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Abstract: Passenger cars account for the largest share of GHG emissions in the road sector. However,
given that the number of heavy-duty vehicles registered is lower but accounts for about a quarter
of GHG emissions in the road sector, it is necessary to reduce carbon dioxide (CO2) emissions by
improving the fuel efficiency of heavy-duty vehicles. However, experiments using dynamometers
during the vehicle development process consume a lot of time and cost. Conversely, simulations can
quantitatively analyze the sensitivity of parameters and accelerate optimization. Therefore, in this
study, we modeled a heavy-duty vehicle using an AVL Cruise simulation and analyzed the effects of
payload, air drag coefficient, and rolling resistance on fuel economy, CO2 emission, and the valid
window ratio among the moving average window (MAW) for three driving routes. When the average
vehicle speed was higher, the effect of the air drag coefficient on fuel economy was high. Additionally,
when the average vehicle speed was lowered, the effect of the reduced rolling resistance on improving
fuel efficiency was higher than that of the reducing air drag. Thus, the fuel efficiency improvement
rate according to each 10% decrease in rolling resistance was higher by 2.2%, on average, in the low
average speed route. Additionally, it was confirmed that the valid window ratio was high when
driving in a section with a high vehicle speed first. Thus, the valid window ratio was almost 100% in
the test of the route conditions starting from the highway section.

Keywords: heavy-duty vehicle; payload; rolling resistance; air drag coefficient; fuel consumption
rate; carbon dioxide

1. Introduction

Global warming is worsening due to the increased use of fossil fuels. Major countries
around the world are setting goals to reduce greenhouse gas emissions to solve the global
warming problem and drawing up specific plans to realize these goals. The European
Commission has set a goal of reducing greenhouse gas emissions for the transportation
sector by 20% from 2008 to 2030 and by 60% from 1990 to 2050 [1]. A total of 14% of all
greenhouse gases worldwide originate from the transportation sector [2]. Specially, 94.6%
of the greenhouse gases from the transportation sector originate on roads, and heavy-duty
vehicles account for 25.1% of greenhouse gas emissions in Europe [3]. Energy generated
from fuel combustion in heavy-duty vehicles is lost to air resistance (13.4%), rolling resis-
tance (13.2%), and other mechanisms (6%) [4]. Therefore, a reduction in air resistance, the
rolling resistance of tires, and idling are required to improve the fuel efficiency of vehicles.

Heavy-duty vehicles transporting heavy cargo require high torque in the low engine
speed range for a stable start. In addition, heavy-duty vehicles require high fuel efficiency
because their load is heavy. Diesel engines self-ignite combustion by directly injecting
diesel fuel into the cylinder by making the combustion chamber in a high-temperature
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and high-pressure state, which can increase the engine stroke length and increase the
compression ratio. This combustion method is difficult to effectively utilize under the high
engine speed range but can increase inertial energy, torque, and thermal efficiency under
the low engine speed range. Thus, heavy-duty vehicles mainly use diesel engines.

The number of registered cars in the Republic of Korea is increasing every year, and
the number of registered diesel cars is also increasing. The proportion of diesel cars in
the Republic of Korea is much higher than those in the U.S. and Japan. Although the
proportion of registered heavy-duty vehicles among all vehicles is low (approximately
6.6%), the proportion of annual mileage, as of 2019, is approximately 26.4%, which is very
high. In general, diesel engines have better fuel economy than gasoline engines. However,
diesel fuel has a higher heating value and carbon dioxide emission coefficients than gasoline
fuel, so the CO2 emissions per liter are higher. Thus, it is essential to reduce CO2 emissions
by improving the fuel efficiency of heavy-duty vehicles because heavy-duty vehicles with
low fuel efficiency account for about 25% of greenhouse gas emissions in the road sector.

Simulation methods are used for testing that reflect real road driving conditions while
saving time and cost. Measurement methods, which utilize engine dynamometers, are
mainly used to check the fuel efficiency and greenhouse gas emissions of heavy-duty
vehicles accurately. However, this approach has the disadvantage of consuming a lot of
time and cost. In addition, it cannot reflect the vehicle shape, weight, and transmission
characteristics that affect greenhouse gas emissions. This, in turn, consumes a lot of time
and cost. The method involving the use of a chassis dynamometer can reflect relatively
more impact factors. However, the method still exhibits the disadvantage of using expen-
sive equipment and consuming a lot of time. There are many different types of heavy-duty
vehicles depending on the gross weight range, shaft structure, and purpose of use. In
addition, various vehicle configurations are possible according to the trailer combination.
Thus, a simulation method is used because it is difficult to measure greenhouse gas emis-
sions using a chassis dynamometer for heavy-duty vehicles. Different simulation methods,
such as the vehicle energy consumption calculation tool (VECTO) in Europe, greenhouse
gas emissions model (GEM) in the United States, and Japanese fuel consumption model
(JFCM) in Japan, have been used to regulate the fuel efficiency and greenhouse gases of
heavy-duty vehicles. In Korea, it is also appropriate to use the simulation method because
the distribution status of the chassis dynamometer for heavy-duty vehicles is significantly
insufficient compared to that for light-duty vehicles. The use of vehicle simulation tools
can reduce the cost of testing and optimize the vehicle during the design and development
stages because comparative testing is possible in a short period of time. Furthermore, the
fuel efficiency improvement technology, which is applicable in existing vehicles, can be
evaluated with respect to various driving cycles and route conditions at no additional cost
and is highly reproducible.

Recently, major countries, such as the U.S., those in Europe, and the Republic of Korea
introduced real driving emission (RDE) regulations to measure pollutant emissions that
reflect various variables on real roads, including intake conditions, road conditions, and
driver characteristics. In the RDE regulations, data on greenhouse gas and emissions gener-
ated during real road driving can be measured via a portable emission measurement system
(PEMS) [5–7]. Measurements using a PEMS can reflect factors that significantly impact fuel
efficiency and the generation of emissions. Greenhouse gases are not regulated by the RDE
test, but it is necessary to measure them using a real road driving test. In related previous
studies, it was shown that the difference in CO2 emissions from laboratory conditions
(measurement via engine- and chassis-dynamometers) and real driving conditions was
approximately 42% on average in 1.1 million vehicles in eight countries [8]. In particular,
the difference between laboratory and real road conditions is expected to be larger since
heavy-duty vehicles are often overloaded on the real road, unlike the payload specified
in the regulations. The difference in the chassis dynamometer test and real road driving
emissions is the same for other pollutants and is the reason for the introduction of the RDE
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test. Thus, it is necessary to review the introduction of the RDE test for greenhouse gases,
which has become important due to the recent carbon-neutral policy.

Su et al. [9] conducted an experiment on real road driving for three vehicle categories
(M3, N2, and N3). For an ultra-heavy-duty vehicle, they evaluated the effects of the moving
average window (MAW) method on the NOX result under two routes and three payload
conditions. However, there was little difference in the driving section order and the fraction
of the two routes. Currently, in Europe and Korea, the average emission per engine work
for each segment is calculated in g/kWh using the MAW method. The size of the moving
average window is defined as the period required to perform the same amount of work
based on the work required for the worldwide harmonized transient cycle (WHTC) testing
of the engine mounted on the test vehicle. After defining the initial moving average window,
the window can be repeatedly defined and moved by the data acquisition cycle. Thus, the
average value of emissions can be obtained from thousands of moving average windows.
With respect to all moving average windows, a window with an average engine output
exceeding 10% of the maximum engine output (as of 2021) is defined as a valid window.
This should exceed 50% of the total number of moving average windows. Wang et al. [10]
conducted an experiment on real road driving for three light-duty vehicles. They analyzed
the effect of altitude on CO2 emissions and the MAW boundary condition. For a naturally
aspirated vehicle, they reported that the higher the altitude, the lower the CO2 emission.
However, it was difficult to confirm the effect of the test route characteristics because the
other differences were unknown except for the altitude of the test route. Even more, it
is important to understand the influence of the route and driving characteristics because
the emission result varies in accordance with the order and fraction of the driving section
owing to the characteristics of the MAW calculation. Previous studies on vehicle simulation
are as follows: Katreddi et al. [11] predicted a heavy-duty truck’s total and instantaneous
fuel consumption on a trip based on very few key parameters such as engine load, engine
speed, and vehicle speed using an artificial neural network (ANN) model. However, fuel
consumption prediction regression models, in which altitude data are not input, show poor
prediction accuracy under different route conditions. In addition, Zeng et al. [12] predicted
a light-duty vehicle’s real-world fuel consumption rate based on the records reported by
the private vehicle using five artificial intelligence regression models. They reported that
vehicle manufacturers or brands were also major factors influencing fuel consumption
projections. Thus, it is appropriate to use a vehicle dynamics-based simulation method
to analyze the effect of route conditions on fuel consumption. Fontaras et al. [13] used
VECTO, a European vehicle simulation tool, to predict instantaneous and cumulative
fuel consumption and compared the results from VECTO with predictions from other
simulation tools, including Cruise (AVL), Autonomie (Argonne National Laboratory),
and passenger car and heavy-duty emission models (PHEM and TUG). The comparisons
confirmed that VECTO’s prediction error rate was within 4% and was similar to that of
other simulation tools. Srinivasan and Kothalikar [14] quantitatively analyzed the effects
of driving resistance factors such as rolling resistance, aerodynamic drag, and climbing
(gradient) resistance on fuel economy and CO2 emissions in heavy-duty vehicles using
AVL Cruise. Furthermore, Ko and Choi [15] calculated the fuel-cut inertial driving effect
in accordance with the slope and deceleration of the downhill section using AVL Cruise
and confirmed that an increase in the downhill gradient can lead to a decrease in the
deceleration, which, in turn, increases fuel efficiency.

Although standards for the section order, average vehicle velocity, and driving time
are regulated in each country, there may be differences in acceleration/deceleration rates
and altitude characteristics depending on routes and traffic conditions. Although the
aforementioned previous studies analyzed the effects of various factors on fuel efficiency,
there are insufficient studies analyzing fuel efficiency characteristics according to various
route characteristics for the same vehicle. In addition, as mentioned above, if the regulations
to measure greenhouse gas under real road driving conditions are reviewed similar to other
pollutants due to the carbon-neutral policy, it is necessary to study the success criteria and
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judgment of the RDE test. Specifically, RDE testing using a PEMS requires re-testing if
the methods and criteria of the real road test are not satisfied. This requires additional
time and significant additional costs. For the heavy-duty vehicles, if the vehicle’s load
weight (payload) setting is not appropriate, then the test fails to satisfy the test criteria
of the engine power. Furthermore, if after-treatment devices malfunction, then the test is
considered as invalid, and this, in turn, will consume at least twice the time. For example,
if a vehicle is tested with a minimum payload to prevent emissions under low-load or
cold-start conditions that are not included in the valid window, then the engine power may
be lowered. Hence, it may fail to satisfy the test success criteria and invalidate the test. In
fact, the test failure can be overcome by extending the highway section. However, the time
ratio for each section is regulated. In addition, EURO VII, which will be introduced in the
future, will be designed to include the emission of the urban section in the valid window.
Thus, it is expected that the extension of the highway section will be limited. Therefore, it
is necessary to predict the criteria for generating minimal engine power in designing and
controlling factors such as payload, tires, and frontal areas that affect greenhouse gas and
improvements in emissions. In addition, RDE test routes vary by country and manufacturer,
but research analyzed with the same vehicle for various routes is rare. Thus, this study
also analyzed the effect of route characteristics on MAW. Although it is difficult to predict
pollutants with 1D simulation tools, it is possible to predict if emission characteristics will
change just by checking at changes in the MAW characteristics.

This study deals with the effect of the payload, air drag coefficient, and rolling resis-
tance on fuel efficiency under three route conditions. In addition, it deals with whether
the boundary conditions for the MAW are satisfied by predicting the engine power. We
model a heavy-duty vehicle using AVL Cruise and apply driving data with three different
driving characteristics to predict fuel consumption, engine power, and the ratio of the
valid window. By quantitatively analyzing the effects of the aforementioned variables on
the MAW boundary conditions as well as fuel efficiency, it is possible to consider which
variables and driving conditions are sensitive to the test results. Thus, this study has a
difference as it will assess which variables are effective in improving fuel efficiency while
satisfying the MAW boundary condition under various route conditions.

2. Vehicle Modeling
2.1. Modeling of Test Vehicle

A test vehicle model created using AVL Cruise is shown in Figure 1. AVL Cruise is
primarily a software for analyzing driving performance and fuel efficiency, and it exhibits
the advantage of short computational time based on 1-D analysis. In this study, the
backward calculation method was used to calculate the required engine operating range to
drive with the input vehicle velocity profile, and the time step was 1 s. According to this
method, the simulation time for the real test route of the modeling was about 10 s. The
description and input data for the typical components are as follows:

Data, such as vehicle dimensions, weight, center of gravity position, and air drag
coefficient can be inputted in the ‘Vehicle’ component of the software. Based on these input
values, resistance and wheel loads are calculated during driving. Specifically, the effects of
acceleration, aerodynamic drag, and rolling resistance are considered. The modeled test
vehicle consisted of an 8 × 4 type manualized automatic gearbox with a gross weight of 35
tonnes. Note that the 8 × 4 rigid truck is not a very typical truck. The dimensions of the
vehicle are shown in Figure 2, and its detailed dimensions are listed in Table 1.
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Figure 2. Test vehicle dynamics and dimensions.

Table 1. Specification of the test vehicle.

8 × 4 Rigid Body Truck

Vehicle curb weight 13,590 kg
Vehicle gross weight 35,000 kg
Maximum payload 25,007 kg

Frontal area 7.76 m2

Wheel static rolling radius 482 mm
Wheel dynamic rolling radius 522 mm

Furthermore, basic engine properties, such as fuel type, displacement volume, number
of cylinders, and number of strokes are entered into the ‘Engine’ component. Additionally,
the component models the engine in characteristic curves and map structures such as
output and torque characteristics in accordance with engine speed and fuel economy map
data. It also includes a temperature model to consider the effect of engine temperature on
fuel consumption and emissions. The details of the engine are shown in Table 2.

Fuel efficiency maps denote fuel consumption rates with respect to engine speed
and torque, which, in turn, are parameters that are directly related to the calculated fuel
economy [16]. In this study, fuel efficiency maps are derived from engine speed, torque, and
fuel consumption data, which are measured over time while driving on real roads, and the
sequence is shown in Figure 3. In the real road driving data, there is an operating range that
is not measured, or only a small number of measurements are conducted in this operating
range. Thus, the fuel efficiency map should be calibrated to derive fuel consumption
data for these operating ranges. First, many operating points were divided into several
operating ranges using the pivot table. The engine speed was set at 200 rpm intervals,
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and the engine torque was set at 100 Nm intervals, and the average fuel consumption rate
(primary fuel efficiency map) of the operating range with the median value of these ranges
was derived. Given that the primary fuel efficiency map is irregular in shape with a curved
surface due to the unmeasured region, we performed a calibration task to smooth the curve
by applying a quadratic polynomial interpolation method using MATLAB (secondary fuel
efficiency map).

Table 2. Specification of the test engine.

Engine Type 6-Cylinder Diesel Engine

Bore 123 mm
Stroke 152 mm
Displacement 10,837 cm3

Compression ratio 17:1
Idle speed 500–700 rpm
Maximum speed 2150 rpm
Maximum power 339 kW @ 1700–1800 rpm
Maximum torque 2200 Nm @ 1050–1400 rpm
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The shift ratio, mass inertia moment, and loss moment for all gear stages can be defined
in the ‘Gear box’. In the case of manual gearboxes, they are shifted based on the defined
gear stages along with the speed profile. For automatic gearboxes, the gearbox changes
according to the shift point (defined as the engine speed and vehicle speed) were entered
in the ‘Gear box control’, or the shift line was entered in the ‘gear box program’. Given
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that the real road driving data often do not measure gear stage, it should be calculated
based on tire dimensions and transmission specifications. First, the wheel rotation speed
(Swheel) is calculated by dividing the vehicle speed (V) by the tire circumference value
(2πRD) considered a dynamic rolling radius (RD), as shown in Equation (1), because the
tire diameter changes when the vehicle is driven. The overall reduction gear ratio is then
calculated, as shown in Equation (2), as the ratio of engine speed and wheel rotation speed.
Furthermore, the gear ratio (transmission ratio) is calculated by dividing it into the final
reduction ratio based on Equation (3). Finally, the gear stage that corresponds to this gear
ratio is determined.

SWheel =
V

2πRD
(1)

GOverall =
SEngine

SWheel
(2)

G =
GOverall
GFinal

(3)

In Equations (1)–(3), SWheel and SEngine denote wheel rotation speed (1/min) and engine
speed (1/min), respectively. Goverall and GFinal denote the overall reduction gear ratio and
final reduction gear ratio, respectively. V and RD denote the velocity speed (m/s) and
dynamic rolling radius (m), respectively. The ‘Wheel’ component allows the input of wheel
diameters when the vehicle is stationary and driven and defines the rolling resistance with
respect to the tire pressure, wheel load, ambient temperature, and vehicle speed. Rolling
resistance can be calculated based on the wheel load, coefficient of rolling resistance, and
wheel radius when driving. Longitudinal tire forces (circular force) can be calculated based
on friction coefficients, wheel loads, and slip coefficients. If these factors are considered in
different road conditions, then a variable friction coefficient can be defined according to the
driving profile.

2.2. Driving Routes

In this study, the effects of payload, rolling resistance, and air drag coefficient on fuel
efficiency and CO2 emissions were analyzed for three different driving routes with different
driving characteristics. The characteristics of the three driving routes are as follows: The
velocity and the altitude profiles of each route with respect to time is shown in Figure 4.
Table 3 lists the driving distance, driving time, and average vehicle velocity for each route.

Table 3. Driving characteristics of each route.

Route A Route B Route C

Driving distance

Urban 30 km 20.6 km 20.3 km
Rural 35 km 31.6 km 36.5 km
Highway 102 km 128.9 km 106.1 km
Total 167 km 181.1 km 162.9 km

Driving time

Urban 3775 s 2180 s 3808 s
Rural 2887 s 1620 s 2167 s
Highway 5829 s 6113 s 5137 s
Total 12,491 s 9913 s 11,112 s

Average vehicle velocity

Urban 28.6 km/h 34 km/h 19.2 km/h
Rural 48.4 km/h 70.2 km/h 60.6 km/h
Highway 63 km/h 75.9 km/h 74.4 km/h
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Figure 4. Time-dependent vehicle velocity profile for each route.

Route A was used as the path when the test vehicle drives the RDE test, and the test
vehicle was driven in the order of urban, rural, and highway sections. The total driven
mileage of the test vehicle was 167 km, and the total driving time was 12,491 s. The average
velocity on urban, rural, and highway sections was 28.6, 48.4, and 63.0 km/h, respectively.
The altitude of Route A ranges from 0 to 20 m in the urban and rural sections. Then, entering
the highway section, the altitude rises rapidly, and the vehicle drives in a wide range from 60
to 175 m. Route B was considered as a driving route for ultra-heavy-duty vehicles developed
in the National Institute of Environmental Research (NIER). Unlike Route A, the cycle for
Route B was in the order of highway, rural, and urban sections. The total driven mileage
was 181 km, and the total driving time was 9913 s. The average velocity on urban, rural,
and highway sections was 34.0, 70.2, and 75.9 km/h, respectively. In addition, the change in
altitude during driving on Route B is the narrowest among the three routes. Route C was a
modified version of Route B. In Route C, the driving cycle was in the order of urban, rural,
and highway sections, unlike Route B. The total mileage driven on Route C was 163 km,
and the total driving time was 11,112 s. The average velocity on urban, rural, and highway
sections was 19.2, 60.6, and 74.4 km/h, respectively. Route C has a similar path to Route B.
However, it has a wide altitude change during driving compared to Route B.

When comparing Route A and Route B, Route B exhibited a higher ratio of highway
sections and higher average vehicle speed for all sections than Route A. When comparing
Route A and Route C, the driving cycles for both routes were in the order of urban, rural,
and highway. Furthermore, both routes exhibited a similar driving time ratio for each
section. Additionally, the average vehicle velocity was approximately 10 km/h higher for
Route C with the exception of the urban section. The comparison of Route B and Route C
is similar to those of Route A and Route B because the driving characteristics of Route A
and C are similar. Specifically, Route B had a large proportion of highway sections, and the
average vehicle velocity for Route B was approximately 10 km/h higher in urban and rural
sections, with similar highway sections.
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3. Results and Discussion
3.1. Validation of Fuel Consumption Rate and Cumulative Fuel Consumption

Figure 5 compares the predicted fuel consumption rate and cumulative fuel consump-
tion in Route A with values measured by real road driving. A comparison of the fuel
consumption rate in g/s with the test value indicates that the average error was 0.02 g/s.
Compared to the experimental values, the cumulative fuel consumption in terms of mass
(kg) exhibited an error of approximately 3.1% in urban areas, although the tendency was
consistent. This is attributed to the large percentage of acceleration and deceleration in
urban areas, and the accuracy of the shift was relatively low. Rural sections exhibited a low
error of approximately 0.54% and displayed high predictive accuracy. For the highway
section, the fuel-cut function was activated for the real road test [17]. However, cumulative
fuel consumption was calculated to be about 3.1% higher than the experimental value.
Consequently, the cumulative fuel consumption for the entire section was compared, and
the error was estimated as 3.4%, which was sufficient to ensure the reliability of the results
in the study.
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3.2. Fuel Consumption Rate and Valid Window Ratio according to the Payload

The maximum payload corresponds to the maximum weight that can be loaded
within the range of the tonnage of cargo indicated on the truck, and the maximum payload
of the test vehicle in the study was approximately 25 tonnes. Figure 6a shows the fuel
consumption rate according to the payload for each driving route, where the unit of fuel
consumption rate is one liter per 100 km [L/100 km]. The impact on the fuel consumption
rate was analyzed as the payload during the real road test corresponded to 50% of the
maximum payload and was reduced by 10% intervals based on the maximum payload.
Overall, as the payload decreased, the fuel efficiency improved. As the payload decreased
by 10% intervals from 50 to 10% based on the maximum payload, the fuel efficiency was
improved by 6.79%, on average, in Route A. In the case of Route B and Route C, it was
improved by 5.76 and 4.32%, on average, respectively. Thus, it can be confirmed that the
fuel efficiency improvement rate in accordance with the payload varies depending on
the route characteristics. Route A and Route B exhibited similar fuel consumption rates
and can be seen to improve compared to Route C. In the case of Route A, the number
of stops in urban and highway sections was less than that in Route C, and the vehicle
was driven at a constant speed on highway sections. Thus, an improvement in the fuel
consumption rate was observed. Additionally, in the case of Route B, an improvement in
the fuel consumption rate was noted given the large proportion of highway sections and
low variation in vehicle speed compared to Route C.
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Figure 6b shows the conversion of the unit of Figure 6a to [mL/ton-km]. In Europe,
CO2 is regulated as the average specific CO2 emission expressed in grams of CO2 per
tonne-km [gCO2/t-km] for each manufacturer. Similarly, the United States adopts standard
metrics in units of [gCO2/t-mile] or [gal/1000 t-mile] for vocational vehicles and combi-
nation tractors. This means the amount of fuel consumed to carry a tonne of cargo by a
unit distance. In fact, it is necessary to analyze it as a unit considering cargo transport
efficiency as transporting cargo once using heavy-duty vehicles is more advantageous in
terms of oil costs and greenhouse gas emissions than transporting cargo several times with
light-duty vehicles. As the payload decreased by 10% intervals from 50 to 10% based on
the maximum payload, the fuel efficiency, considering cargo transport efficiency, deteri-
orated by 41.58, 43.24, and 45.20% on average under Routes A, B, and C, respectively. In
addition, the gradient of fuel efficiency according to the reduction in the payload increased
rapidly in the condition of a small payload range (payload 20%→10%). In summary, as
the payload decreases, the fuel consumption rate of a heavy-duty vehicle is improved, but
when considering the cargo transport efficiency, the amount of fuel required to transport a
certain amount of cargo increases. For example, if the test vehicle carries 10 tonnes of cargo
for 100 km, the fuel efficiency is 8.23 L/100 km (assuming Route A fuel efficiency), and
the amount of fuel required is about 8.23 L. However, if the cargo is carried using by two
vehicles loaded with 5 tonnes, fuel efficiency is improved to 7.15 L/100 km, but the total
amount of fuel required increases to about 14.3 L.

Figure 7 shows the number of MAWs according to the payload and ratio of the effective
average window (valid window). The regulation at the time the test was conducted defines
the valid window as a window with more than 20% of the maximum engine power. Thus,
this study defined a valid window according to this regulation.

As shown in Figure 7, when the payload decreases on all routes, the number of moving
average windows decreases, and the ratio of the valid window decreases. This is because
the smaller the required output of the engine, the longer the time required to work as much
as the reference work (WHTC work), and the larger size of the first MAW is defined. In
addition, a large first MAW size means a small average power per segment, so the ratio
of the valid window decreases. In the case of Route A, when the payload decreased by
30%, the ratio of the valid window was less than 50%, thereby indicating that the test
was invalid. Route B with a high average vehicle speed and large proportion of highway
sections exhibited a relatively small number of moving average windows given its relatively
short test time. In addition, the ratio of the valid window was relatively high due to the
high ratio of highway sections and higher mileage compared to those for shorter driving
times. Additionally, it is judged that this will be affected by the highway section being
driven first. When driving on the highway first, the engine power is high, so the size of
the first MAW is small. This increases the number of MAWs but also increases the average
power of small MAWs (per segment), increasing the ratio of the valid windows. In the case
of Route C, the ratio of the valid window is almost the same as Route A because Route A
is similar in the order of the driving section and section ratio. However, it was confirmed
that the ratio of the valid window is 11.5% higher on average because Route C has a large
change in the average speed and speed of the rural and highway sections. The boundary
condition of the valid window is 50%. Hence, Routes A, B, and C can reduce the payload
by 40, 10, and 20%, respectively, thereby improving fuel consumption by 6.4, 26.8, and
12%, respectively. This may result in an increase in average fuel efficiency by lowering the
payload in the RDE test and may show a large difference from the real GHG emissions of
heavy-duty vehicles. This is because the loading capacity of large vehicles on real roads
is close to 100%. Therefore, it is necessary to review the revision of the valid window
boundary condition. In addition, the rate of change of the valid window ratio according
to the reduction in the payload was larger in Route A than in Route C. In other words, it
shows that the effect of the payload on the valid window ratio is different depending on
the route characteristics. The typical difference between the characteristics of Route A and
Route C is the rate of change in altitude. In future, it is necessary to study the effect of
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the payload on the valid window ratio according to the altitude characteristics. If these
findings are optimized and utilized for each vehicle, then it is expected that an appropriate
payload setting can decrease time and cost via retesting. Additionally, the certification
authority can determine whether the payload presented by the manufacturer is correct.
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Figure 7. Number of MAWs and the ratio of the valid window with respect to payload for each route.

3.3. Fuel Consumption Rate and Valid Window Ratio according to the Air Drag Coefficient

Figure 8 shows the fuel consumption rate with respect to the air drag coefficient. The
air drag coefficient corresponds to the coefficient of form for the flow of air. As the air drag
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coefficient decreases, the air resistance decreases. If the air resistance decreases and driving
resistance decreases, then fuel economy improves because the vehicle can be driven at a
relatively low output. In 2020, the highest temperature in Korea corresponded to 33.9 ◦C,
and the lowest temperature corresponded to −17.5 ◦C. Furthermore, air density increases
by approximately 20% if the temperature decreases by the aforementioned temperature
difference under atmospheric pressure. Additionally, techniques such as changes in vehicle
geometry can reduce the air drag coefficient by approximately 10%. Therefore, it is assumed
that the air drag coefficient decreases by 40% compared to the reference value. This factor
multiplied by the area of the front of the vehicle is proportional to the aerodynamic drag
and is calculated as follows [12]:

FA = 0.5× ρ× CD × A×V2 (4)

(ρ: air density (kg/m3), Cd: drag coefficient, A: frontal area (m2), and V: vehicle
velocity (m/s)).

As shown in Equation (4), aerodynamic drag is proportional to the square of the
vehicle speed; aerodynamic drag typically corresponds to the dominant factor in driving
resistance at speeds exceeding 100 km/h, while there is a threshold when the dominant
factor changes to rolling resistance within the range of 50–100 km/h. The threshold is
dependent on the structure and weight of the vehicle [18]. This implies that aerodynamic
drag is relatively more important in high-speed sections than in low-speed sections.
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Figure 8. Fuel consumption rate with respect to air drag coefficient.

In Figure 8, higher fuel efficiency is observed on Route B with a higher driving ratio
on the highway section than other routes. Furthermore, based on the values applied during
feasibility validation on all routes, the decreases in the air drag coefficient by 10% improved
the fuel consumption rate. However, the fuel efficiency improvement rates were similar for
the three routes. This means that the fuel efficiency, according to the air drag coefficient,
was not affected by the route characteristics. In particular, there is no difference in the fuel
efficiency improvement rate despite the difference in the average speed between the three
routes. This is attributed to the fact that aerodynamic drag does not significantly affect
driving resistance given that the maximum vehicle speed on all routes corresponded to
85 km/h. The cause is also related to the analysis of the effect on the ratio of the valid
window ratio in Figure 9.
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Figure 9. Number of MAWs and the ratio of the valid window with respect to air drag coefficient for
each route.

Figure 9 shows the number of moving average windows according to the air drag
coefficient and the ratio of the valid window. When the air drag coefficient decreased by
40% compared to the reference value, the ratio of the valid window decreased by 3.5, 0.7,
and 1.2% in Routes A, B, and C, respectively, and no test was observed as invalid. This
means that the change in the required engine output compared to the reduction rate of
the aerodynamic drag coefficient is not large. Thus, the reduction rate in the ratio of the
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valid window compared to the fuel efficiency improvement rate can be determined as
low. For example, a reduction in the payload for Route A from 50 to 40% improves fuel
consumption by 6.4% and lowers the valid window ratio by 7.2%, thereby indicating that a
5.1% improvement in fuel consumption decreases the valid window ratio by approximately
5.7%. In comparison, a decrease in the air drag coefficient by 40% compared to the reference
value improves fuel consumption by 5.1% and decreases the valid window ratio by 3.5%.
Thus, if the driving speed is low, then the reduction in the fuel efficiency improvement rate
due to decreases in the air drag coefficient is not significant. However, if the fuel efficiency
improvement rate is the same, the decrease rate of the valid window can be reduced.

3.4. Fuel Consumption Rate and Valid Window Ratio according to the Rolling Resistance

Figure 10 shows the rate of fuel consumption due to rolling resistance. In the study,
we assume that rolling resistance does not change with respect to vehicle speed. As shown
in the figure, as the rolling resistance decreases by 10% based on the value applied during
feasibility validation, the fuel consumption rate is improved. If the rolling resistance decreases
by 40% compared to the reference value, then the fuel consumption rate for Routes A, B, and C
improves 16.3, 15.7, and 7.5%, respectively, which, in turn, exceeds the effect of the air drag
coefficient. It is considered that rolling resistance is relatively higher than the air drag coefficient
because, as previously mentioned, the rolling resistance generally corresponds to the dominant
factor in driving resistance, as opposed to aerodynamic drag, if the vehicle speed does not
exceed 100 km/h in general. The rolling resistance factor is affected by tire air pressure, speed,
and load. Specially, it is significantly affected by tire air pressure [19]. Therefore, fuel economy
can be easily improved by decreasing rolling resistance via increasing tire air pressure.
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Figure 10. Fuel consumption rate with respect to rolling resistance.

Figure 11 shows the number of moving average windows according to the rolling
resistance and the ratio of the valid window. When the rolling resistance decreased by 40%
compared to the reference value, the ratio of the valid window decreased by 19%, 11.1%, and
13.7% in Routes A, B, and C, respectively. This implies that decreases in rolling resistance
for Route A can significantly decrease engine power and driving resistance compared to
those in other routes. This, in turn, can lead to a relatively significant improvement in fuel
consumption, as shown in Figure 10. This is considered to be highly influenced by rolling
resistance because Route A exhibits a large elevation difference and gradient for the same
distance compared to other routes. Additionally, if the rolling resistance decreases below
30% in Route A, then the ratio of the valid window is less than 50%, and the test can be
considered as invalid. The reduction rate in the ratio of the valid window to the fuel efficiency
improvement rate due to reduced rolling resistance was less than that when the payload
decreased, while it was higher than that when the air drag factor decreased. For example, if
the payload is decreased in Route A and the fuel consumption rate is improved by 8.5%, then
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the valid window ratio is reduced by approximately 9.6%. If the rolling resistance is decreased
by 20% compared to the reference value, then the fuel consumption is improved by 8.5%, and
the valid window ratio is decreased by 8.6%. Therefore, if the driving velocity is low, then the
reduction in the rolling resistance can be more effective in improving fuel economy than a
reduction in the air drag coefficient. Furthermore, the decrease rate in the ratio of the valid
window can be reduced further compared to that in lowering the payload.
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4. Conclusions

In this study, large vehicle powertrains were modeled using AVL Cruise, and real driv-
ing data were subsequently applied to predict fuel consumption rates and the ratio of the
valid window. Hence, the effect of the payload, air drag coefficient, and rolling resistance
on fuel economy and test suitability for three driving routes was quantitatively analyzed.

1. As the payload, air drag coefficient, and drag resistance decreased, the fuel consump-
tion rate improved, and the ratio of the valid window decreased. When the payload
decreased from 50 to 10% based on the maximum payload, the fuel consumption rate
in Route A improved by 32.5%, and the ratio of the valid window decreased by 26.9%.
However, when the payload was reduced, the transport efficiency deteriorated. In
addition, it was confirmed that the effect of the payload on the valid window ratio
varies depending on the route characteristics.

2. When the gradient variation of the driving route was small, and the ratio of highway
section was high (Route B), the ratio of the valid window was relatively high. In
addition, the fuel efficiency in accordance with the payload, air drag factor, and rolling
resistance was higher than other routes.

3. As the driving speed decreases, the fuel efficiency improvement rate decreases due
to decreases in the air drag coefficient. However, with respect to a case of the same
fuel efficiency improvement rate, the reduction in the air drag coefficient was less
proportional to the valid window than the reduction in the payload.

4. In the case of heavy-duty trucks with many tires (the contact area of the tire is large),
as the driving speed decreased, the rate of fuel efficiency improvement due to the
rolling resistance increasing. If the rate of improvement due to rolling resistance is
maintained as constant, then the effect on the ratio of the valid window was lower
than that on the payload and higher than that on the air drag coefficient.

5. Using a 1D simulation program, it was confirmed that by setting the appropriate
payload, air resistance, and rolling resistance, the probability of failure of the test can
be decreased, and additional time and cost can be decreased. In the future, we will
analyze the valid window characteristics of each road section because the current
MAW method does not reflect the pollutant emissions in the urban section.
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