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Abstract: The need to reduce greenhouse gas emissions is driving many actions to decarbonize the
most impactful sectors. Among these, the energy sector accounts for almost one third of emissions.
Increasing the penetration of renewable energy in the energy mix could easily reduce the emissions of
this sector. Theoretically, the target to aim for would be 100% renewable energy production. However,
the variable nature of power production from photovoltaic and wind systems, which are expected
to play a key role in the energy transition, may pose several limitations to the effective penetration
of renewable energy. Many concerns arise when one considers the large diffusion of renewable
energy that would be required to meet green targets, and the operating conditions of other systems in
charge of compensating for renewable energy variations. This study aims to investigate the potential
impact of an increase in the amount of renewable energy installed in a country, particularly in Italy.
A simplified approach has been used, based on the assumption of knowing the hourly demand
and power generation mix, and multiplying the intermittent power generation by a certain factor.
Although not accurate, this approach allows the authors to highlight some critical aspects regarding
the potential surplus of renewable energy and the operating conditions of other energy sources. The
results of this study may provide a useful basis for a preliminary system evaluation, in particular
to assess the feasibility of surplus recovery and the operability of residual generation systems. In
addition, it may be easily replicated in other countries for similar estimations.
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1. Introduction

In Italy, renewable energy sources (RES) penetration in electricity generation has grown
from 16% to 34% in last two decades [1]. Hydroelectric remains the biggest renewable source
but wind and photovoltaic (PV) have grown to second and third position, respectively. On
21 January 2020, the Italian Ministry of Economic Development published the text of the
Integrated National Energy and Climate Plan 2030 (PNIEC) which is the fundamental act to
change the national environmental policy towards decarbonization. The Plan is structured
in five lines of action, which will be developed in an integrated way [2]. The PNIEC in its
annexes also estimates the evolution of renewable energy systems in the period 2021–2030
with the targets in all energy sectors: 55% share of renewables in the power generation,
33.9% in the heating/cooling of buildings and 22% with regard to transportation. To achieve
that ambitious goal of RES penetration in electricity, PV and wind generation capacity must
be strongly incremented while for other RES sources only small improvements are expected.
In 2030 PV and wind generation have to increase three and two times, respectively, in
comparison with 2019 [3].

Many studies dealt with the effects of similar changes in electricity generation but
every country in the world has different characteristics in terms of national electrical system
peculiarity and RES potential. Italy is representative of a medium sized country with some
existing RES electricity generation (hydroelectric, geothermal, biomass), integrated in the

Energies 2023, 16, 2295. https://doi.org/10.3390/en16052295 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16052295
https://doi.org/10.3390/en16052295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9988-0885
https://orcid.org/0000-0002-9847-2713
https://orcid.org/0000-0001-7360-5762
https://doi.org/10.3390/en16052295
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16052295?type=check_update&version=2


Energies 2023, 16, 2295 2 of 17

last two decades, with remarkable installation of wind and PV, with a good potential
of additional capacity. Lund studied the combinations of RES sources in Denmark [4]
while Gomez et al. analyzed the Spanish electrical system focusing on the key role of
residual traditional generation [5] and the strong differences between a scenario with 90%
RES penetration and a 100% one [6]. Grand et al. carried out a similar investigation on
France and Germany’s systems, highlighting the problems with a deep penetration of
not-programmable sources and the need for backup of traditional generation capacity
unless large storage systems are installed [7]. Heide et al. studied the all the European
electrical systems, focusing on wind and solar sources, finding that the solar fraction should
increase to achieve highest RES penetration [8].

As far as Italy is concerned, Romanelli proposed different proportions of electrical
storage and base-load power plants, recognizing their criticality in high-RES penetrated
scenarios [9]. Pierro et al. proposed a pathway to achieve 100% RES penetration in the
Italian electricity system, transforming RES into dispatchable electricity thanks to the
flexibility of hybrid PV plants: curtailment and batteries should coexist if the target is a
cost optimization [10]. The increased penetration of not-programmable RES will also face
problems of dispatchability, and, in some hours, the supplied electricity could be larger than
the demand thus causing a surplus of energy. When overgeneration occurs, electricity must
be recovered in short-term [11] or long-term storage [12], converted into different energy
forms, or curtailed [13,14]. Other authors used LCA approach to evaluate the sustainability
of electricity mixes of European countries in 2030, finding an average reduction of 42% in
the impacts on climate change (with the only exception of Belgium [15]) and proving the
impact of Italian PNIEC (forecast of 46% reduction of gCO2eq/kWh) [16].

Another possible modification of the future scenario is the concept of “Renewable
Energy Community” introduced by the European Directive RED-II. This new entity could
change the interactions among actors of the energy sectors and especially of the electrical
one. Di Silvestre et al. investigated the interaction of Renewable Energy Communities
with the Italian power system [17]. During the transition to decarbonization, the impact
on residual generation profiles (from fossil fuel, in particular natural gas) is an open
issue: peak power is only slightly reduced, while energy is definitely decreasing. This
means that annual running hours (i.e., utilization factor) will decrease, with a strong
impact on the economic performance and sustainability of traditional thermal-electric
plants. This issue might also create serious problems for covering the plants’ capital costs.
Moreover, the so-called ‘renewable energy policy paradox’ could occur in the next decades:
intermittent RES may reduce electricity selling prices and, hence, the profitability of new
RES installations [18].

This study is based on a simplified approach, which can be used for every country once
annual hourly energy balance data are known. It begins with the hourly demand and the
power generation mix and considers increasing the non-programmable energy production
from wind and photovoltaic several times. Of course, this may not be technically feasible,
since it would mean that the power generation in a specific location can be increased
by neglecting other issues, which is in general not possible. However, any other way of
forecasting the potential energy power generation has inherently significant uncertainties
at the country level. Similarly, the energy demand can change over the years, and this is
an additional uncertainty. In any case, results in terms of RES penetration, surplus and
residual generation obtained with this methodology are a useful basis for a preliminary
system evaluation and in particular to assess the feasibility of surplus recovery and residual
generation operability. Moreover, comparing results of this paper with a more detailed
study carried out by the Italian TSO for 2030 and 2040 [19] shows that annual energy
balances regarding RES penetration and RES surplus are very similar, confirming the
validity of the proposed approach, at least for preliminary evaluations.



Energies 2023, 16, 2295 3 of 17

2. Energy Production and Surplus

As a case study, the Italian electricity production and consumption in 2019 was chosen,
as this year was the last one which was still not affected by the strong change in energy
consumption due to the pandemic. Data were derived from the reports of the Italian
transmission system operator Terna [20], and an hourly time scale was considered in the
study. In 2019 the Italian electricity mix had the composition reported in Figure 1. The
contributions of fossil fuels and imports from abroad were not distinguished, as the focus
of the study is mainly on renewables and their impact on the general energy management
than in the actual energy mix.
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Figure 1. Energy mix for the electric energy supply in 2019.

In 2019, almost 65% of the energy supply came from fossil fuels and imports (F&I),
around 15% from hydropower (H), 5% from biomass (B) and 2% from geothermal energy
(G). As for the variable RES, the percentages are 7.5% and 6% for photovoltaic (PV) and
wind (W), respectively.

As an example, in Figure 2, the energy mix for the supply of the electricity load
on some typical days of 2019 is reported. The incidence of photovoltaic contribution
during the central hours of the day and the different contribution of variable renewable
energies according to the season are apparent. In Figure 3, the monthly energy production
from traditional sources and from RES is reported. With the current energy mix, and by
considering a one-hour time scale, no RES surplus is reported, even in the summer months
when PV plants produce the most.

In a generic year k, the hourly averaged power generation Pk
gen can be expressed as the

sum of multiple contributions, as in Equation (1):

Pk
gen = Pk

F&I + Pk
PV + Pk

W + Pk
G + Pk

H + Pk
B = Pk

F&I + Pk
RES (1)

where Pk
F&I is the sum of the power generated by fossil fuels and that imported from

abroad, Pk
PV is the power generated by photovoltaic plants, Pk

W that coming from wind
power plants, Pk

G that from geothermic power plants, Pk
H that from hydro power plants and

Pk
B that from biomass. The sum of the last five terms is the power from renewables Pk

RES.
If no storage has been considered, a balance between the load Pk

load and the power
generated Pk

gen has to be met. In case of a large amount of non-regulated renewable energies,
a power surplus Pk

sur may occur (Equation (2)):{
Pk

sur = Pk
gen − Pk

load i f Pk
gen > Pk

load and Pk
F&I = 0

Pk
sur = 0 i f Pk

gen = Pk
load and Pk

F&I > 0
(2)
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Figure 2. Energy mix for the electric energy supply on (a) 21 March, (b) 21 June, (c) 20 September
and (d) 20 December 2019.
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Figure 3. Monthly energy production from renewables, from fossil fuel and imports, and renewable
energy surplus.

In 2019, indicated with k = 0, the hourly average power from renewables, P0
RES, was

never sufficient to satisfy the power load (P0
load). Therefore, P0

F&I is always greater than 0
and P0

sur = 0.
To investigate the impact of an increase in renewables on the energy mix, a hypothetic

condition was considered in which, with the same energy demand, the production from
wind and photovoltaic is increased. This assumption is purely hypothetical and does
not consider many other aspects that would play a role if an actual change in the energy
mix would occur. In other terms, the feasibility of an increase in renewables was not
investigated, but the impact that such an increase would bring to the generation system
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under some simplified assumptions. In particular, the following simplified assumptions
were considered:

• Hour electricity load remains the same, independently from the energy mix composition.
• No economic analyses were performed relating to electricity cost or feasibility of an

increased power transmission.
• Generation from hydropower, biomass and geothermal plants remains the same. This

assumption is justified by considering that these renewable sources would require a
massive investment to be increased, or that the best sites have been already exploited.

• Generation from fossil fuel could be modified at will, even entirely shut down in some
hours. No considerations on the technical or economic feasibility of this operation
have been made.

• Regarding the photovoltaic and wind plants:

◦ No assumptions are made regarding the economic and geographical feasibility
of such an increase in power from photovoltaic and wind plants.

◦ It is supposed that the additional photovoltaic and wind plants produce energy
with the same profile of the existing ones.

◦ The generation profile is just numerically multiplied for a factor depending on
the scenario.

With reference to a generic year k, the previous assumptions can be expressed in
mathematical form as in Equation (3).

Pk
G = P0

G = const
Pk

H = P0
H = const

Pk
B = P0

B = const
→
{

Pk
PV = mP0

PV
Pk

W = nP0
W
→Pk

load = P0
load = const (3)

Two case studies were initially considered corresponding to a future scenario in line
with the targets of 2030 and 2040, respectively:

• Case 1 with a production from photovoltaic and wind which is thrice and twice the
current production, respectively (k = 1).

• Case 2 with a production from photovoltaic and wind which is four times and thrice
the current production, respectively (k = 2).

From a mathematical point of view, the two scenarios can be described as in
Equations (4) and (5), respectively. As a results, in Table 1, a summary of the values
considered in the study is reported.

P1
sur = P1

gen − P0
load =

(
P1

F&I + 3P0
PV + 2P0

W + P0
G + P0

H + P0
B

)
− P0

load P1
sur ≥ 0 (4)

P2
sur = P2

gen − P0
load =

(
P2

F&I + 4P0
PV + 3P0

W + P0
G + P0

H + P0
B

)
− P0

load P2
sur ≥ 0 (5)

Under the assumptions of Case 1, the energy mix for the electric energy supply in some
typical days would be that reported in Figure 4. The amount of energy from renewable
sources is increased but far from covering the energy total demand; a great use of energy
from fossil fuels would be still necessary. Only in some central hours of the day during
mid seasons there is a match between the energy from renewable and the load, or even a
small surplus. This is a favorable condition in which winds and solar irradiation are of
good intensity even though not as strong as in winter and summer, respectively, and load
is not as high as in summer. By considering the monthly production, the amount of energy
from fossil fuels (and imports from abroad), energy from renewable and surplus from
renewables will be that reported in Figure 5. Even with such an increase in the amount of
renewable energy production, the surplus of renewable energy would be very limited and
only available during some months of the year.
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Table 1. Summary of the considered energy production.

Base Case 1 Case 2

1 PV–1 W 3 PV–2 W 4 PV–3 W

Total load [TWh] 319.56 319.56 319.56
Wind [TWh] 19.99 39.99 59.98
Photovoltaic [TWh] 24.14 72.42 96.55
Hydropower [TWh] 47.06 47.06 47.06
Biomass [TWh] 16.88 16.88 16.88
Geothermal [TWh] 5.69 5.69 5.69
Energy from RES [TWh] 113.76 182.03 226.16
Fossil and
Import [TWh] 205.80 141.88 113.05

RES surplus [TWh] 0 4.35 19.65
RES penetration 35.6% 55.6% 64.6%
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Figure 4. Case 1 with thrice the production from photovoltaic and twice the production from wind.
Energy mix for the electric energy supply on (a) 21 March, (b) 21 June, (c) 20 September and (d) 20
December 2019.

If, still considering the previous assumptions, the production from photovoltaic and
wind plants is increased by 4 and 3 times, respectively (Case 2), the energy production from
renewables would be that reported in Table 1. In this case, the production from renewables
would be massive but still the energy surplus would be limited to a portion of a day (central
hours) and of reduced entity. As an example, in Figure 6, the energy mix for the electric
energy supply on some typical days of 2019, under the assumptions of Case 2, is reported.
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Figure 6. Case 2 with four times the production from photovoltaic and thrice the production from
wind. Energy mix for the electric energy supply on (a) 21 March, (b) 121 June, (c) 20 September and
(d) 20 December 2019.

The increase in power production from renewables is apparent, especially in the
central hours of the day. However, a big portion of the load has still to be satisfied by
traditional sources, especially far from the central hours of the day. In this case, the monthly
energy production from renewable is greater, but still the contribution from fossil fuels and
imports from abroad is significant. The renewable energy surplus is increased, but it is
still marginal in comparison the whole energy demand (Figure 7). It has to be considered
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that this condition would be very difficult to reach for obvious reasons of ground/roof
occupancy (in the case of photovoltaic plants) and sites with high wind availability. As
the most productive and easy to access sites are those that were first exploited, it may
be supposed, in fact, that without the introduction of a new groundbreaking technology,
the sites that will be exploited for the new installations would be less and less appealing
from the energy production point of view. However, repowering of existing onshore wind
power installation is an opportunity to increase the capacity and also an offshore solution
is feasible in many Italian locations.
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renewable energy surplus with four times the production from photovoltaic and thrice the production
from wind.

3. Size and Operating Hours of Non-RES Generators

As shown in Figures 2, 4 and 6, due to the uneven production from renewable energy
sources, there are periods during the day (especially in the central hours) where the
generation from renewables is strongly concentrated. On the other hand, there are hours,
especially in the morning and in the evening, when the energy request is still high, but the
insolation is low. In these hours, there is still a strong contribution from fossil-fuel-based
generators and/or energy imports from abroad. In Figure 8, the distribution of the hourly
averaged power requested to compensate renewables and to satisfy the energy demand
is reported. The figure refers to the actual data related to 2019. A bin size of 5 GW is
considered for the sake of simplicity. By analyzing the figure, it may be noticed that:

• The maximum power requested is around 40 GW, but it occurs only a few hours
during the year.

• The most requested power is in the range 20–25 GW, but a power between 15 and
30 GW is requested for almost 75% of the year.

To further investigate the operating condition of the existing traditional plants, in
Figure 9, the maximum, minimum and averaged value of the power from fossil fuel and
imports for each hour of the day during the reference year is reported. It is interesting
to notice that there are no hours when the power request is null, or, in other terms, there
are no hours when the hourly averaged power from renewables is sufficient to satisfy the
Italian energy request.
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In Figures 10 and 11, the same analysis is performed for the Case 1 scenario. The most
populated range of powers is between 10 and 25 GW, with a total occurrence nearly 60%
of the year. A maximum power in the range 35–40 GW is still requested in some hours
of the day to compensate for the lack of production from renewables, but with a lower
number of occurrences. If one considers the range 0–5 GW, corresponding to a null or low
usage of non-RES sources, the occurrences will increase to more than 15% of the year. From
Figure 11, it is apparent that these periods of no usage of non-RES sources are specifically
located in the middle hours of the day (minimum power equal to zero), whereas during
the morning, evening and night, non-RES sources still need to be used. In other terms, the
maximum installed capacity, which is necessary to sustain the energy supply when a lack
of production from RES occurs, would be more or less the same as that with the current
RES penetration (40/45 GW in base case versus 35/40 GW in Case 1), but with a lower
usage over the year.



Energies 2023, 16, 2295 10 of 17Energies 2023, 16, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 10. Distribution of hourly averaged power of non-renewable sources during the reference 

year in Case 1. 

 

Figure 11. Hourly averaged power of non-renewable sources during the day in Case 1; average, 

maximum and minimum values. 

This result is even more apparent if the case with four times the photovoltaic produc-

tion and thrice the wind production is considered (Case 2, Figures 12 and 13). In this case, 

the most populated bins are again those in the range 10–25 GW, but with a total occurrence 

of 50% of the hours in the year. Still, the maximum capacity is in the range of 35–40 GW, 

but only for 0.2% of the time. As far as it concerns the range of 0–5 GW, the occurrence is 

28%. In this regard, it may be noticed that the non-usage of non-RES sources may occur 

almost in each hour of the day during the year. Therefore, it is stressed how an increase 

in the penetration of renewables might pose some problems in the way the lack of pro-

duction is compensated. The big difference between installed capacity and operating 

hours might be critical from the economic feasibility point of view of these plants, as the 

capital costs are related to capacity and the revenues to operating hours. Future electrical 

storage could be used to smooth these few spikes during the year, maybe reducing the 

required traditional generation capacity, but the utilization factor of the remaining plants 

is going to be strongly reduced. 

Figure 10. Distribution of hourly averaged power of non-renewable sources during the reference
year in Case 1.

Energies 2023, 16, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 10. Distribution of hourly averaged power of non-renewable sources during the reference 

year in Case 1. 

 

Figure 11. Hourly averaged power of non-renewable sources during the day in Case 1; average, 

maximum and minimum values. 

This result is even more apparent if the case with four times the photovoltaic produc-

tion and thrice the wind production is considered (Case 2, Figures 12 and 13). In this case, 

the most populated bins are again those in the range 10–25 GW, but with a total occurrence 

of 50% of the hours in the year. Still, the maximum capacity is in the range of 35–40 GW, 

but only for 0.2% of the time. As far as it concerns the range of 0–5 GW, the occurrence is 

28%. In this regard, it may be noticed that the non-usage of non-RES sources may occur 

almost in each hour of the day during the year. Therefore, it is stressed how an increase 

in the penetration of renewables might pose some problems in the way the lack of pro-

duction is compensated. The big difference between installed capacity and operating 

hours might be critical from the economic feasibility point of view of these plants, as the 

capital costs are related to capacity and the revenues to operating hours. Future electrical 

storage could be used to smooth these few spikes during the year, maybe reducing the 

required traditional generation capacity, but the utilization factor of the remaining plants 

is going to be strongly reduced. 

Figure 11. Hourly averaged power of non-renewable sources during the day in Case 1; average,
maximum and minimum values.

This result is even more apparent if the case with four times the photovoltaic pro-
duction and thrice the wind production is considered (Case 2, Figures 12 and 13). In this
case, the most populated bins are again those in the range 10–25 GW, but with a total
occurrence of 50% of the hours in the year. Still, the maximum capacity is in the range of
35–40 GW, but only for 0.2% of the time. As far as it concerns the range of 0–5 GW, the
occurrence is 28%. In this regard, it may be noticed that the non-usage of non-RES sources
may occur almost in each hour of the day during the year. Therefore, it is stressed how an
increase in the penetration of renewables might pose some problems in the way the lack of
production is compensated. The big difference between installed capacity and operating
hours might be critical from the economic feasibility point of view of these plants, as the
capital costs are related to capacity and the revenues to operating hours. Future electrical
storage could be used to smooth these few spikes during the year, maybe reducing the
required traditional generation capacity, but the utilization factor of the remaining plants is
going to be strongly reduced.
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4. Size and Operating Hours of RES Surplus Users

To further investigate the scenario of an increasing penetration of renewables, it is
of interest to consider the operating conditions of the potential users of the RES surplus,
otherwise curtailed. In Figure 14, the hourly averaged power of a hypothetical user of RES
surplus and the corresponding operating hours are reported for Case 1. In Figure 15 the
hourly surplus and number of occurrences during the year are shown for the same scenario.
It is apparent that, even in the Case with a lower penetration of renewables, if no surplus
curtailment is accepted, the installed power necessary to fully exploit the RES production
would be significant (around 20–25 GW). However, the operating hours in these conditions
would be limited. The users would be not in operation for the most part of the year (almost
8000 h on 8760). Moreover, the surplus energy is always concentrated in central hours of
the day.

By increasing the renewables penetration as in Case 2, Figure 16, the situation would be
not much different, with high maximum power requests but a limited number of operation
hours. Due to this small annual utilization factor, the exploitation of this energy in a plant
by changing energy vector or producing other byproducts (e.g., power to X systems) is
very difficult.

Looking to hourly distribution of surplus (Figure 17), electrical storage seems the
most obvious option. An intra-day storage could recover a portion of this energy, simply
transferring the surplus from the central hours of the day to the evening/night, thus
replacing some traditional fossil fuel generation. However, a detailed economic evaluation
has to be carried out because, in some cases, the simple curtailment may be preferred to
any other solution.
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5. Extended Analysis

The previous analysis may be extended to different combinations of wind and photo-
voltaic penetration. In particular, a wind and a photovoltaic energy generation up to four
times the current one was considered (m = 1÷ 4; n = 1÷ 4). The results are reported in
Figure 18 in terms of:

• RES: amount of energy from renewables used to cover electricity demand over the year.
• F&I: amount of energy from fossil fuels and import used over the year.
• Surplus of energy from renewables over the year.
• RES%: percentage of annual electricity load satisfied with renewables.
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Figure 18. Annual energy from RES, fossil fuel/imports, RES surplus and RES% for different values
of wind and photovoltaic productions.

In this figure, the amount of energy from renewables, from fossil fuels and imports, and
the surplus from renewables are reported for each combination of wind and photovoltaic
production (m, n) as an area of different size. The share of renewables is reported for each
scenario as a percentage value. This is calculated as (Equation (6)):

SHm,n
RES =

annual energy consumption f orm RES
total annual energy consumption

(6)

This representation allows a direct analysis of the impact that an increase in production
from renewables would have on the energy systems. In more detail, the sizes of black
and green circles allow the comparison between the energy consumption from renewables
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and from fossil fuel and imports. When the green circle is greater than the black circle, a
renewable energy penetration greater that 50% is expected. The orange circle shows the
surplus from renewables with the same scale.

A few considerations may be drawn:

• Even with four times the production of wind and PV, without electrical storage, the
amount of energy from RES used over one year would be still far from 100%, and
around 70%.

• To have a relevant energy surplus from renewables a significant increase in wind and
PV production is necessary, and the latter seems to be more effective to generate a
surplus thanks to its daily profile.

• By increasing the energy from RES, the amount of energy from fossil fuels and import
decreases but not significantly. If wind and PV are multiplied by 4, residual generation
is only halved.

With the same graphical representation, in Figure 19, the maximum and average
operating power of the potential RES surplus users is reported for the same range of
production from wind and PV. The difference between the areas of the blue and grey circle
is proportional to the difference between the maximum and average operating power. For
configuration with m = 1 and n = 1 or 2 there is no surplus from RES. With the capacity
of photovoltaic generation of 2019, to have some surplus from RES, the wind capacity
should be at least three times that of 2019. By increasing PV production, also the RES
surplus increases. In the figure, the utilization factor of the potential RES surplus user is
also reported as a percentage value. The utilization factor has been calculated as the ratio
of the energy surplus to the maximum operating power multiplied by 8760 h per year
(Equation (7)).

UFm,n
RES =

annual energy surplus f rom RES
maximum power o f RES surplus× 8760
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Figure 19. Maximum and average operating power for energy surplus user, and utilization factors
for different values of wind and photovoltaic productions.

This parameter gives a conceptual indication of how proficiently the devices exploiting
the energy surplus from RES are used. It is interesting to notice that this percentage is
generally small and does not increase significantly when the energy production from RES
increases: the utilization factors remain on values which are very low, far from those that
would lead to a reasonable payback period for standard equipment.

The same analysis applied to fossil fuel power generation led to Figure 20, where
the maximum and average operating power of the fossil energy sources (or imports) are



Energies 2023, 16, 2295 15 of 17

reported for the same range of wind and PV. In addition, the utilization factor is shown as
a percentage value. This was calculated as the ratio of the energy production from F&I to
the maximum operating power multiplied by 8760 h per year (Equation (8)).

UFm,n
F&I =

annual energy production
maximum operating power× 8760

(8)
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factors for different values of wind and photovoltaic productions.

As expected, the power requested to fully satisfy the energy demand over the year
does not change significantly when energy production from RES increases. However,
the utilization factor and the average power almost halve from the current condition to
that with the maximum RES penetration, leading to potential criticalities of a feasible and
efficient plant management.

All the numerical results shown in this study are reported in Table 2 for the sake
of completeness.

Table 2. Summary of the numerical results found in this study.

F&I RES Surplus

PV W Surplus
[TWh]

F&I
[TWh]

RES
[TWh] RES% Max P.

[GW]
Av. P.
[GW]

Utiliz.
Factor

Max P.
[GW]

Av. P.
[GW]

Utiliz.
Factor

1 1 0 205.799 113.764 35.6% 40.15 23.49 58.5% 0 0.00 0.00%
2 1 131 181.791 137.771 43.1% 40.15 20.92 51.7% 6.1 1.90 0.24%
3 1 2976 160.498 159.064 49.8% 40.15 19.54 45.6% 19.2 5.44 1.77%
4 1 12,551 145.936 173.627 54.3% 40.15 19.76 41.5% 32.2 9.14 4.45%
1 2 0 185.806 133.757 41.9% 38.97 21.21 54.4% 0.0 0.00 0.00%
2 2 348 162.016 157.546 49.3% 38.97 18.77 47.5% 8.6 2.70 0.46%
3 2 4351 141.880 177.682 55.6% 38.97 17.74 41.6% 21.7 5.72 2.29%
4 2 15,725 129.116 190.446 59.6% 38.97 18.00 37.8% 34.7 9.91 5.17%
1 3 12 165.825 153.737 48.1% 37.79 18.96 50.1% 1.7 0.74 0.08%
2 3 922 142.597 176.965 55.4% 37.79 16.76 43.1% 11.1 3.69 0.95%
3 3 6567 124.104 195.459 61.2% 37.79 16.05 37.5% 24.2 6.39 3.10%
4 3 19,651 113.049 206.513 64.6% 37.79 16.23 34.2% 37.2 10.96 6.03%
1 4 613 146.433 173.129 54.2% 37.26 17.22 44.9% 8.0 2.39 0.87%
2 4 2444 124.127 195.436 61.2% 37.26 15.25 38.0% 16.3 3.94 1.71%
3 4 10,065 107.609 211.954 66.3% 37.26 14.70 33.0% 27.1 6.99 4.25%
4 4 24,618 98.024 221.539 69.3% 37.26 14.86 30.0% 39.7 11.38 7.08%
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6. Conclusions

This study investigated the scenario of an increasing penetration of renewables in
Italian electricity generation mix towards 100% RES. Starting from the real 2019 load and
generation hourly profiles, PV and wind generation were multiplied by an increasing factor,
while the electricity demand is assumed to remain the same. The adopted methodology
completely neglects issues regarding the feasibility of such modification or the impact on the
electrical system, focusing on the hourly energy balance of national load. This approach is a
sort of ‘best case’ from renewable energy point of view, and the results must be considered
as upper limits for renewable penetration. The comparison with more detailed studies
reveals almost the same results, despite the simplicity of this methodology. Results showed
that even with a factor of four (PV and wind energy generation four times those in 2019),
RES penetration is far from 100%, reaching only 70%, while traditional (fossil) residual
generation is only halved. Moreover, residual capacity (from traditional fossil sources
or imports), which is necessary to support the system when renewable generation is not
sufficient, is still very high (35–40 GW). With the increase in non-programmable renewables,
the traditional plants reduce their operating hours and show frequent modulation and
start–stop. This change in the operation profile will obviously affect the economics of
traditional power plants.

The analysis focused also on RES surplus and its potential users, such as electrical
storage and “power-to” systems. Electricity surplus from renewables will occur only a few
hours in a year and mostly in central hours of the day. Due to the small annual utilization
factor, the exploitation of this energy is very difficult, especially in plants producing other
byproducts (e.g., power-to-X systems). The adoption of electricity storage to shift surplus
from days to nights seems more suitable from an energy point of view, and it is the
subject of ongoing studies. Impacts on national electrical system with energy flows and
import/export with neighboring countries will also be the object of future research.
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