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Abstract: Wind energy is one of the most relevant clean energies today, so wind turbines must have
good health and be reliable in operation. Current wind turbines have slender and elastic structures
that can be easily damaged through vibrations and compromise their health; therefore, vibration
monitoring is essential to ensure safe operation. Here, we present a method for simple wind turbine
vibration monitoring in the laboratory by means of an accelerometer placed on a weathervane under
different scenarios, with recording of different amplitudes of vibrations caused at a constant speed of
10 km/h. The variables, trends, and data captured during vibration monitoring were then used to
implement a prediction system of synthetic failure using machine learning methods such as: Medium
Trees, Cubic SVN, Logistic Regression Kernel, Optimized Neural Network, and Bagged Trees, with
the last demonstrating an accuracy of up to 0.87%.

Keywords: wind turbine; wind energy; machine learning; accelerometer; vibration monitoring

1. Introduction

Energy is essential for development in a society, and wind energy is currently a
viable technique, representing a highly developed technology that takes heed of the global
climate emergency and contributes to reducing the carbon footprint [1,2]. Wind energy has
experienced radical technological advances that are beneficial for its future. However, the
maintenance of wind turbine blades involves visual inspection that can be dangerous, time-
consuming, and expensive. Therefore, a system for predicting failure through vibration
monitoring would represent an improvement over blade maintenance operations, reducing
costs and ensuring a future in clean energy [3–5].

In the literature, several authors report on predictive maintenance using machine
learning models [6–11], deep learning based on turbine performance curves, and condition
monitoring to detect vibration anomalies from cleaning and processing vibration time
windows signals for information extraction [12,13]. Moreover, image processing has been
used in the analysis of rotary drives to determine their reference condition [14–18].

Predictive maintenance is one of the most important processes to ensure the useful life
of a wind turbine, which lasts approximately 20 to 25 years; therefore, securing continuous
operation is very important for reducing the time and cost of maintenance. It should be
noted that preventive, predictive, or reactive maintenance strategies aim to extend the
useful life of wind turbines by performing thorough analysis of wind turbine anomalies to
generate more data for maintenance needs [8,19–23].

In addition, several authors rely on a database for analysis using the Supervision,
Control and Data Acquisition (SCADA) method in order to find errors that manifest
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themselves at intervals during different periods and determine permissible limits—for
instance, the tendency to failure during the maintenance period where it is indicated that
the turbines can continue in an operating state within a permitted range [1,8,20,24]. Other
authors have carried out analysis for detecting anomalies in turbines to derive the required
details for meeting maintenance needs [11,25].

Several studies have presented different application methods that have been devel-
oped for wind turbine failure analysis based on accelerometer measurements. The use of
accelerometers has several advantages since, besides being economical, they can capture a
wide range of frequencies, thus providing reliable results for identifying wear in mecha-
nisms and predicting possible errors occupying various databases (which are available for
research) in order to prevent possible failure [8,20,26–30].

These methods can be used to detect wind turbine failure in real time in addition to
diagnosing faults, usually based on analysis of accelerator signals from 3 axes, which is
a classic technique used to understand system performance. Generally, this analysis is
performed in the time and frequency domain [19,29,31,32].

Vibrations are present under normal operating conditions, and are focused on turbine
failure situations, such as failures in the outer and inner bearing raceway, rolling element
failures, imbalance, and misalignment—all failures that are caused by vibrations [33].
As a result of studying vibrations, combinations of variables can be found that describe
main trends and fluctuations within vibration response measured in structures to create
a reference state to which new observations for damage diagnosis are evaluated; such
methods can be used to detect wind turbine failure in real time [20,29]. A frequency
response function serves as a stimulation tool through its system transfer function, and
the system complexity can allow the creation of some harmonics that usually limit the
frequency response function of the same application [34].

In this paper, we present work on wind turbine mechanical vibration monitoring,
where the data obtained by accelerometer measurements are used to train a machine
learning algorithm by applying Bagged Trees to predict situations of synthetic failures
caused by vibrations in a laboratory. The purpose is to use the collected data to ensure that
the wind turbine remains in a stable state of health, with certain values acting as indicators
to alert for situations where possible maintenance is required.

2. Materials and Methods

The wind turbine used is a 400 W Sunforce with a rotor 1.12 m in diameter and a
45 km/h maximum power speed. The wind turbine is equipped with anti-static plastic
components that will extend the life of the wind turbine by protecting it from atmospheric
corrosion and static electricity build-up. A 16-bit MPU6050 motion accelerometer was used
that has three modules: an accelerometer, a gyroscope that handles three axes, “X”, "Y",
and "Z” and a temperature sensor fed with 5 V. The data were acquired using Arduino
hardware connected to the MPU6050 accelerometer to obtain the time series signals that
were later processed using the MATLAB program together with the Classification Learner
toolbox using Bagged Trees. Materials used in the methodology are in Table 1

Table 1. Materials used in the methodology.

Equipment Used (Hardware) Programs Used (Software)

MPU6050 accelerometer MATLAB 2022a
Sunforce 400 W
Tension spring
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3. Methods and Instrumentation

The methodology is based on three stages: turbine instrumentation, vibration moni-
toring in different vibration scenarios, and network training for vibration type prediction.

3.1. Instrumentation and Test

The instrumentation and tests were as follows: in the laboratory, a wind turbine
was subjected (Figure 1a) to a constant speed of 10 km/h over a period of 60 min, with
supports/springs (Figure 1) in the rear at different distances: 4 cm (Figure 1b), 10 cm
(Figure 1c), 20 cm (Figure 1d), and 30 cm (Figure 1e) to reduce the angles of freedom
of vibrations. The accelerometer was located at the back of the wind turbine (Figure 1),
with care always taken to ensure that the wires did not disturb the system. Once the
instrumentation operation was finished, the vibration monitoring data were read.
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Figure 1. (a) Sunforce 400 W wind turbine in laboratory; (b) wind turbine support spring at 4 cm;
(c) wind turbine support spring at 10 cm; (d) wind turbine support spring at 20 cm; (e) wind turbine
support spring at 30 cm; (f) wind turbine in operation.

3.2. Vibration Monitoring in Different Vibration Scenarios

The accelerometer was placed in such a way that the “X”, “Y”, and “Z” axes were oriented
as shown in Figure 2. Arrows for each axis indicate the direction of increasing positivity.
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Figure 2. Accelerometer diagram placed in the wind turbine.

The accelerometer was placed on the wind vane, as this was thought to be the ideal
location due to the wind vane flapping. This was an conjecture as in there was no informa-
tion in the literature about it, although there is some information on accelerometers placed
on wind turbine blades.

3.3. Data Set for Machine Learning

Machine learning is an artificial intelligence application that has the capacity to ex-
periment by means of an “invisible” area and thus identify patterns from collected data.
Machine learning algorithms were implemented to obtain a prediction system that can de-
tect increases in vibration. Examples include Medium Tree, Cubic SVM, Logistic Regression
Kernel, Optimizable Neural Network, and Bagged Trees; of these, the highest precision
was obtained for the last-named (Bagged Trees). A confusion matrix was used to measure
the performance. The learning took place with retro propagation optimization for complex
nonlinear problems such as wind generator vibrations.

The time series was segmented into time windows of 0.125 ms, and different parame-
ters were extracted from each window and used for network training, including median,
standard deviation, bias, kurtosis, peak2peak, RMS, and energy.

Different machine learning methods were trained to determine a prediction model to
estimate the vibration level according to vibration level (from lower to higher): 4 cm = level1,
10 cm = level2, 20 cm = level3, and 30 cm = level4. For each level, time series parameters
were extracted.

4. Results and Discussion of Vibration Monitoring
4.1. Longitudinal Triaxial Accelerometer Vibrations in Wind Turbine in Various Scenarios

In Figures 3–5, the vibration amplitudes obtained by the accelerometer can be observed
with respect to time on the “X”, “Y”, and “Z” axes. It can be seen that there is an increase in
the vibrations according to the position of the spring. Figures 3a, 4a and 5a show how there
is an increase, and the maximum amplitude is reached without the need to increase the wind
speed between 10 and 20 min, after which the vibrations decrease. Figures 3b, 4b and 5b
show an increase in vibration amplitude between 0 and 10 min, giving the springs more
freedom without the need to increase wind speed due to the higher vibrations frequencies.
After the 20th minute, there are pulses of the same amplitude, but they are not so frequent.
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Figure 3. (a) ratio between amplitude of the “X” axis and time in seconds at spring position 4 cm, a.u.
(arbitrary units); (b) ratio between amplitude of the “X” axis and time in seconds at spring position
10 cm, a.u. (arbitrary units); (c) ratio between amplitude of the “X” axis and time in seconds at spring
position 20 cm, a.u. (arbitrary units); (d) ratio between amplitude of the “X” axis and time in seconds
at spring position, a.u. (arbitrary units).
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In Figures 3c, 4c and 5c, lower vibration amplitudes are depicted up to the 10th minute,
and there is an increase in vibration amplitude between 20 and 30 min.

In Figures 3d, 4d and 5d, the amplitudes are greater than in previous graphs, reaching
a larger amplitude between 40 and 50 min.

4.2. Full Vibrations Sequence per Axis

Figure 6 shows a time series corresponding to all the spring positions in the same
sequence for simulation of growing synthetic failure, where the spectral behavior of failure
is also generated as it can see further at 6. Model of vibrations.
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Figure 6. Vibration monitoring. Total vibrations according to position of spring: (a) on the “X” axis;
(b) on the “Y” axis; (c) on the “Z” axis; a.u (arbitrary units).

By processing the signals obtained from the accelerometer, the vibrations are found
to increase in amplitude when simulating synthetic failure situations. However, there is a
balance between axes when there is an increase in vibration present in any axis; moreover,
it can be determined for a single axis because the accelerometer measures vibrations in
three axes, and each signal that the accelerometer reacts to vibration on a different axis [35].

Figure 7 shows a perturbation in the system in all three axes, where the “X” and “Z”
axes experience an increase in the positive amplitude of the vibration between 181 and
182 min (as indicated by the oval in Figure 7a).

Figure 8 shows a zoom from minute 181.25 to 181.5, demonstrating the balance men-
tioned at minute 181.27, where the “X” axis is the one that receives the highest positive
amplitude, giving a peak of 1.645 a.u. (Figure 8a) while the “Y” axis has a negative peak
of −0.860 a.u. (Figure 8b), and the Z axis does not reach a maximum peak, but shows a
positive amplitude, reaching 0.391 a.u. (Figure 8c). In Figure 8b, the “Z” axis does not reach
a maximum peak, but shows a positive amplitude, reaching 0.391 a.u. (Figure 8c); on the
other hand, in Figure 9 it shows a zoom from minute 188 to 188.25. The “Y” axis is the one
that receives the highest positive amplitude at minute 188.22, having a peak of 0.696 a.u.
(Figure 9a), while the “Z” axis has a maximum negative peak of −0.492 a.u. (Figure 9b)
and the “X” axis does not reach its maximum negative peak, with amplitude of −0.379 a.u.
(Figure 9c). In contrast, Figure 10 shows a zoom from minute 198 to minute 198.25, where
the “Z” axis is the one that receives the highest positive amplitude at minute 198.23, giving
a peak of 1.192 a.u. (Figure 10a), while the “Y” axis has a negative peak of −0.040 a.u.
(Figure 10b); interestingly, the “X” axis does not reach a maximum positive peak, reaching
−0.021 a.u. (Figure 10c).
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zoom from minute 198 to minute 198.25 on the “Z” axis, a.u (arbitrary units).
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Figure 11 shows a graph with the “X”, “Y” and “Z” axes joined, showing the increase
in vibrations according to the scenario; extraordinarily, it shows outstanding pulses. The
authors Fajar Aswin and Zaldy Sirwansyah Suzen [26], proposed a similar vibrations
analysis and they concluded that is noise caused by electrical frequency. On the other hand,
interestingly, in the Donatella Zappalá [21] work, the signals were noted as noise; however,
they stated that these signals were found due to a rotor imbalance. Therefore, these signals
obtained in this work will be considered for future study.
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5. Results of Data Training

Neural networks usually have higher accuracy than tree predictors; however, neural
networks have a larger structure and consist of a universal simplicity. However, there are
complex tree predictors such as Bagged Trees, where sets and subsets are combined, which
shows a greater decrease in error and show stability [36–38].

Different machine learning methods were trained to determine a prediction model to
estimate the vibration level according to vibration level (from lower to higher): 4 cm = level1,
10 cm = level2, 20 cm = level3, and 30 cm = level4. For each level, time series parameters
were extracted.

The Bagged Trees model demonstrated the best performance using the following hy-
perparameters: Ensemble method selected type: Bag; learner type: Decision Tree; maximum
number of splits: 2875; numbers of learners: 30.

Bagged Trees is a machine learning method where multiple subsets are created from
the original data set, and a base model of each subset is then created by training them
independently, as shown in Figure 12, where respective subsets are given by the blocks D1,
D2, etc. The final predictions are determined by combining all subsets predictions.

The results presented for the machine learning model consist of four classes according
to levels in which the data collected from data monitoring were used in training, as
indicated in Section 3. Each group went through a training and validation process.

The proposed methodology performance is evaluated by confusion matrices for each
axis “X”, “Y”, and “Z”, where accuracy is defined by the following equation:

Accuracy =
TPR + TNR

TPR + TNR + FPR + FNR
(1)

A selection of performance indicators is used to track results, namely using the follow-
ing parameters:
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• True positive rate (TPR);
• True negative rate (TNR);
• False positive rate (FPR);
• False negative rate (FNR).
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Figure 13 shows the confusion matrices for each axis “X”, “Y”, and “Z” obtained by
the Bagged Trees algorithm.

As explained below in the “Model of Vibrations” section, a higher range of 2.5 a.u.
(arbitrary units) was defined as a synthetic failure, i.e., level 4 is considered a synthetic
failure due to the amplitude of vibrations observed in the spectrum, given that the highest
peaks are observed in this condition.

In matrix a, the level 1 expected value (true class) vs. obtained value with prediction
model (predicted class) are compared, resulting in 80.9% accuracy for good wind turbine
operation, while an observation of 1.4% would be classified as synthetic failure when
operation is in fact normal, suggesting that maintenance would be scheduled when it is
not necessary. In contrast to level 4, it is recommended to indicate possible maintenance
due to vibrations when the value is 74.4%; however, 2.4% of cases were allocated as normal
operation when in fact there was risk failure. In matrix b, level 1 results in 75% accuracy
for determining good operation and 0% classified as failure, which is a good result as it
indicates that function is optimal in the sense that it is not necessary to propose any type of
maintenance in this scenario; however, at level 4, it is necessary to suggest a maintenance
caused by vibrations in 87.5% of cases classified as synthetic failure. In matrix c, level 1,
77.5% are found to have good wind turbine operation with maintenance not required and
0.6% classified as synthetic failure. Finally, in level 4, 78.9% synthetic failure is obtained,
which compels proposing possible maintenance in order to guarantee the wind turbine
health against 0.8% failure risk assigned as a normal operation. Validation of false positive
rate of Bagged Trees data training about Receiver Operating Characteristic (ROC) are
observed in Figures A1–A3 in the Appendixes A–C.
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6. Model of Vibrations

Figure 14 shows the vibration spectrum for the three axes “X”, “Y”, and “Z”. It was
defined as the optimal state allowed is between 0 to 2.49 a.u., since vibrations found in this
range are within 70% of nonfailure wind turbine conditions. High-frequency vibrations
exceeding this threshold would be considered synthetic failure. The longitudinal axis of a
wind turbine is the one that suffers from longer amplitude in its vibrations (“Z” axis). In
contrast, the horizontal axis (“Y” axis) is the one that receives the least vibrations, such as
due to energy caused for a purpose.

The spectra presented here contribute to an improved general interpretation of wind
turbine performance, since long amplitude vibrations can be cataloged as critical or syn-
thetic failures. These vibrations must exceed the threshold of 2.49 a.u.; the larger this value,
the more tenuous the amplitude vibrations in the spectrum.

Energies 2023, 16, x FOR PEER REVIEW 13 of 17 
 

 

 
(c) 

Figure 13. (a), (b), (c) confusion matrix with true positive rate data (TPR) and false negative rate 

(FNR) b) confusion matrix with positive predictive values (PPV) and false discovery rate (FDR). 

6. Model of Vibrations 

Figure 14 shows the vibration spectrum for the three axes “X”, “Y”, and “Z”. It was 

defined as the optimal state allowed is between 0 to 2.49 a.u., since vibrations found in 

this range are within 70% of nonfailure wind turbine conditions. High-frequency vibra-

tions exceeding this threshold would be considered synthetic failure. The longitudinal 

axis of a wind turbine is the one that suffers from longer amplitude in its vibrations (“Z” 

axis). In contrast, the horizontal axis (“Y” axis) is the one that receives the least vibrations, 

such as due to energy caused for a purpose.  

  
(a) (b) 

 
(c) 

Figure 14. (a) vibration spectrum on the “X” axis (b) vibration spectrum on the “Y” axis (c) vibration 

spectrum on the “Z” axis; a.u (arbitrary units). 

The spectra presented here contribute to an improved general interpretation of wind 

turbine performance, since long amplitude vibrations can be cataloged as critical or syn-

thetic failures. These vibrations must exceed the threshold of 2.49 a.u.; the larger this 

value, the more tenuous the amplitude vibrations in the spectrum. 

Figure 14. (a) vibration spectrum on the “X” axis (b) vibration spectrum on the “Y” axis (c) vibration
spectrum on the “Z” axis; a.u (arbitrary units).



Energies 2023, 16, 2290 13 of 17

7. Predictive, Preventive, and Corrective Maintenance

The wind generation industry requires a series of activities to ensure proper func-
tioning, for which it is necessary to ensure wind turbines remain in good health through
adequate maintenance; for this, possible parameters are proposed to carry out three types of
maintenance—predictive, preventive, and corrective. The strategy for assigning predictive
maintenance is based on the use of a machine learning method, where it is proposed that the
Bagged Trees algorithm be used, which would be fed with new vibration data to determine
future failures (Figure 13) according to the scenario in which the wind turbine is located. If
the failure percentage exceeds 70%, as determined by the confusion matrix, this indicates
that it does not meet the permitted threshold of 2.49 a.u. of wind turbine optimal state. If
these abnormal conditions are encountered, it is necessary to schedule maintenance.

In the preventive maintenance framework, it is important to consider monitoring
in real time in relation to spectra (Figure 14) and at the moment of observing vibrations
that exceed the permitted limit based on the threshold of 2.49 a.u., called determined
synthetic failure, since it is possible to have a planned preventive maintenance. Corrective
maintenance is based on conditions of predictive and preventive maintenance in correlation
with the confusion matrix, whose abnormal results indicate possible synthetic failure, or
the case in spectra where extraordinary pulses are seen that exceed the permitted threshold
of 2.49 a.u. In addition, to identify possible risks that arise at operation time and to correct
possible breakdowns or failures, which are presented at the time of wind turbine operation
time, an inspection is required to determine the health of wind turbine components, such
that the wind turbine can operate optimally [23].

8. Conclusions

This article presents data from a laboratory turbine, which the authors consider to be
of great value and very interesting, since it presents original data, and no scenario-based
vibration monitoring system can be found in the literature such as the one proposed by the
authors in this work.

We present turbine data obtained in a laboratory, in which the turbine is subjected
to four different scenarios that cause different vibrations. A monitoring system was im-
plemented using an accelerometer that shows that the longitudinal axis “Z” receives the
greatest wind turbine vibration. Data collected by monitoring were used for training under
various machine learning algorithms.

The machine learning technique Bagged Trees algorithm achieved a greater precision
for each axis as opposed to the trained algorithms (see Table 2), giving 80.9% accuracy for
the X axis, 87.5% accuracy for the Y axis, and 78.9% accuracy for the Z axis, and that it
can be implemented to predict possible vibrations, called synthetic failures, every time the
allowed threshold of 2.49 a.u. is exceeded and, thus, recommend preventive maintenance.
With the data obtained, it will be proposed to create a new algorithm to train the data and
improve the accuracy percentage for better maintenance.

Table 2. Algorithms precision percentage.

Algorithm
Accuracy

X Y Z

Medium Tree 65.7% 69.1% 60.2%
Cubic SVM 67.2% 70.9% 60.7%

Logistic Regression Kernel 53.4% 66.5% 56.7%
Optimized Neural Network 69.1% 71.6% 61.8%

Bagged Trees 70.1% 70.6% 62.4%

The obtained results also show a risk of false positives; in contrast, false negatives
are minimal. We consider that the data generated in this paper represent a valuable
contribution based on the spectral results, which indicate when an anomaly is present
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when operating the turbine within a controlled environment. In the future, it is proposed
that a system be used with several accelerometers placed in different wind turbine critical
areas under different conditions to monitor a greater number of parameters in a remote
and automated way for improving wind turbine maintenance.
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