategy combines the global optimal solution
attraction of swarm intelligent techniques with the strongest survival concept of evolution-
ary algorithms. To solve three mechanical design issues and come up with the optimum
gear train design, WBD, and tension/compression spring, a butterfly method was created
and enhanced by Arora et al. in [33]. This algorithm includes an exploitation phase of
advancement, which delivers solutions that give extra opportunities to enhance themselves.
On the other side, both studies [32,33] were dealing with the WBD in a single-objective
minimization model.

Yang et al. [34] introduced a Multi-objective Flower Pollination Algorithm (MFPA),
which was inspired by the pollination process of flowering species. Pereira et al. [35]
presented a Multi-objective Lichtenberg Algorithm (MOLA), which draws inspiration from
Lichtenberg patterns and the spread of radial intra-cloud lightning. Since it dispenses
the locations to be assessed in the fitness function under a Lichtenberg graph, which is
snapped in dimensions and distinct rotations at every iteration, the technique calculates
in its optimization workout a combination system relying on both the population and the
trajectory, exhibiting a remarkable ability for exploitation and exploration. Mirjalili et al. [36]
introduced a Multi-objective Grasshopper Optimization Algorithm (MGOA) inspired by
grasshopper swarm navigation in nature. Inside the swarm, the interaction between
grasshoppers comprises forces of repulsion and attraction, and safe zones. Additionally,
the Pareto optimum front for multi-objective problems is therefore estimated using an
archiving and target-choosing strategy included in the algorithm.

The grey wolf social structure and hunting methods are simulated by GWA. Grey
wolves’ primary hunting techniques include searching for their target, encircling, and
attacking their prey. GWA has several unique features of simplicity, convergence speed,
and effectiveness, which makes it an application tool for several engineering problems,
such as transport network optimization [37], solid oxide fuel cell representation model [38],
forecasting the carbon price [39], localization stability improvement and error minimization
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of wireless sensor networks [40], energy consumption estimation of electric buses [41], and
coordination of static reactive power devices in distribution networks [42].

The metaheuristic optimization problem is an interesting research topic, which has
been widely utilized in mechanical engineering and smart materials. Ding et al. [43]
suggested a harmony search algorithm searching for the optimum design of flexure-based
mechanism for non-circular diamond turning operation. Additionally, Yang et al. [44]
provides an efficient application of PSO in order to optimally identify the Preisach model
parameters for piezoelectric actuators. To design a MGWO, an exterior repository with
a predefined size, as a non-dominated Pareto set, is added [45]. The exterior repository
is a straightforward storage mechanism that could store or recover existing Pareto non-
dominated solutions. A controlling approach that manages the repository whenever a
solution wishes to access the archiving or when it is completed is its primary module. The
exterior repository can only have a certain number of members. The current non-dominated
alternatives are contrasted to the repository population throughout the repetition process.

1.1. Proposed Novelty of This Research

In this study, a Multi-Objective Grey Wolf Optimization (MGWO) for the Multi-
Objective Shape Design of Tubular Linear Synchronous Motors is developed. For storing
and retrieving Pareto optimal solutions, the MGWO includes an outside archive with a
predetermined size built in. The social structure of grey wolves would then be established
using this data, and multi-objective search settings would be used to model grey wolf
hunting behavior. By maximizing the operating force and limiting the flux saturation,
TLSMs can manage the multi-objective form design. The developed MGWO is compared to
several recent algorithms of MFPA, MOLA, and MGOA. The superiority and effectiveness
of the developed MGWO, compared to MFPA, MOLA and MGOA, is demonstrated in
terms of their single-objective and multi-objective optimization frameworks for TLSM
engineering problem. The results clearly indicate how efficient the proposed MGWO is
at locating non-dominated solutions. When compared to MFPA, MOLA, and MGOA,
the developed MGWO retains an average improvement of 73.46%, 19.07%, and 15.15%,
respectively. The validation of the proposed MGWO is expanded to a multi-objective
form of welded beam design (WBD) by minimizing deflection and manufacturing costs
at the same time. Similar outcomes have been achieved with different reference points;
the proposed MGWO yields an average improvement of 2.8%, 0.7%, and 3.04%, when
compared to MFPA, MOLA, and MGOA, respectively.

1.2. Key Contribution of the Paper

The key contribution points in this paper can be classified into two categories:
From engineering point of view:

• A developed MGWO is mathematically employed and developed for the multi-
objective shape design of TLSM and WBD issues;

• All engineering design constraints are satisfied based on the developed MGWO in
contrast to the multi-objective fruit fly method [31].

From mathematical point of view:

• When comparing GWA to FPA, LA, and GOA for both design problems, single-
objective optimization frameworks, GWA offers higher superiority, better convergence,
and greater robustness;

• Higher hypervolume indications show that the created MGWO outperforms the MFPA,
MOLA, and MGOA when different reference points are taken into account for both
design problems;

• Furthermore, the proposed MGWO demonstrates greater efficiency and superiority
versus true fronts of NSGA II, MFPA, MOLA, and MGOA for WBD based on differ-
ent metrics presented in the literature, such as hypervolume, generational distance,
inverted generational distance, spread, generalized-spread, and additive epsilon.
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2. Multi-Objective Shape Design of Tubular Linear Synchronous Motor
2.1. Tubular Linear Synchronous Motor’s Basic Configuration

A TLSM’s arrangement is depicted in Figure 1 [46,47]. The conductors create rings in
the slots of the hollow cylinder that serves as the armature. A little part made of magnets
moves within that armature. The cross-sectional images of the TLSM for big and small
sizes are depicted in Figures 2 and 3 [31]. The interplay of the magnetic field and currents
results in the magnetic force. Flux density, conductor length, and current flowing through
the conductors are multiplied together to produce the magnetic force.

Figure 1. TLSM with stationary coils and a moving magnet [46,47].

Figure 2. TLSM cross-section [31].
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Figure 3. TLSM’s cross-section around one pole pitch long [31].

2.2. Design Assessment of TLSM

The current flowing through each slot, its size, and the magnet’s height are the perti-
nent regulatory design variables. The settings of these design variables are constrained by
the existing design. The current flowing through each slot is indicated in amperes (A), the
density of the flux is indicated in tesla (T), and the lengths are represented in meters (m).
Reconsidering the following presumptions for the TLSM design issue:

• Copper is thought to be the main component of conductors;
• Iron Boron magnets with high-density Neodium would be used as permanent magnets;
• The fill factor kF is equal to 0.6;
• The air gap width is selected at the shortest permitted value, taking into account

production issues (1 mm);
• The magnetic force produced by the TLSM only fluctuates to the amount the flux

density (B), length of magnetic pole (l), or current in the conductor (I) and fluctuates
with the number of poles (p); it does not explicitly depend on the pole pitch (τp);

• Due to manufacturing constraints, the magnet spacing is roughly double the gap width,
resulting in a pole pitch that is significantly lower than the 25 mm limit. Therefore, the
number of poles is selected to be 40, and the pole pitch is 27 mm because the number
of poles must be an even integer, and because the overall length is 1.09 m;

• Both the height of the magnet and the height of the slot are constrained by the motor’s
radius. The slot thickness can be up to one-third the pole pitch thick;

• A maximum heat dissipation rate of 4000 W is taken into consideration.

2.3. TLSM Design Objectives Optimization

The goal is to design a direct-drive electric actuator to replace the current hydraulic
cylinder drive of a submarine’s Universal Modular Mast, or periscope component. The
present hydraulic cylinder measures about 4 m in length and 16 cm in diameter. However,
the potential actuator must have a stroke of roughly 3 m, resulting in an actual permissible
length for the actuator of 1.09 m [31]. The present hydraulic actuator raises the mast into
the desired position via a pulley/cable system. During different phases of operation, it
produces forces spanning from 13,000 N to 30,000 N. Alternatives to hydraulic actuation
must work within the current hydraulic cylinder envelope and produce comparable forces.
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The design challenge can be phrased as follows and is known as an optimization
problem [47]. To optimize the TLSM design as provided in Equations (1) and (2), two
objective functions are taken into consideration. The first objective function, which is
expressed as “decrease saturation”, and the second objective function, “maximize magnetic
force”, are equivalent.

MinimizeF1(x) = 165.13× ts +
1.3× hm

0.00117 + hm
(1)

MaximizeF2(x) =
653.451× hm × ins× (hm + hs

2 + 0.02825)
0.00117 + hm

(2)

where, F1(x) is the flux saturation; ts indicates the slot thickness; hm refers to the height of
the magnet; F2(x) is the operating force; hs is the height of the slot; and ins represents the
slot current.

In order to convert the maximization function towards a minimization form,
Equation (2) can be multiplied by −1 as follows:

MinimizeF2(x) = −
[

653.451× hm × ins× (hm + hs
2 + 0.02825)

0.00117 + hm

]
(3)

2.4. TLSM Design Constraints Optimization

Owing to resistance losses, the electrical conductors, which carry currents in the
armature portion of the TLSM generate heat in order to comply with the heat restriction.
The volume space of the conductors and the electrical current passing through them both
affect how much heat is produced. As a result, the conductors current and TLSM power
are constrained by the thermal dissipation limitation in the following ways:

G1(x) = −
1.92× ins2 × (hm + hs

2 + 0.02825)
ts × hs

(4)

where, G1(x) is the first inequality constraint related to the thermal dissipation limitation.
Second, both the entire radius and the length are restricted for the TLSM in the analysis.

The overall radius cap places restrictions on the sizes of various motor parts.

G2(x) = (hs + hm)− (0.0266 + 3ts) ≤ 0 (5)

where, G2(x) is the second inequality constraint related to the overall radius cap
places restrictions.

Third, the saturation constraint’s highest level serves as a restriction as follows:

G3(x) =
1.3hm

(0.00117 + hm)
+ (165.13ts)− 1.5 ≤ 0 (6)

where, G3(x) is the third inequality constraint related to the saturation limitation.
Fourth, at specific points during the motor’s operation, the armature current field

balances the magnetic field. Therefore, the demagnetizing constraint is another restriction
on the armature current, as:

G4(x) =
[

6.28× 10−7

(0.00105 + hm)× hm
× (0.00105 + hm)× ins

]
− 1.17 ≤ 0 (7)

where, G4(x) is the first inequality constraint related to the demagnetizing limitation.
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Finally, the minimal force should be limited as follows:

G5(x) = 15× 103 −
[

653.451× (hm + hs
2 + 0.02825)× ins

(0.00117 + hm)

]
≤ 0 (8)

where, G5(x) is the first inequality constraint related to the minimal force limitation.

3. Developed MGWO for Solving Multi-Objective Shape Design of TLSM
3.1. Grey Wolf Algorithm

The grey wolf social structure and hunting methods are simulated by the GWA. Grey
wolves’ primary hunting techniques include of searching for their target, surrounding
it, then striking it. Alpha (α) is regarded as the strongest dominant participant of the
GWA family. The remaining junior participants, known as beta (β) and delta (∆), assist in
regulating the vast bulk of wolves, known as omega (ω). Beta, delta, and alpha possess a
greater understanding of the likely position of the target prey. The other wolves in the pack
should adjust their placements in view of the top three alternatives since they outperformed
all the wolves in the pack, where their total number is indicated by (Nw). These actions can
be described as follows [48–50]:

→
Dα =

∣∣∣∣−→Y +
→
Cα

→
Yα

∣∣∣∣ (9)

→
Dβ =

∣∣∣∣−→Y +
→
Cβ

→
Yβ

∣∣∣∣ (10)

→
Dδ =

∣∣∣∣−→Y +
→
Cδ

→
Yδ

∣∣∣∣ (11)

→
Y1 =

→
Yα −

→
Dα

→
A1 (12)

→
Y2 =

→
Yβ −

→
Dβ

→
A2 (13)

→
Y3 =

→
Yδ −

→
Dδ

→
A3 (14)

→
Ynew =

→
Y1

→
+Y2 +

→
Y3

3
(15)

where the locations of the delta, beta, alpha are represented, respectively, by Y∆, Yβ, and
Yα, while their accompanied distances are indicated, respectively, by D∆, Dβ, and Dα, the
distance between the alpha, beta, and delta, respectively. The wolf’s new location is Ynew,
whereas Y refers to its current one.

The following formula is used to determine the vectors of coefficients A and C:

→
A = 2

→
a r−→a (16)

where,
→
A =

→
A1 =

→
A2 =

→
A3 (17)

→
C = 2r (18)

where,
→
C =

→
Cα =

→
Cβ =

→
Cδ (19)

where a randomized value, r, is used.
The next formula describes the linear drop of the coefficient a from 2 to 0:

→
a = 2.(1− It

MxIt
) (20)
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where, It represents the existing repetition, and MxIt signifies the ultimate repetition number.
Figure 4 displays the basic steps of GWA.

Figure 4. Basic steps of GWA.

As the first population, the GWA begins the optimization journey by producing
a group of arbitrary alternatives. The current three top results are stored and referred
to as alpha, beta, and delta wolves, respectively, through development. The position



Energies 2023, 16, 2409 9 of 27

update Formulas (9) through (15) are activated for each omega wolf. In the meantime,
over the duration of a repetition, factors a and A are linearly lowered. As a result, based
on their changed values, searching wolves prefer to disperse away the target prey and
consolidate somewhat on the target prey. Eventually, whenever an end criterion is met,
the location and fitness of the alpha option are supplied as the optimal outcomes from the
optimization process.

3.2. Developed Multi-Objective Grey Wolf Algorithm for TLSM Design

In order to design a MGWO, an exterior repository with a predefined size, as a non-
dominated Pareto set, is added [45]. The exterior repository is a straightforward storage
mechanism which could store or recover existing Pareto non-dominated solutions. A
controlling approach that manages the repository whenever a solution wishes to access the
archiving or when it is completed is its primary module. The exterior repository can only
have a certain number of members. The current non-dominated alternatives are contrasted
to the repository population throughout the repetition process.

A deleting procedure is carried out after the repository is complete. The most con-
gested sections will be first chosen, and an alternative is arbitrarily removed from any
section to make room for the incoming alternative. The insertion of a solution from out-
side hypercubes is a specific situation [51]. In this instance, all of the portions have been
expanded to include the fresh approaches. As a result, other solutions’ portions can also
be modified.

Additionally, a leader selection approach is the second element, and it helps select
alpha, beta, and delta solutions as the process’s leaders when searching through the archive.
In the GWA, the alpha, beta, and delta are selected as they provide the least fitness value.
In the MGWO, the leader picking mechanism selects the search space’s least populated
areas and presents one of the non-dominated options as an alpha, beta, or delta wolf. For
every hypercube, the choice is made using a roulette-wheel approach [52], having the
corresponding probability (Probj):

Probj =
Fc
Nj

(21)

where, N represents the total quantity of successful Pareto-optimal solutions in the ith

sector, and Fc is a fixed value bigger than one.
In order to handle the TLSM design with their bi-objective functions, F1 and F2, as

indicated in Equations (1) and (3), have to be addressed concurrently using the suggested
framework, according to the limitations stated above in Equations (4)–(8). For every new
location of the created grey wolf, both objectives are evaluated. To handle the several
limitations, a penalty function (PF) should be estimated and added to both fitness functions
as follows:

PF =
5

∑
j=1

λ×Rj × Gj(x) (22)

where, λ is a penalty factor with value of 1015, and Rj is a binary coefficient that is defined in
Equation (23). It has a value of one if the constraint is violated, and so the penalty function
will have a high value. The more the number of violated constraints the more the penalty
function will be.

Rj =

{
1 Gj(x) > 0
0 Gj(x) ≤ 0

(23)

Figure 5 displays the main steps of the Developed MGWO for TLSM Design.
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Figure 5. Main steps of the developed MGWO for TLSM design.

4. Simulation Results

In this section, the developed MGWO technique is applied for the multi-objective form
design of TLSMs by maximizing the operating force and minimizing the flux saturation.
The developed MGWO is compared to several recent algorithms of MFPA [34], MOLA [35],
and MGOA [36]. Three different cases are investigated.

In addition, the application of the developed MGWO technique is extended for
one of the practical benchmark design problems to optimize the multi-objective form
of welded beam design (WBD) by simultaneously minimizing the deflection and the
manufacturing costs.

4.1. Applications for TLSM Design

For the TLSM design, three different cases are investigated. In the first and second
cases, the assessments of GWA, FPA, LA and GOA are performed in terms of their single-
objective optimization frameworks for the TLSM problem. The first case is dedicated
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to minimizing the flux saturation described in Equation (1), while the second case is
dedicated to maximizing the operating force by minimizing its negative model described in
Equation (3). GWA, FPA, LA, and GOA are performed 50 separate times with 100 search
agents and 500 repetitions. These circumstances guarantee fair comparisons between them
with 50,000 function evaluations. In the third case, the developed MGWO, MFPA, MOLA,
and MGOA are performed for the multi-objective optimization framework of the TLSM
design by simultaneously minimizing the fitness functions of Equations (1) and (3). The
permitted ranges for the control variables are as follows: slot current (ins) [0,∞] A, the
height of the slot (hs) [0, 0.08] m, the height of the magnet (hm) [0, 0.08] m, and slot thickness
(ts) [0,0.009] m.

4.1.1. First Case: Minimizing the Flux Saturation

Only minimizing the flux saturation described in Equation (1) is treated as a single-
objective target in this case. GWA, FPA, LA, and GOA are applied 50 times in this case,
and their best results in terms of control variables and outcome fitness values are listed in
Table 1.

Table 1. Optimal results of the GWA, FPA, LA, and GOA for TLSM design under first case.

Control Variables FPA GOA LA GWA

ins (A) 723.3687 782.4874 806.803 763.6964

hs (m) 0.002314 0.001812 0.001663 0.001944

hm (m) 0.034709 0.03644 0.037246 0.035914

ts (m) 0.00349 0.003894 0.004105 0.003754

F1 (Saturation) 1.4398 1.4329 1.440899 1.431472

As can be seen, the FPA, LA, and GOA attain values of flux saturation of 1.4398, 1.4329,
and 1.440899, respectively, while the GWA achieves the lowest value of 1.4312 for the flux
saturation. This indicates the high effectiveness of the GWA in locating the region of the
spectrum with the least flux saturation, which was discovered with slot current of 723.3687
A, slot height of 2.314 mm, magnet height of 34.709 mm, and slot thickness of 3.49 mm.
Additionally, Figure 6 shows the GWA, FPA, LA, and GOA’s best convergence curves.

Figure 6. Best Convergence curves of GWA, FPA, LA, and GOA for TLSM design under first case.

From Figure 6, GWA, FPA, LA, and GOA are beginning the search from an extremely
high value, which illustrates that all the design constraints are violated. With the progress
of the iterations, the GWA shows high speed in maintaining the inequality limitations at



Energies 2023, 16, 2409 12 of 27

115 iterations. GOA, FPA, and LA are then successfully tackling the inequality constraints
after 257, 307, and 380 iterations, respectively.

Figure 7 shows the box and whisker’s plot of GWA, FPA, LA, and GOA for TLSM
design under the first case to evaluate the robustness of the GWA, FPA, LA, and GOA
over the distinct runs. As demonstrated, the GWA performs best across all runs with the
lowest values of the evaluated objective. Table 2 presents the robustness indices of the
acquired fitness values of GWA, FPA, LA, and GOA to further demonstrate its success.
With the smallest indices of 1.431472 as the minimum, 1.43206 as the mean, 1.432432 as the
maximum, and 0.000278 as the standard deviation, the GWA in Table 2 exhibits the most
resilient behavior.

Figure 7. Box and Whiskers plot of GWA, FPA, LA, and GOA for TLSM design under first case.

Table 2. Robustness indices of GWA, FPA, LA, and GOA for TLSM design under first case.

Robustness Indices FPA GOA LA GWA

Min 1.4398 1.431443 1.440899 1.431472

Mean 1.451078 1.457765 7.347343 1.43206

Max 1.4581 1.488801 27.58696 1.432432

Std 0.004945 0.017357 6.664695 0.000278

In comparison to the reported fruit fly algorithm in [31], Table 3 verifies the constraints
justification based on the presented GWA for the TLSM design under the first case. For
that, all the constraints are guaranteed using the presented GWA, while two constraints are
highly violated due to the reported fruit fly algorithm.

Table 3. Constraints justification based on presented GWA versus Fruit Fly Algorithm [31] for TLSM
design under first case.

Design Constraints Presented GWA Fruit Fly Algorithm [31]

G1(x) −0.64478 −3236.93

G2(x) −4 × 10−6 −0.0316

G3(x) −0.06854 0.476092 *

G4(x) −0.9191 −1.16491

G5(x) −0.87989 13,416.17 *
* Refers to a violation.
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4.1.2. Second Case: Maximizing the Operating Force

Only the maximization of the operating force, as described in Equation (3), is consid-
ered a single- objective target. GWA, FPA, LA, and GOA are employed here, and their best
control variables and outcome fitness values are displayed in Table 4. Simultaneously, the
best convergence curves for the GWA, FPA, LA, and GOA are depicted in Figure 8.

Table 4. Optimal results of the GWA, FPA, LA, and GOA for TLSM design under second case.

Control Variables FPA GOA LA GWA

ins (A) 773.0942 787.5933 786.3318 781.7732361

hs (m) 0.002253 0.002158 0.002157 0.002209554

hm (m) 0.035994 0.036369 0.036213 0.036195653

ts (m) 0.003895 0.003978 0.003977 0.003936221

F2 (Force) 221,216,126.3 * 221,216,217.8 * 221,216,161.23 * 221,216,217.9 *
* Negative sign refers to the handling of the objective in a minimization form.

Figure 8. Best Convergence curves of GWA, FPA, LA, and GOA for TLSM design under second case.

As shown, the GWA reaches the lowest value of 16,217.9 N for the flux saturation,
while the FPA, LA, and GOA achieve levels of the force of 16,126.3 N, 16,217.8 N, and
16,161.23 N, respectively. With slot current of 781.77 A, slot height of 2.209 mm, magnet
height of 36.195 mm, and slot thickness of 3.93 mm, the GWA was highly effective in
locating the area of the spectrum with the least flux saturation.

To assess the robustness of the GWA, FPA, LA, and GOA over the various runs,
Figure 9 displays the box and whisker’s plot of the GWA, FPA, LA, and GOA for the TLSM
design under the second case. As shown, the GWA consistently outperforms all other runs
with the lowest values of the evaluated objective. To further illustrate its effectiveness,
Table 5 provides the robustness indices of the obtained fitness values of GWA, FPA, LA,
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and GOA. The minimum, mean, and maximum indices are all the smallest, measuring
16217.888 N, 16206.98 N, and 16199.74 N, respectively. For the standard deviation, the GWA
provides the least value of 4.3, while FPA, GOA, and LA deliver counterparts of 92.96,
346.04, and 380.81, respectively. Therefore, the improvement in the standard deviation
based on GWA records 96.31%, 98.74%, and 98.85% versus FPA, LA, and GOA, respectively.

Figure 9. Box and Whiskers plot of GWA, FPA, LA, and GOA for TLSM design under second case.

Table 5. Robustness indices of GWA, FPA, LA, and GOA for TLSM design under second case.

Robustness Indices FPA GOA LA GWA

Min −16,126.32831 −16,217.78324 −16,161.23305 −16,217.88823

Mean −15,845.95082 −15,752.72502 −15,519.26293 −16,206.98609

Max −15,739.31813 −15,193.0838 −14,949.19667 −16,199.74256

Std 92.96386002 346.0428138 380.808452 4.302506454
Negative sign refers to the handling of the objective in a minimization form.

Table 6 demonstrates the constraints justification based on the presented GWA for
the TLSM design under the second case in comparison to the reported fruit fly algorithm
in [31]. As a result, the presented GWA guarantees all of the constraints, while the second
constraint is slightly violated due to the reported fruit fly algorithm.

Table 6. Constraints justification based on GWA versus Fruit Fly Algorithm [31] for TLSM design
under second case.

Design Constraints Presented GWA Fruit Fly Algorithm [31]

G1(x) −0.7165554 −1554.1942

G2(x) −0.00000345 0.0795 *

G3(x) −0.0000712 −0.006406

G4(x) −0.9443427 −1.16793

G5(x) −1217.888 −2803.1081
* Refers to a violation.

4.1.3. Third Case: Simultaneous Maximizing the Force and Minimizing the Flux Saturation

In the third case, the multi-objective optimization framework of the TLSM design is
addressed by simultaneously minimizing the fitness functions of Equations (1) and (3).
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The developed MGWO, MFPA, MOLA, and MGOA are performed considering 100 search
agents in the exterior repository. The corresponding Pareto fronts are depicted in Figure 10,
which illustrates the significant superiority of the developed MGWO in finding better
solutions with lower saturations and higher forces in a simultaneous manner compared to
the others. To quantify the hypervolume indicator for all the compared methods, a transfer
mapping is carried out to the x-axis by adding a positive value of 16,500, and so, Figure 10
will be converted into Figure 11 considering a reference point of (16,000,1.5).

Figure 10. Obtained Pareto fronts of the developed MGWO, MFPA, MOLA, and MGOA for TLSM
design under third case.

Figure 11. Obtained Pareto fronts of Figure 10 after transfer mapping under third case.
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Table 7 displays the hypervolume indicators of the developed MGWO, MFPA, MOLA,
and MGOA for the TLSM design in the third case, considering various reference points. As
demonstrated, the developed MGWO provides the best performance. In comparison to the
MFPA, the developed MGWO provides improvement by 69.49%, 78.41%, and 72.5%, when
compared to the reference points (16,000,1.5), (16,500,1.6), and (17,000,1.75), respectively.
In comparison to the MOLA, the developed MGWO provides improvement by 25.08%,
17.17%, and 14.98%, respectively, with respect to the reference points. In comparison to
the MGOA, the developed MGWO provides improvement by 19.05%, 13.97%, and 12.44%,
respectively, with the reference points.

Table 7. Hypervolume indicators of MGWO, MFPA, MOLA, and MGOA for TLSM design under
third case.

Reference Points MFPA MOLA MGOA Developed MGWO

(16000,1.5) 0.000511 0.01093 0.01181 0.01459

Improvement 96.49% 25.08% 19.05% -

(16500,1.6) 0.01224 0.04696 0.04878 0.0567

Improvement 78.41% 17.17% 13.97% -

(17000,1.75) 0.03065 0.094795 0.09762 0.1115

Improvement 72.5% 14.98% 12.44% -

In addition to that, Non-dominated Sorting Genetic Algorithm II (NSGA II) is one of
the most applied and successful algorithms in multi-objective optimization in engineering
issues [53–55]. It is a genetic algorithm that uses non-dominated sorting and crowding
distance to find the Pareto optimal set of solutions for a multi-objective optimization
problem. Therefore, a comparative assessment is extended between the proposed MGWO
and NSGA II. Figure 12 displays the regarding obtained Pareto set by both the proposed
MGWO and the NSGA II.

Figure 12. Pareto set via MGWO and NSGA II.
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As shown, the proposed MGWO shows higher outperformance compared to the well-
known NSGA II since all their obtained solutions show significant dominance compared
to their counterparts related to the NSGA II. As can be seen from Figure 12, NSGA II is
not always worse than the proposed MGWO, whereas NSGAII always provides better
coverage of the PARETO front, as opposed to the gaps observed for the proposed algorithm;
however, the proposed MGWO shows higher capability in finding better solutions on the
basis of both objectives. The proposed MGWO shows higher capability over NSGA II in
finding better solutions that are dominating the counterparts obtained by NSGA II. Table 8
summarizes the corresponding metrics in terms of the minimum, maximum, range, mean,
and standard deviation for each objective.

Table 8. MGWO versus NSGA II for TLSM design under third case.

Objective Saturation Force after Treating

Method NSGA II MGWO Improvement NSGA II MGWO Improvement

minimum 1.4523 1.4441 0.564621635% 558.0469 533.9629 4.315766291%

maximum 1.497973654 1.497005968 0.064599668% 1491.226051 1477.167426 0.942756129%

range 0.04472747902 0.053921415 20.55545312% 933.1791192 943.2045159 1.074327157%

mean 1.475161267 1.471152873 0.271725817% 1000.629818 972.4719583 2.814013654%

standard deviation 0.01340574792 0.01156842432 13.70549119% 279.1829529 212.4380323 23.90723356%

From this table, the proposed MGWA derives higher performance in all metric terms.
For the first objective of saturation, the minimum, maximum, range, mean, and standard
deviation are improved by 0.56%, 0.06%, 20.56%, 0.27%, and 13.71%, respectively. Addi-
tionally, for the second objective, the minimum, maximum, range, mean, and standard
deviation are improved by 4.32%, 0.94%, 1.07%, 2.81%, and 23.91%, respectively.

4.2. Applications for Welded Beam Design

The welded beam problem formulation has four design constraints. In this problem,
the manufacturing cost of the welding beam (f 1) and its deflection (f 2) should be maintained
to a minimum. The four design variables are the weld thickness (x1), clamping bar length
(x2), bar height (x3), and bar thickness (x4). Figure 13 displays a WBD on a substrate [56].

Minimize f1(x) = 1.1047x1
2x2 + 0.04811x3x4(14 + x2) (24)

Minimize f2(x) =
65856000

30× 106 × x33x4
(25)

G1(x) = τ − 13600 ≤ 0 (26)

G2(x) =
504000

x4x2
3
− 3000 ≤ 0 (27)

G3(x) = x1 − x4 ≤ 0 (28)

G4(x) = 6000− P ≤ 0 (29)

where,

τ =

√√√√
(

6000√
2x1x2

)
2
+

2
(

6000√
2x1x2

)
βx2

2R
+ β2 (30)

β =
RM

J
(31)

R =

√
x2

2
4

+

(
x1 + x3

2

)2
(32)
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M = 6000
(

14 +
x2

2

)
(33)

J = 2
√

2x1x2

[
x2

2
12

+
(x1 + x3)

2

4

]
(34)

P = 614234.69×
√

x2
3x6

4/36

(
1− x3

28

√
30
48

)
(35)

Figure 13. WBD problem [56].

The permitted ranges for the control variables are as follows: weld thickness (x1)
[0.125,5] inches, clamping bar length (x2) [0.1, 10] inches, bar height (x3) [0.1, 10] inches,
and bar thickness (x4) [0.125,5] inches. For the WBD problem, three different cases
are investigated.

In the first and second cases, the assessment of GWA, FPA, LA, and GOA is performed
considering single-objective targets for individually minimizing the manufacturing cost
(f 1) and the deflection (f 2), respectively. In the third case, the developed MGWO, MFPA,
MOLA, and MGOA are performed for the multi-objective WBD optimization.

4.2.1. First Case: Minimizing the Manufacturing Cost

In this case, GWA, FPA, LA, and GOA are applied to this case for minimizing the
manufacturing cost, and their best regarding control variables and outcome fitness val-
ues are given in Table 9. The GWA achieves the least expensive value of 1.725. This
demonstrates the GWA’s superior effectiveness in locating the most cost-effective op-
tion, which is attained at a welding thickness of 0.2057 inches, clamping bar length of
3.4715 inches, bar height of 9.035 inches, and bar thickness of 0.20579 inches. Figure 14
also depicts the best convergence curves for the GWA, FPA, LA, and GOA. GWA, FPA,
LA, and GOA are starting their searches from quite high values, showing that all of the
design limits have been broken. The GWA exhibits impressive speed in maintaining the
inequality constraints at only 10 iterations as the iterations progress. The inequality re-
strictions are then successfully being addressed by GOA, FPA, and LA after 90, 160, and
185 iterations, correspondingly.

Table 9. Optimal results of the GWA, FPA, LA, and GOA for TLSM design under first case.

Control Variables FPA GOA LA GWA

x1 (inch) 0.252066308 0.22690479 0.225644069 0.20574862

x2 (inch) 3.348447907 2.863433027 3.062911117 3.471565595

x3 (inch) 9.385394959 9.767624642 9.113241032 9.035246022

x4 (inch) 0.273636448 0.226906446 0.237752691 0.205793087

f 1 (Manufacturing cost) 2.378524018 1.96097676 1.950913074 1.725272522
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Figure 14. Best Convergence curves of GWA, FPA, LA, and GOA for TLSM design under first case.

Figure 15 shows a statistical assessment of GWA, FPA, LA, and GOA for the WBD
problem under the first case. In the first part, the box and whisker’s plot are plotted, which
indicates that the GWA performs best across all runs with the lowest values of the evaluated
objective. In the second part, the robustness indices are displayed, which declares the high
resilience of the GWA since it obtains the smallest indices of 1.7252 as the minimum, 1.7258
as the mean, 1.7263 as the maximum, and 0.000299 as the standard deviation.

Figure 15. Statistical assessment of GWA, FPA, LA, and GOA for WBD under first case.

4.2.2. Second Case: Minimizing the Deflection

GWA, FPA, LA, and GOA are implemented in this case to reduce manufacturing costs,
and their optimum control variables and outcome fitness values are provided in Table 10.
All of the strategies used successfully determine the optimal solution with a deflection value
of 4.991 × 10−7. The obtained values for bar height and bar thickness for all techniques are
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10 inches and 5 inches, respectively. The differences in welding thickness and clamping
bar length have no influence on the deflection target as they are functions of the other two
variables as specified in Equation (25). Figure 16 shows a statistical assessment of GWA,
FPA, LA, and GOA for WBD problem under the first case. All compared techniques provide
similar effective performance where the minimum, mean, and maximum are equivalent
with 4.991E−07.

Table 10. Optimal results of the GWA, FPA, LA, and GOA for TLSM design under first case.

Control
Variables FPA GOA LA GWA

x1 (inch) 4.2881 1.6449 0.5406 4.2948

x2 (inch) 2.3619 9.2877 6.1552 3.4059

x3 (inch) 10 10 10 10

x4 (inch) 5 5 5 5

F2 (Deflection) 4.99097 × 10−7 4.99097 × 10−7 4.99097 × 10−7 4.99097 × 10−7

Figure 16. Statistical assessment of GWA, FPA, LA, and GOA for WBD under second case.

4.2.3. Third Case: Simultaneous Minimization of the Manufacturing Cost and Deflection

The multi-objective WBD optimization problem is studied in the third case. Figure 17
depicts the relevant Pareto fronts for the developed MGWO, MFPA, MOLA, and MGOA
using four distinct reference points. Table 11 illustrates the hypervolume indicators of
the produced MGWO, MFPA, MOLA, and MGOA for the WBD problem under the third
scenario using the four reference points shown in Figure 17. As demonstrated, the devel-
oped MGWO provides the best performance. In comparison to the MFPA, the developed
MGWO improves by 2.92%, 3.969%, 1.81%, and 2.51% with reference points (40,0.01),
(60,0.015), and (60,0.015), respectively. In comparison to the MGOA, the developed MGWO
improves by 4.55%, 2.88%, 2.87%, and 1.85%, respectively, with the reference points. When
compared to the MOLA, the developed MGWO improves by 0.983%, 0.714%, 0.615%, and
0.48%, respectively.

Table 11. Hypervolume indicators of MGWO, MFPA, MOLA, and MGOA for WBD problem under
third case.

Reference Points MFPA MOLA MGOA Developed MGWO

(40,0.01) 0.7918375 0.8076335 0.77853 0.81565

Improvement 2.92% 0.983% 4.55% -
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Table 11. Cont.

Reference Points MFPA MOLA MGOA Developed MGWO

(40,0.015) 0.825984 0.853993 0.835322 0.860131

Improvement 3.969% 0.714% 2.88% -

(60,0.01) 0.84685 0.85718 0.83772 0.86248

Improvement 1.81% 0.615% 2.87% -

(60,0.015) 0.874533 0.892716 0.880395 0.897016

Improvement 2.51% 0.48% 1.85% -

Figure 17. Obtained Pareto fronts of the developed MGWO, MFPA, MOLA, and MGOA for WBD
under third case.

4.2.4. Comparative Assessment Considering Different Metrics

In this sub-section, a detailed comparative assessment considering different met-
rics presented in the literature, such as hypervolume, generational distance, inverted
generational distance, spread, generalized-spread, and additive epsilon, considering the
well-known bi-objective optimization problem of WBD, taking into account the true-Pareto
front [57]. Figure 18 displays the obtained Pareto fronts versus true fronts of the developed
MGWO, NSGA II, MFPA, MOLA, and MGOA for WBD under third case whilst Table 12
records the previous stated metrics. As shown, the proposed MGWO demonstrates greater
efficiency where:
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• The proposed MGWO provides the greatest hypervolume indicator of 0.326 while
MFPA comes second with hypervolume indicator of 0.3227;

• The proposed MGWO achieves the least generational distance indicator of 0.0008,
while NSGA II comes second with generational distance indicator of 0.0034;

• The proposed MGWO achieves the least inverted generational distance indicator of
0.00095, while MFPA comes second with generational distance indicator of 0.00121;

• In terms of the spread metric, the proposed MGWO achieves the least indicator value of
0.779, while MOLA and NSGA II come consecutively with 0.933 and
0.939, respectively;

• In terms of the additive epsilon metric, the proposed MGWO achieves the least
indicator value of 0.000132.

Figure 18. Cont.
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Figure 18. Obtained Pareto fronts versus True—fronts of the developed MGWO, NSGA II, MFPA,
MOLA, and MGOA for WBD under third case.

A closer accord to the comparison between the developed MGWO and NSGA II
is shown in Figure 19. As shown in the sub-plot, the developed MGWO shows higher
superiority, not only in finding better solutions in dominating solutions obtained by the
well-known NSGA II, but also the true pareto front.

Figure 19. Obtained Pareto fronts versus True fronts of the developed MGWO and NSGA II for WBD.
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Table 12. Comparative assessment considering different metrics of the compared algorithms for
WBD problem.

MGWO NSGA II MOLA MFPA MOGOA

Hypervolume 0.32627154 0.315202517 0.31532889 0.322732332 0.311235752

Generational distance 0.000823219 0.0034291 0.0060862 0.0028048 0.012417

Inverted generational distance 0.000950639 0.0013475 0.0014895 0.0012113 0.0028061

Spread 0.778953351 0.93986 0.93342 1.4189 1.2838

Generalized spread 0.830487363 0.87311 0.49653 1.4495 1.2676

Additive epsilon 0.000132346 1.8928 1.6185 0.00077754 0.0014939

5. Conclusions

This article suggests a developed the MGWO for the multi-objective shape design of
tubular linear synchronous motors (TLSM). The multi-objective design of TLSM is handled
by maximizing the operating force and minimizing the flux saturation. The developed
MGWO is compared to several recent algorithms of MFPA, MOLA, and MGOA. Addi-
tionally, the validation of the developed MGWO is extended for a multi-objective form of
welded beam design (WBD) by simultaneously minimizing the deflection and manufac-
turing costs. Moreover, considering single-objective optimization models for TLSM and
WBD engineering problems, GWA, FPA, LA, and GOA are applied with a comparative as-
sessment. The simulation results declare the superiority and effectiveness of the developed
GWA over the others in achieving the single-objective minimization target. The satisfaction
of all design constraints is guaranteed within their permissible limitations. A higher speed
of convergence related to the employed GWA is also accompanied compared to the oth-
ers. Moreover, considering the multi-objective optimization frameworks, the developed
MGWO provides higher capability in acquiring non-dominated solutions with higher hy-
pervolume indicators based on different reference points. Therefore, the developed MGWO
demonstrates significant outperformance over MFPA, MOLA, and MGOA. As a result, the
developed MGWO has shown promise in problem-solving capabilities when designing the
TLSM and WBD. Furthermore, the proposed MGWO demonstrates greater efficiency and
superiority versus true fronts of NSGA II, MFPA, MOLA, and MGOA for WBD based on
different metrics presented in the literature, such as hypervolume, generational distance,
inverted generational distance, spread, generalized-spread, and additive epsilon.
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Nomenclature

FPA Flower Pollination Algorithm
GA Genetic Algorithm
GOA Grasshopper Optimization Algorithm
GWA Grey Wolf Algorithm
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LA Lichtenberg Algorithm
MGWO Multi-objective Grey Wolf Optimizer
MFPA Multi-objective Flower Pollination Algorithm
MOLA Multi-objective Lichtenberg Algorithm
MGOA Multi-objective Grasshopper Optimization Algorithm
NSGA II Non-dominated Sorting Genetic Algorithm II
PSO Particle swarm optimization
TLSM Tubular linear synchronous motors
WBD Welded beam design
List of Symbols
kF Fill factor
B Flux density
l Length of magnetic pole
I Conductor current
p Number of poles
τp Pole pitch
ins Slot current
hs Height of the slot
hm Height of the magnet
ts Slot thickness
α, β, ∆ and ω Alpha, beta, delta, and omega wolves
Nw Total number of the wolves in the pack
Y∆, Yβ, Yα Locations of the delta, beta, alpha are represented, respectively
D∆, Dβ, Dα Their accompanied distances
Ynew Wolf’s new location
Y Current location of the wolf
r Randomized value
a Linear drop of the coefficient
It Existing repetition
MxIt Ultimate repetition number
Probj Probability choice for every hypercube
N Total quantity of successful Pareto-optimal solutions
Fc A fixed value bigger than one
PF Penalty function
λ A penalty factor
Rj A binary coefficient
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