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Abstract: The present study focused on the analysis of a new geometrical modification of the
conventional zig-zag channel for Printed Circuit Heat Exchangers. The research was carried out
using OpenFOAM and Salome software, which were used for the CFD analysis and the construction
of the computational domain. For the development of the study, three types of channel geometries
were defined: a modified zig-zag channel, a conventional zig-zag channel, and a straight channel.
The results show that the modified zig-zag channel achieves better thermal hydraulic performance
compared to that of the conventional zig-zag channel, evidenced by a 7.6% increase in the thermal
performance factor. The modified zig-zag channel proposed in the research caused a 1.5% reduction
of the power consumption of supercritical Brayton cycle compressors. Additionally, the modified
zig-zag channel achieves a maximum efficiency of 49.1%, which is 1.5% higher compared to that
of the conventional zig-zag channel. The above results caused a 20.9% reduction of the operating
costs of the supercritical Brayton cycle. This leads to a 5.9% decrease in the cost associated with
using the PCHE compared to that of the conventional zig-zag channel. In general, the new geometric
characteristics proposed for the conventional zig-zag channel minimize the high loss of the hydraulic
performance without significantly compromising its heat transfer capacity. The geometric analysis
of the proposed new zig-zag channel geometry was limited to evaluating the influence of the bend
angle of 20–30◦. Therefore, a more detailed geometric optimization process involving other geometric
parameters of the channel is still needed. Future research will be focused on addressing this approach.

Keywords: CFD; cost design analysis; printed circuit heat exchanger; thermal hydraulic performance

1. Introduction

The mitigation of the adverse effects of greenhouse emissions has become the central
concern for governments and researchers in the last decade [1]. The new generation of
power plants and sustainable energy systems promotes a clever perspective on reliable and
eco-friendly energy transition [2]. Cogeneration [3], Concentrated Solar Power (CSP) [4],
Thermoelectric Generators (TEG) [5], fuel cells [6], and Waste Heat Recovery (WHR) [7],
among other technologies, stand as the mechanisms used to offset conventional energy
sources. Indeed, these energy systems require advanced and complex equipment to foster
high efficiency and minimize the carbon footprint [8]; heat exchangers represent a vital
component since they stimulate energy conversion while operating as heaters, coolers,
and regenerators [9,10]. Their continuous operation under high temperature/pressure
conditions, while maintaining high efficiencies and reliability throughout the lifetime of
the exchangers, overcomes different challenges for design conceptualization [11]. Printed
Circuit Heat Exchangers (PCHE) have emerged as a promising technology that fulfills the
mechanical and thermal hydraulic requirements of the most demanding power cycles [12].
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These heat exchangers incorporate advanced manufacturing processes as the channels
are chemically printed [13]. Technological advantages such as a high compactness, heat
transfer efficiency, and temperature and pressure resistance make the PCHE a well-suited
component to be integrated into power plants [14].

Power generation with supercritical carbon dioxide (sCO2) as a working fluid exhibits
tremendous potential for PCHE applications since it can improve the performance of the
energy conversion process [15–20]. Using heat exchangers for reheating stages in power
cycles has proven to boost thermal efficiency by around 5–10%, reinforcing the necessity to
investigate PCHE systematically [21]. High- and low-temperature regeneration has been
studied in sCO2 power systems via computational methods to unravel the influence of the
working conditions on the thermal hydraulic performance of PCHEs [22]. The selection of
a specific numerical method depends on the application, model limitations, computational
demands, reliability, and predictability, among other factors. Jiang et al. [23] implemented
numerical methods to determine the optimal design of microtube recuperators employed
for sCO2 transportation, while determining the optimal heat exchanger performance. Yang
et al. [24] performed a CFD analysis to evaluate the thermal hydraulic performance of
PCHEs with wavy channels in sCO2 power cycles. The cross-section area is significantly
influenced by the heat transfer characteristics. Marchionni et al. [12] modeled the heat
transfer process within PCHE channels with 1D and 3D models, considering a 630 kW
recuperator. Dynamic simulations with transient flow conditions demonstrated that in-
creasing the system pressure produces fluctuations between the sCO2 thermal expansion
and the fast reduction of the flow density. De la Torre et al. [25] evaluated the influence of
adverse temperature conditions and geometric patterns on the thermal stress of PCHEs.
The bending radius was identified as the main objective design parameter to minimize
thermal stress. Overall, CFD analysis assessments center on the exploration of design
parameters to optimize the thermal hydraulic performance, structural design, and heat
transfer phenomena of PCHEs. However, the economic features and cost assessments of
prospective design proposals are not commonly explored, despite being a convenient tool
to foster the integration of PCHEs in supercritical power cycles.

Normally, the PCHE is formed by a series of stacked plates with small hydraulic
diameter flow channels [26]. Depending on the geometric shape of the flow channel,
PCHEs can be classified as discontinuous flow channels or continuous flow channels. Many
of the studies in the literature are focused on continuous channel configurations, such as
the straight channel and the zig-zag channel. The latter one stands out due to its high heat
transfer capabilities and compactness [27]. Despite the above, the zig-zag channel causes a
deterioration in the hydraulic performance as a consequence of the consecutive alteration
and deviation of the flow direction due to the geometrical shape of the channel. This results
in a considerable increase in the formation of turbulence eddies in the flow.

Due to the above, changes in the channel design have been proposed to improve the
hydraulic performance of PCHEs. Pressure drop losses due to the low hydraulic perfor-
mance of the zig-zag channel lead to an increase in the work demand of the compression
equipment, which ends up negatively affecting the efficiency of the supercritical Brayton
cycle [23]. Ishizuka et al. [28] evaluated the ability of S-shaped channels to minimize the
recirculation zones by inducing smooth directional flow changes and compared them to
the conventional zig-zag channel. The results indicated that the S-shaped channel causes a
significant increase in hydraulic performance of up to four times compared to that of the
zig-zag channel. However, the thermal performance of the PCHE was reduced by 46% with
the S-shaped channel. Similarly, Yoon et al. [29] investigated the use of aerodynamic fins
to improve the hydraulic performance of PCHEs. The results indicated an up to a 10-fold
larger improvement compared to the performance of the zig-zag channel. Despite this
improvement, the heat transfer capacity was reduced by 40%. In general, the geometric al-
ternatives for the channels in the PCHE described in the literature present an improvement
in the hydraulic performance, however, this is achieved with a considerable deterioration
in the thermal performance.
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The geometric design of channels in Printed Circuit Heat Exchangers can result in
a better balance between the heat transfer capacity and the hydraulic performance and
increase the overall cycle performance. Due to the importance of the channel design in the
PCHE, the present research aims to propose a new modification for conventional zig-zag
channels in order to improve the thermo-hydraulic performance of the PCHE, as well as
to achieve higher efficiency and lower operational costs in the supercritical CO2 Brayton
cycle. The CFD simulation software OpenFOAM was used for the development of the
research, in which the behavior of the modified zig-zag channel is analyzed. Additionally,
the conventional zig-zag channel and straight channel geometries are studied and used
as a line of comparison. The research involves the analysis of variables such as thermal
performance, hydraulic performance, bending angle effect, heat transfer characteristics,
and economic analysis. Additionally, the influence of different channels in the PCHE on
the overall performance of the supercritical Brayton cycle is evaluated.

2. Computational Model
2.1. Geometric Characteristics

Three configurations were proposed to analyze the flow channel’s geometry effect on
the printed circuit heat exchanger (PCHE) performance: the conventional zig-zag channel,
the straight channel, and the modified zig-zag channel. Figure 1 shows the geometries of
the proposed configurations.
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Figure 1. Flow channel geometry: (a) conventional zig-zag channel; (b) straight channel; (c) modified
zig-zag channel.

Conventional zig-zag channel flow paths are generally employed because they encour-
age turbulent mass flow, which influences the heat transfer performance and minimizes
the boundary layer growth, which affects the flow velocity close to the curved points of
the channel [30]. This PCHE configuration allows the integration of multiple streams and
increases the heat transfer between hot and cold flows with improved safety features, since
welding processes are not necessary. As a result, the risks of leakage or incompatibility are
significantly reduced [31]. The second PCHE configuration proposed a continuous straight
flow channel as a promising array to improve the flow regime and the heat transfer coef-
ficient that could benefit the overall performance [32]. Semicircular straight channels are
generally applied to optimize the convection and heat transfer outputs of PCHEs [33]. This
PCHE block configuration is composed of a funnel shape, a large diameter that decreases
along with the distance, as shown in Figure 1b. The last PCHE configuration is presented in
Figure 1c and combines the previously described channel features. In this arrangement, the
working fluid is transported through an inclined channel, which enables a lower pressure
drop due to minor geometry restrictions in comparison to that of the conventional zig-zag
channel configuration [34].

For the development of the simulations, a series of considerations for the behavior
of the PCHE were defined: (a) the heat transfer due to radiation from the environment is
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considered to be negligible, (b) there are no heat losses through the walls external to the
PCHE, (c) the PCHE operates under steady-state conditions, and (d) the flow distribution
is uniform in all channels. The mass, momentum, and energy transport equations used in
the CFD simulations are shown below [35,36].

∂
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ρũjũi
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where ρ is the density, u is velocity, P is the pressure, τij is the viscous stress tensor, h is the
enthalpy, λ is the thermal conductivity, and cp is the specific heat, respectively. The viscous
stress tensor

(
τij
)

was calculated using Equation (4).
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To solve the previous equation system, the Shear Stress Transport k−ω turbulence
model was used, which uses two additional transport equations and involves the Boussi-
nesq hypothesis. The equations of the turbulence model used are shown below.
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)
+ Gk −Yω + Dω (7)

2.2. Boundary Conditions

The CFD survey proposed in the study serves as a robust tool to solve the turbulence
equations that describe the performance of PCHE and determine the flow behavior under
supercritical conditions. In this sense, as mentioned above, PCHE configurations were
modeled to establish the initial computational domain to assess a set of equations capable
of calculating both the steady and transient states. Thus, each PCHE block geometry
is characterized by the turbulent flow structure that influences the thermal hydraulic
performance [37]. Figure 2 shows the details of the boundary conditions used to solve the
computational domain.

A turbulence intensity value was established at the inlet of the channel, calculated by
the ratio of the root mean square of the turbulence velocity fluctuations to the mean velocity.
The turbulence intensity value was 0.35%, which is within the range recommended in the
literature [38,39]. The supercritical CO2 database required for the numerical analysis in
OpenFOAM is powered by the NIST Refprop® package, incorporating the fluid thermo-
physical properties under different working conditions [28]. On the other hand, stainless
steel S316L was selected as the PCHE block material as it possesses an excellent perfor-
mance during heat transfer when it is operating under supercritical working conditions [40].
This material is considered to be a chrome-nickel alloy with 2–3 percent molybdenum,
which improves corrosion and wear resistance under high temperatures [41]. The main
material properties are shown in Table 1.
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Table 1. Thermodynamic properties of the stainless steel S316L.

Parameter Flow Density Thermal
Conductivity Specific Heat

Units kg/m3 W/(m K) J/(kg K)
Value 8030 16.27 502.47

The convergence criterion of the numerical simulations was defined at a value of 10−6

in each of the residuals in order to achieve the best predictions of the flow characteristics
and heat transfer rate. For the selection of the turbulence model, a comparison was made
between three turbulence models: k − ε, RNG k − ε, and SST k − ω. The results of the
comparison are shown in Figure 3.
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Figure 3a shows the clear superiority of the convergence criteria reached by the
SST k − ω turbulence model compared to those of the k − ε and RNG k − ε turbulence
models. Therefore, this model was selected to estimate the turbulent quantities that
describe the flow transport within the PCHE geometries due to the strong predictability of
the test. Indeed, the results agreed with the findings of Bennett et al. [42], where this model
demonstrated an improved performance as it accounts for adverse pressure gradients that
influence heat transfer within the PCHE channels under steady-state conditions.

2.3. Mesh Independence

The mesh generation process is required during numerical processing. Specifically,
a group of lines and nodes described the internal control volume of the PCHE and the
interaction between the hot and cold flows. Appropriate mesh generation is fundamental to
performing a correct CFD analysis, as it determines the virtual domain where the numerical
analysis will take place [24]. Thus, Salome 8.3.0 software is a suitable tool to discretize the
control volume, which was previously modeled with computer-aided design software [43].

The main features of the computational mesh domain are listed in Table 2. The
skewness and orthogonal quality were evaluated to establish an optimal mesh array as a
function of the number of elements and mesh nodes. Note that the mesh density of the
PCHE channels required a better discretization process with a higher number of elements
due to the geometry complexity, such as the curves and the dimensional difference between
the inlet and outlet of the channels.

Table 2. Mesh features of the computational domain.

Configuration Nodes Elements
Orthogonal

Quality
Cell Shape

Skewness Aspect Ratio Squish Index

Conventional
zig-zag channel 4,475,253 9,648,633 0.78044 0.26 1.30 0.35

Straight
channel 2,996,011 10,560,881 0.77577 0.24 1.36 0.41

Modified
zig-zag channel 4,426,327 8,542,693 0.790156 0.26 1.31 0.37

Figure 4 presents the visualization of the mesh generated for the control volume of
the straight channel configuration. A mesh independence analysis was performed for each
PCHE configuration (see Table 3) to estimate the number of minimum elements necessary
to achieve the stability of the experimental results (insignificant deviation).
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Table 3. Mesh independence analysis for channel configurations of the PCHE (temperature at the
cold channel outlet).

Number of Elements
×106

Conventional Zig-Zag Channel Modified Zig-Zag Channel Straight Channel

Temperature
[K]

Deviation
[%]

Temperature
[K]

Deviation
[%]

Temperature
[K]

Deviation
[%]

2.25 557.30 [-] 531.50 [-] 501.02 [-]
3 545.26 2.16 512.72 3.53 505.07 0.81

3.75 533.62 2.14 494.72 3.51 508.59 0.70
4.5 525.86 1.45 492.27 0.49 510.17 0.31
5.25 521.08 0.91 495.80 0.72 510.71 0.11

6 515.53 1.07 499.19 0.68 511.38 0.13
6.75 516.46 0.18 505.44 1.25 512.05 0.13
7.5 518.29 0.36 512.72 1.44 513.37 0.26
8.25 520.26 0.38 516.24 0.69 514.16 0.16

9 519.89 0.07 517.04 0.16 513.54 0.12
9.75 520.30 0.08 517.58 0.10 513.50 0.01
10.5 520.20 0.02 517.60 0.00 513.97 0.09

11.25 520.09 0.02 517.10 0.10 513.73 0.05
12 519.85 0.05 517.26 0.03 513.89 0.03

Mesh independence becomes crucial for optimizing the computational demand re-
quired to solve the partial differential equations with OpenFOAM. Therefore, the study
centers on the mesh behavior with different density values of nodes and elements to
discretize the computational domain for each PCHE configuration, as shown in Table 3.
According to the results, the numerical model experiences clear stability of the temperature
calculations when the number of elements reaches 9 × 106 (deviation percentage is less
than 0.5%). It is important to note that this discrete method application considers each
channel arrangement’s main PCHE properties and simulates the turbulent flow’s main
effects close to the domain walls that describe the heat transfer process. In order to cor-
rectly determine the heat transfer variations and flow behavior in the proximities of the
fluid–solid interface, a value of y+ < 1 was established in each turbulence model. This is
based on the recommendations described in the literature for similar studies [44,45].

3. CFD Model Validation

The experimental validation helps to verify the predictability and performance of
thermodynamic modeling and CFD models, while analyzing the heat transfer fluctuations
within the heat exchanger under real working conditions. Figure 5 shows the scheme
used to recreate the operating conditions of the sCO2 system, which is made up of heaters,
coolers, and pressure and temperature gauges. This allows us to predict the interaction
between the working fluids and the PCHE equipment when it works under the same
conditions as a power plant does. Table 4 lists the main PCHE operating conditions that
were configured.

The experimental data reported by Saeed et al. [27] under steady-state conditions
serve as the reference for the PCHE application. Table 5 shows the results of the SST k−ω
turbulent model flow analysis focused on the thermal and physical parameters of the PCHE
configuration when we were comparing the experimental and numerical data.
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Table 4. Technical data of Printed Circuit Heat Exchanger.

Parameter Units Value

Maximum pressure kPa 8350
Flow temperature K 383–523

Corrosion risk % 75
PCHE cost % 50

Leakage risk % 0
Gas compatibility % 100

Table 5. Experimental and numerical results of PCHE models.

Parameter Location Experimental Data
[24] SST k-ω Model Error (%)

Pressure drop between inlet and outlet
[kPa]

Cold channel 67.89 62.95 7.27
Hot channel 66.98 65.92 1.58

Temperature differential between inlet and outlet
[K]

Cold channel 130.53 126.64 2.98
Hot channel 139.58 137.11 1.76

Based on the results, a fairly good agreement was obtained (<7.27%) from the experi-
mental validation, which reinforces the accuracy of the models proposed. This numerical
validation is shown in Figure 6.
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Figure 6. Numerical validation of the SST k− ω model and thermodynamic model: (a) hot flow;
(b) cold flow.

A good prediction of the flow temperature was reached with the SST k-ω model
considering the turbulent viscosity and the inertial force application into the numerical
computation of the Reynolds equations. The agreement of the results validated the numeri-
cal application of both methods when we were calculating the thermal properties of the
turbulent flow within the PCHE control volume.

4. Results and Discussions
4.1. Thermal and Hydraulic Performance Analysis

Figure 7 shows the relative differential pressure produced by the different flow chan-
nels. The maximum pressure drop values obtained were 66.0 kPa, 34.8 kPa, and 15.6 kPa for
the conventional zig-zag channel, the modified zig-zag channel, and the straight channel.
The results showed that the conventional zig-zag channel had the highest pressure drop in
the PCHE block. In general, the conventional zig-zag channel pressure drop was 103% and
424% higher compared to those of the modified zig-zag channel and the straight channel,
respectively. The reduction of the pressure drop due to the geometry of the modified
zig-zag channel is associated with the reduction of the eddy zones and the decrease in
backflow at the corners of the curvatures. The geometry of the straight channel presented
the lowest pressure drop, which is directly related to the continuous flow pattern due to
the total absence of curvatures.
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Figure 7. Pressure differential of PCHE blocks: (a) cold channel; (b) hot channel.

Figure 8 shows the change of the friction factor in relation to the Reynolds number for
the different channels of the PCHE.
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Figure 8. Friction factor for the different channel configurations: (a) cold channel; (b) hot channel.

The results indicate a slight variation in the behavior of the friction factor for the
hot and cold channels. In general, the friction factor increased 4.4 and 1.8 times in the
conventional zig-zag channel and modified zig-zag channel compared to that of the straight
channel. On the other hand, Figure 9 shows the behavior of the Nusselt number (Nu) in
relation to the Reynolds number (Re).
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Figure 9. Nusselt number for the different channel configurations: (a) cold channel; (b) hot channel.

The Nusselt number is associated with increased heat transfer from the surface of the
cold and hot channels. To simultaneously consider the advantage of heat transfer and the
penalty due to the pressure drop, the thermal performance factor (TPF) was calculated
using Equation (8). The results in Figure 9 indicated an approximately linear increase in
the Nusselt number relative to the Reynolds number for the conventional zig-zag channel
and modified zig-zag channel, respectively. In the case of the straight channel, a constant
Nusselt number was observed for the simulated conditions.

TPF =
(Nu/Nus)

( f / fs)
1/3 (8)

where Nus and fs are the Nusselt number and the friction factor corresponding to the
straight channel, respectively. Figure 10 shows the behavior of the TPF for the conventional
zig-zag channel and the modified zig-zag channel.
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Figure 10. Thermal performance factor for the different channel configurations: (a) cold channel;
(b) hot channel.

Figure 10 shows that the modified zig-zag channel presents a better thermal perfor-
mance factor compared to that of the conventional zig-zag channel for a Reynolds number
range of 300–1300, respectively. The TPF ranges were 1.02–1.78 and 1.19–1.91 for the con-
ventional zig-zag channel and the modified zig-zag channel, respectively. For the simulated
operating conditions, a 7.6% increase in the TPF was evidenced by the modified zig-zag
channel compared to that of the conventional zig-zag channel. This is a consequence
of the high pressure drop penalty caused by the zig-zag configuration in the cold and
hot channels.

Figure 11 shows the temperature distribution of the hot and cold channels for each
geometric configuration in the PCHE.

The data shown in Figure 11 represent the average fluid temperature along the cold
channel and the hot channel. The analysis of the results shows that the configuration
of the conventional zig-zag channel presents the largest temperature range compared to
those of the modified zig-zag channel and straight channel, respectively. The foregoing
result implies that the conventional zig-zag configuration resulted in a better thermal
performance, which is associated with the interactions of the flow inside the hot and cold
channels. On the contrary, the straight channel presents the smallest temperature range in
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the hot and cold channels. This behavior is attributed to the flow pattern that limits the
heat transfer process in the PCHE.
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4.2. Effect of Bend Angle on Channels

For the analysis of the bend angle (α) in the conventional zig-zag channel and mod-
ified zig-zag channel, three reference values were selected: 20◦, 25◦, and 30◦, as shown
in Figure 12.
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Figure 13 shows the change in pressure drop for different flow conditions and different
channel configurations. The results showed increases of 39% and 22% in the pressure drop
when there was an increase of 5◦ in the bend angle of the conventional zig-zag channel and
the modified zig-zag channel, respectively. In general, it is observed that the increase in
the angle of curvature favors the increase in the pressure drop for the conventional zig-zag
channel and the modified zig-zag channel.
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Figure 13. Effect of bend angle on pressure drop: (a) conventional zig-zag channel; (b) modified
zig-zag channel.

The change in the friction factor due to the bend angle is shown in Figure 14. Unlike the
pressure drop, it was observed that the friction factor tends to decrease with the increasing
mass flow. This result can be attributed to the flow regime in the PCHE channels. However,
the increase in the bend angle tends to increase the friction factor in the conventional
zig-zag channel and the modified zig-zag channel. This is a consequence of the greater
difficulty for the flow to circulate inside the channels.

Energies 2023, 16, x FOR PEER REVIEW 15 of 25 
 

 

  
(a) (b) 

Figure 14. Effect of bend angle on friction factor: (a) conventional zig-zag channel; (b) modified zig-
zag channel. 

Additionally, the bend angle also influences the heat transfer process. To analyze this 
effect, the change in the Nusselt number was evaluated for the different angles of curva-
ture. The results obtained are shown in Figure 15. 

  
(a) (b) 

Figure 15. Effect of bend angle on Nusselt number: (a) conventional zig-zag channel; (b) modified 
zig-zag channel. 

The results of Figure 15 show that the Nusselt number increases in relationship be-
tween the mass flow increase and the greater inclination angle. This behavior was ob-
tained for the two-channel configurations. In general, a 5° increase in the bend angle 
causes 10% and 8% increases in the Nusselt number for the conventional zig-zag channel 
and the modified zig-zag channel, respectively. 

4.3. Heat Transfer Analysis 
Figure 16 shows each channel configuration’s overall heat transfer coefficient (UA). 

Figure 14. Effect of bend angle on friction factor: (a) conventional zig-zag channel; (b) modified
zig-zag channel.



Energies 2023, 16, 2326 15 of 24

Additionally, the bend angle also influences the heat transfer process. To analyze this
effect, the change in the Nusselt number was evaluated for the different angles of curvature.
The results obtained are shown in Figure 15.
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Figure 15. Effect of bend angle on Nusselt number: (a) conventional zig-zag channel; (b) modified
zig-zag channel.

The results of Figure 15 show that the Nusselt number increases in relationship be-
tween the mass flow increase and the greater inclination angle. This behavior was obtained
for the two-channel configurations. In general, a 5◦ increase in the bend angle causes 10%
and 8% increases in the Nusselt number for the conventional zig-zag channel and the
modified zig-zag channel, respectively.

4.3. Heat Transfer Analysis

Figure 16 shows each channel configuration’s overall heat transfer coefficient (UA).
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According to the results of Figure 16, the conventional zig-zag channel configuration
experiences the highest heat transfer coefficient values, followed by the modified zig-zag
channel, and lastly, the straight channel configurations. Moreover, it can be verified that
higher mass flow rates contribute to increasing the heat transfer coefficient to 5–10% within
the configurations.

4.4. Effect of PCHE Designs on the Supercritical CO2 Brayton Cycle

To analyze the influence of the different channel configurations in the PCHE on
the performance parameters of the complete cycle, a Brayton cycle of recompression
supercritical carbon dioxide (sCO2-BC) is designed, which is shown in Figure 17.
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Figure 17. Schematic of the Brayton cycle of recompression supercritical carbon dioxide.

The sCO2-BC consists of the main compressor, recompressor, turbine, heater, precooler,
high-temperature recuperator (HTR), and low-temperature recuperator (LTR). The outflow
from the precooler is compressed in the main compressor (stage 1–stage 2) and then heated
in the LTR (stage 2–stage 3). Subsequently, the flow is mixed with the flow coming from the
recompressor. The mixed flow is heated as it passes through the HTR (stage 5–stage 6), and
then undergoes more heating as it passes through the main heater (stage 6–stage 7). The
working flow is expanded in the turbine (stage 7–stage 8). After the expansion process, the
flow still has a high temperature, which is exploited by the HTR (stage 8–stage 9) and LTR
(stage 9–stage 10). Subsequently, the working flow is split, a fraction of the flow is directed
to the precooler (stage 10–stage 10a), and the rest of it is directed to the recompressor
(stage 10–stage 10b). After recompression (stage 10b–stage 4), the flow is again combined,
continuing the cycle. The HTR and LTR are modeled as the conventional zig-zag channel,
modified zig-zag channel, and straight channel Printed Circuit Heat Exchangers.

Figure 18 shows the specific work by the main compressor, the recompressor, and the
compression system in sCO2-BC.

The results show an increase in the specific work by the two compressors of the
Brayton cycle: the main compressor and recompressor, when the Printed Circuit Heat
Exchangers use a conventional zig-zag channel and modified zig-zag channel configura-
tions compared to that of the straight channel, respectively. This behavior is associated
with the higher hydraulic losses in the working flow due to the high-pressure drop of
the conventional zig-zag channel and modified zig-zag channel configurations. For the
simulated conditions, it is observed that the conventional zig-zag channel and modified
zig-zag channel configurations in the PCHE cause increases of 3.5%, and 2.1% in the specific
work of the main compressor, as well as increases of 3.3%, and 1.6% in the recompressor,
respectively. This leads to increases of 3.4% and 1.9% in the specific work with the Brayton
cycle compression equipment, respectively.
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tional zig-zag channel and modified zig-zag channel configurations. For the simulated 
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Although the conventional zig-zag channel and the modified zig-zag channel in the PCHE
generate an increase in the consumption of the sCO2-BC compression system, the higher heat
transfer capacity of these configurations results in increased turbine specific work, as shown in
Figure 19. The results obtained show that the conventional zig-zag channel and the modified
zig-zag channel configurations result in increases of 5.3% and 2.7% in the power output of the
sCO2-BC, respectively, compared to that of the straight channel.
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The overall efficiency of the recompression supercritical carbon dioxide Brayton cycle
is shown in Figure 20 for a heat exchanger effectiveness range of 0.65–0.97 and with the
different channel configurations.
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The results obtained in Figure 20 indicate that the highest sCO2-BC cycle efficiency is
achieved with the modified zig-zag channel configuration, followed by the conventional
zig-zag channel and the straight channel, respectively. In all three channel configurations, a
significant reduction of cycle efficiency is evident for heat exchanger effectiveness values
greater than 0.93.

In general, the conventional zig-zag and modified zig-zag channels show increases of
1.9% and 3.1% in sCO2-BC cycle efficiency, respectively, compared to that of the straight
channel. Additionally, maximum efficiency values of 49.1%, 48.4%, and 47% are observed
for the modified zig-zag channel, the conventional zig-zag channel, and the straight channel,
respectively. The above results are attributed to the better balance between the pressure
drop and heat transfer capacity of the PCHE with the modified zig-zag channel compared
to that of the other channel geometries.

4.5. Economic Analysis

The calculation of the capital and operating costs was carried out to analyze the
economy of the PCHE under different geometric configurations in the channels. The
capital cost (Cc) is associated with manufacturing costs due to the volume and construction
material of the PCHE. This cost was calculated from Equation (9) [46].

Cc =
(cm × ρ×V × r)× (1 + r)N

(1 + r)N − 1
(9)

where V is the volume of the PCHE, ρ is the density of the PCHE, cm is the cost per unit
mass depending on the material, r is the interest rate, and N is the lifetime, respectively.
The operating cost

(
Cp
)

is associated with the pumping work due to the pressure drop in
the PCHE, which was calculated using Equation (10).

Cp = cpump × ∆P×
.

V (10)

where cpump is the operating cost per pumping work, ∆P is the pressure drop in the PCHE,

and
.

V is the flow rate, respectively. The total cost (CT) was calculated from the sum of the
capital cost (Cc) and operating cost

(
Cp
)

with Equation (11).

CT = Cc + Cp (11)
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Figure 21 shows the analysis of the costs of the different channel configurations in
relation to the tube diameter.
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The results in Figure 21 show that the capital costs in the modified zig-zag channel
increase 10.3% compared to those of the conventional zig-zag channel, which is a conse-
quence of the greater complexity of the geometric characteristics of the channel. However,
due to the reduced pumping work in the modified zig-zag channel, a 20.9% reduction of
the operating costs is achieved. This leads to a 5.9% decrease in the cost associated with
using the PCHE in the supercritical Brayton cycles compared to that of the conventional
zig-zag channel.

4.6. Analysis of Geometric Parameters

The analysis carried out in Section 4.1 shows that the modified zig-zag channel presents
the best thermo-hydraulic performance due to the higher TPF values compared to that of
the conventional zig-zag channel. Therefore, in this section, an optimization analysis of
geometric patterns and an economic study are carried out, taking as the configuration of the
modified zig-zag channel as a reference. The main objective of the numerical optimization
is to analyze the influence of geometry patterns of the semi-circular diameter on the overall
performance and total cost of the PCHE block [47]. Accordingly, Figure 22 shows the main
modifications proposed for hot and cold modified zig-zag channel of the PCHE block,
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where the length of the channel remains unchanged from the previous domain, which
corresponds to 846 mm.
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Compressible and critical flow conditions are necessary to simulate the main fluctuations
of the turbulent flow under different pressure values, which influence the flow velocity, and
heat transfer coefficient of the working fluid under real working conditions. Figure 23 shows
the results for each study case proposed for the modified zig-zag channel block, which relates
the temperature, pressure drop, and turbulent kinetic energy in the PCHE.
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Figure 23. Thermodynamic performance of the modified zig-zag channel under critical conditions:
(a) flow temperature; (b) pressure drop.

According to the results, the fanning factor had an inverse correlation with the
Reynolds number, whereas the Nusselt number increases proportionally as the Reynolds
number increases. Note that the Nusselt number is calculated as a function of both the
Reynolds and Prandtl numbers, while the fanning factor only depends on the Reynolds
number. The results are in agreement with the overall behavior of previous CFD stud-
ies [27,48,49]. Case 1 experiences the highest friction interactions from the cases analyzed,
and accordingly, the greatest Nusselt number, which relates to the temperature gradient
that contributes to the heat transfer phenomena. On the contrary, case 2 remains at an
intermediate level for both operational parameters, which can be positive, as it enhanced
the heat transfer coefficient by the increased Nusselt number, while minimizing the un-
desired effects of high frictional losses within the channels that influence the swirl and
reversed flow.
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The section concludes with the economic assessment presented in Figure 24, which
shows the contribution of the geometry patterns of each study case and the Reynolds
number on the total cost of the PCHE.
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Figure 24 shows that the Reynolds number displays an inverse correlation with the
total cost per year of the PCHE, which agrees with the findings of the optimization study of
Kim et al. [48]. Thus, the turbulent flow and reduced cross-sectional diameter significantly
reduce the PCHE cost. In this sense, case 1 features the lowest overall cost share. However,
as the flow becomes turbulent, the cost differential between case 1 and case 2 becomes
insubstantial. Therefore, considering the improved performance of the latter one from
the previous section and the allocation of the total cost, it can be concluded that the
optimal performance from a thermal hydraulic and economic viewpoint is found using
this geometry array for the modified zig-zag channel configuration.

5. Conclusions

The present study aimed to analyze the operating parameters describing the overall
performance of the PCHE when they are integrated into a supercritical CO2 Brayton cycle
by CFD analysis using OpenFOAM. The study proposes a new geometric modification
for the zig-zag channel, which is based on the characteristics of the conventional zig-zag
channel and the straight channel.

The results show that the conventional zig-zag channel has the highest heat capacity,
which is evidenced by 28% and 53% increases in the heat transfer coefficient compared to
those of the modified zig-zag channel and the straight channel, respectively. Despite the
high heat transfer capacity of the conventional zig-zag channel, it is observed that this type
of geometry leads to a bigger pressure drop. However, the proposed new geometry for
the zig-zag channel causes a 50% reduction of the pressure drop. In general, the proposed
new geometry results in a decrease in the formation of vortices and turbulence in the fluid
due to less abrupt changes in the flow direction compared to that of the conventional
zig-zag channel.

The proposed new channel geometry allows a 7.6% increase in TPF compared to that
of the conventional zig-zag channel, implying a better thermo-hydraulic performance.
Additionally, the geometric optimization process in the modified zig-zag channel results in
a 3.2% increase in the low temperature and a 71.7% reduction of the pressure drop.

The modified zig-zag channel proposed in the research results in a 1.5% reduction
of the energy consumption of the Brayton cycle supercritical compression equipment
compared to that of the conventional zig-zag channel. This caused an improvement in the
overall cycle efficiency in terms of 1.45% and 5.9% decreases in the total cost associated
with the use of the PCHE compared to that of the conventional zig-zag channel.
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In general, the new geometric features proposed for the conventional zig-zag flume
favor the hydraulic performance of the PCHE without significantly compromising the
heat transfer capacity. The modified zig-zag channel improves the overall efficiency of
supercritical Brayton cycles, leading to a 20.9% decrease in the operating costs. Future
research will focus on the geometrical optimization of the modified zig-zag channel, taking
into account all the geometrical parameters characteristics of the structure of this type
of channel.
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Nomenclature

CFD Computational fluid dynamics
CSP Concentrated Solar Power
TEG Thermoelectric Generator
WHR Waste Heat Recovery
PCHE Printed Circuit Heat Exchanger
sCO2 Supercritical carbon dioxide
TPF Thermal performance factor
Nus Nusselt number
Cc Capital cost
V Volume
cm Cost per unit mass
r Interest rate
N Lifetime
Cp Operating cost
cpump Operating cost per pumping work
∆P Pressure drop
.

V Flow rate
CT Total cost
p Pressure
T Temperature
u Velocity
cp Specific heat
h Enthalpy
Greek symbol
ρ Density
fs Friction factor
τij Viscous stress tensor
µ Dynamic viscosity
λ Thermal conductivity
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