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Abstract: Distribution system state estimation (DSSE) has been introduced to monitor distribution
grids; however, due to the incorporation of distributed generations (DGs), traditional DSSE methods
are not able to reveal the operational conditions of active distribution networks (ADNs). DSSE
calculation depends heavily on real measurements from measurement devices in distribution net-
works. However, the accuracy of real measurements and DSSE results can be significantly affected
by false data injection attacks (FDIAs). Conventional FDIA detection techniques are often unable
to identify FDIAs into measurement data. In this study, a novel deep neural network approach
is proposed to simultaneously perform DSSE calculation (i.e., regression) and FDIA detection (i.e.,
binary classification) using real measurements. In the proposed work, the classification nodes in the
DNN allow us to identify which measurements on which phasor measurement unit (PMU), if any,
were affected. In the proposed approach, we aim to show that the proposed method can perform
DSSE calculation and identify FDIAs from the available measurements simultaneously with high
accuracy. We compare our proposed method to the traditional approach of detecting FDIAs and
performing SE calculations separately; moreover, DSSE results are compared with the weighted least
square (WLS) algorithm, which is a common model-based method. The proposed method achieves
better DSSE performance than the WLS method and the separate DSSE/FDIA method in presence of
erroneous measurements; our method also executes faster than the other methods. The effectiveness
of the proposed method is validated using two FDIA schemes in two case studies: one using a
modified IEEE 33-bus distribution system without DGs, and the other using a modified IEEE 69-bus
system with DGs. The results illustrated that the accuracy and F1-score of the proposed method are
better than when performing binary classification only. The proposed method successfully detected
the FDIAs on each PMU measurement. Moreover, the results of DSSE calculation from the proposed
method has a better performance compared to the regression-only method, and the WLS methods in
the presence of bad data.

Keywords: distribution system state estimation; false data injection attacks; deep neural network;
weighted least square; active distribution network; bad data detection

1. Introduction

The concept of false data injection attacks (FDIAs) in power systems was first studied
in [1]; additional studies about the damaging effects and threats of these new attacks
quickly followed [2,3]. Because of the transition from traditional power networks to smart
grids, more smart devices and communication infrastructures are required to enable the
reliable and efficient performance of smart grids [4]. However, despite the progress in
the power network structure, attackers attempt to disrupt the performance of power
networks by manipulating the data obtained from measurement devices [5]. The goals
of attackers are to falsify the data and measurement information in power networks.
Therefore, state estimation (SE) results can be influenced by FDIAs due to dependencies
of state estimation calculations on measurement information and network topology [6].
SE results are submitted to the control center for further processing including optimal
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power flow, contingency analysis, security analysis, etc. If FDIAs cannot be successfully
detected, the control center performance will be severely degraded, and the likelihood of
both economic and physical risks may arise from a wrong decision in a control center [7–9].

The goal of BDD is to determine the existence of erroneous bad data on measurement
information. Traditional bad data detection (BDD) schemes compute the `2-norm of the
residual measurement after SE calculations are performed [10,11]. However, FDIAs can
successfully bypass most conventional BDD algorithms, and attackers can inject bad data
into measurement data and introduce arbitrary errors into the output of the SE [12]. State
estimation techniques, attacks, and defense strategies on transmission networks have been
well established [13,14]. Unfortunately, these approaches cannot be applied in distribution
networks (DNs) due to their differences with transmission networks [15]. Some features of
DNs include:

1. Unlike transmission networks, which have a mesh structure, DNs generally have
radial or weakly meshed configuration.

2. DNs generally consist of many buses compared to transmission networks, making
installation of measurement devices at all buses in DNs economically impractical.

3. DNs normally have large resistance to reactance ratios (r/x), compared to transmis-
sion lines.

In addition to these differences, renewable energy sources are becoming more common
in DNs [16–18]. These sources typically introduce higher variance and inconsistency, mak-
ing it more difficult to perform state estimation. Because of these reasons, new SE methods
should be developed that consider the characteristics of DNs: multiple renewable energy
sources [19], electric vehicles, variable loads, etc. Moreover, the integration of different
technologies and components in active distribution networks (ADNs) must emphasize
the security aspects of these networks, including the ability to detect cyberattacks such as
FDIAs [20,21].

In the last decade, machine learning approaches have been widely used and developed
for control and monitoring in power networks [22–25]. In [26], a machine learning approach
is used for an energy storage program and load management in power networks. Moreover,
due to limitations in detecting FDIAs using conventional (model-based) BDD methods,
machine learning approaches have been applied widely to identify malicious data injection.
Faster execution time and accurate results are two main advantages of using machine
learning approaches over conventional BDD methods [27–29]. Machine learning algorithms
are based on the data obtained from the power networks, unlike model-based approaches
which are based on network topologies as well as measurement data.

Different machine learning methods, including supervised [30–32], semi-supervised [33,34],
and unsupervised learning [35,36], are used to explore the detection of FDIAs in many
different fields. In [37], a machine learning approach is utilized to identify cyberattacks
such as structured query language injection attack (SQLIA. In [38], a new machine learning
method is proposed to identify false data injection attack on an information of technology
(IOT) system. In [39], a supervised-machine learning algorithm is used to classify different
failure parts of a wind turbine.

In this study, we focus our machine learning efforts in FDIA detection in power
distribution networks. FDIA detection is considered a supervised binary classification
problem. In [40], the abilities of different machine learning approaches are tested to identify
attacks in ADNs. Furthermore, various scenarios are considered to verify that FDIAs can be
identified using machine learning methods. In [41], a hybrid weighted least absolute value
(WLAV) method is proposed to use supervisory control and data acquisition (SCADA)
and micro-PMU measurements for three-phase unbalanced distribution networks. The
robustness of WLAV and WLS estimators are compared against potential FDIAs, and it
is shown that WLAV has a better performance to enhance the security of the distribution
grid. In [42], two distributed sparse state estimation and attack detection methods are
studied to make a DN observable and to perform FDIA detection locally in distribution
networks. In [43], the affine interval state estimation method is applied to identify attacks
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in measurement data by considering the upper and lower boundaries of the state variables.
In [44], a new method is proposed to identify types of faults and cyberattack locations
simultaneously by utilizing a deep neural network (DNN) method. The authors call their
method fault and attack location and classification (FALCON); this method is categorized
as a multi-output classification approach. In [45], a new method is proposed to identify the
presence of corrupted measurement data and the location of compromised micro-PMUs
in order to ignore the corrupted measurement devices as a defense strategy. In [46], two
separate DNN models are designed to perform DSSE and topology detection from available
synchronized measurements for unbalanced ADNs.

In existing research, DSSE calculation and bad data detection on state variables and
measurement data are performed separately by using model-based or data-based ap-
proaches. In some cases, multi-output classification problems are solved by a single DNN
model. In contrast, this paper uses a single DNN model for simultaneously performing
DSSE and FDIA detection using PMU measurements as inputs. Different scenarios are
considered for FDIAs to verify the proposed method; moreover, the performance of the
proposed method is compared to when DSSE calculation and FDIA detection are performed
by separate DNN models. To make a comparison between the robustness of data-based
and model-based approaches, the WLS method is performed to obtain state variables in
the presence of FDIAs on PMU measurements.

The main contributions of this paper are summarized as follows:

1. We design a single DNN model to simultaneously perform DSSE calculation and
FDIA detection based on PMU measurement inputs. The results are compared to
when DSSE calculation and FDIAs are performed separately using two independent
DNN models.

2. Having N + 1 classification nodes, where N is the number of PMU measurements,
allows the DNN to identify which PMU measurement, if any, was affected by FDIA,
or if none of the measurements were affected.

3. The performance of the proposed method is investigated for FDIA detection on PMU
measurements with different attack scenarios.

4. To make a comparison between data-based and model-based approaches, DSSE
calculation is performed using the WLS as a model-based approach.

5. The effectiveness of the proposed method is tested for passive and active distribution
networks: the 33 and 69 IEEE distribution networks, respectively.

6. We show that the proposed method accurately calculates state estimation variables,
even in the presence of erroneous measurements.

7. The execution time comparison between the proposed method, the disjoint DNN
model for DSSE calculation and FDIA detection, and the model-based approach is
calculated. The results indicate that performing FDIA detection and DSSE calculation
simultaneously lead to a significant decrease in execution time.

2. Power System State Estimation

State estimation calculations are essential for continually improving the performance
and management of power networks [47]. Different state estimation techniques have
been developed and used for transmission networks for several years, but these methods
cannot be used at the distribution level directly due to differences between transmission
and distribution networks. The distribution system state estimation (DSSE) enhances
monitoring and controlling of distribution grids effectively and efficiently. Moreover, state
estimation results can be utilized for load forecasting, stability analysis, optimal power
flow, bad data detection, and energy market analysis [48,49]. The weighted least square
(WLS) method is one of the traditional methods which is effective in both distribution and
transmission grids.
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WLS Formulation for State Estimation

The general measurement model for the state estimation problem can be expressed as:

z = h(x) + ez, (1)

where z = [z1 . . . zM]T is the vector of the measurements, and M is the number of available
measurements; h = [h1 . . . hM]T is the list of measurement function vectors, and it is
commonly nonlinear. The relationship between the available measurements and state
vectors are shown by h(x). The state variable vector is given by x = [x1 . . . xN ]

T and N
is the number of state variables. Lastly, ez ∼ N (0, Rz) is the measurement noise vector,
and it is assumed to be of zero mean dimension and be a Gaussian random variable with
covariance matrix Rz = diag

{
σ2

z1
, σ2

z2
, · · · , σ2

zm

}
. For instance, the power flow equations

can be expressed as:
Pi = Vi∑N

j=0Vj
(
Gijcosθij + Bijsinθij

)
(2)

Qi = Vi∑N
j=0Vj

(
Gijsinθij − Bijcosθij

)
. (3)

In these equations, Pi and Qi are the real and reactive power injections at bus i,
respectively; Gij and Bij are the real and imaginary part of the nodal admittance matrix
element Yij, respectively; and θij = θi − θj is the standing phase angle difference between
buses i and j.

Additional equations describe the active (Pij) and reactive (Qij) power flow from bus i
to bus j:

Pij = ViVj
(
Gijcosθij + Bijsinθij

)
− GijV2

i (4)

Qij = ViVj
(
Gijsinθij + Bijcosθij

)
+ BijV2

i . (5)

When WLS is performed for the state estimation calculation, the objective function is
defined as:

J(x) =
M

∑
i=1

wi[zi − hi(x)]2. (6)

In this formulation, wi is the weight associated with the ith measurement, and M is the
number of available measurements to perform the SE calculation. The difference between
measurement values (z) and the function corresponding to the state vector (h(x)) is ex-
pressed as z− h(x), and it is called the measurement residual in the literature. Equation (6)
can be defined in matrix form as:

J(x) = [z− h(x)]TW[z− h(x)]. (7)

WM×M is a diagonal matrix, whose diagonal elements correspond to the weights
wi. The iterative Gauss–Newton (IGN) method is commonly performed to minimize the
objective function J(x); Reference [47] In IGN, the following function is solved at each
iteration k:

G(xk)∆xk = HT
k W[z− h(xk)], (8)

where Hk = H(xk) is the Jacobian matrix at iteration k, and G(xk) = HT
k WHk is the gain

matrix. ∆xk is the updated state vector used to calculate the new state as follows:

xk+1 = xk + ∆xk. (9)

The iterative calculation continues until a predefined convergence criterion is reached.
The largest absolute value of the updated state vector (∆xk) is compared to a predefined
tolerance threshold ε. When max(|∆x|) < ε, the calculation will be stopped. The state
vector will be estimated in the last iteration by the WLS approach.

The state vector of the power grid can be defined as a set of variables; when the state
variables are calculated, other electric power quantities could be computed from these
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states [50,51]. In node voltage distribution system state estimation (NV-DSSE), voltage
magnitudes and phase angles for all buses are considered as state variables. State vectors
can be represented in polar coordinates as x = [δ2, · · · , δN , V1, · · · , VN ], where δN , VN
are voltage phase angle and magnitude, respectively, and N is the number of buses. It
is assumed that there are no measurement devices installed in the slack bus and only
conventional measurements are available in the distribution grid. The voltage magnitude is
1 p.u. and the phase angle of the slack bus is zero (δ1 = 0). However, if there is a measuring
device at the slack bus, the state vector will be defined as x = [δ1∅, . . . , δN∅, V1∅, . . . , VN∅]
where the phase angle δ1∅ is not zero any more [52–54].

There are two main differences between the non-PMU configuration and the PMU
configuration. First, the definition of the mathematical equation relating measurements to
physical parameters of the distribution grids is altered. Second, the Jacobian matrix has a
different structure [55].

3. False Data Injection Attacks (FDIAs)

To evaluate the operating status of power networks, including voltage magnitude
and phase angle of buses, state estimation is made on the basis of available measure-
ments. Unfortunately, the state variables can be manipulated by injecting FDIAs into meter
measurements [56], which reduces the accuracy of DSSE results.

The measurement vector z could be manipulated and changed to a falsified measure-
ment za when attackers inject malicious data:

za = z + a. (10)

In this formulation, a ∈ Rm×1 is the malicious data vector that is injected into the
measurement vector. The erroneous measurement vector, za, can lead to an inaccurate
system state x̂a = x + c, where c is the resultant error in the state vector. The FDIAs cannot
be identified by bad data detection approaches if an attacker knows the structure of the
power system h. For example, the FDIAs can bypass the BDD if a = h(x̂a)− h(x̂), which
causes the residual error before and after the attack to be the same:

ra = ‖za − h(x̂a)‖
= ‖z + a− h(x̂a) + h(x̂)− h(x̂)‖

= ‖z− h(x̂) + a− h(x̂a) + h(x̂)‖ = r
(11)

The general effect of FDIAs on measurements and DSSE procedures are shown in
Figure 1. The measurement vector is manipulated by the FDIA vector (a), which modifies
it to become za = z + a. Falsified measurements and network topology are fed into DSSE
calculation which can be performed using model-based or data-based approaches. The SE
results are then sent to the control and management center for further processing, including
bad data detection using appropriate methods.
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Machine Learning Approach to Detect FDIAs

Machine learning is a form of artificial intelligence that gives computers an ability to
learn without being explicitly programmed [57]. FDIA detection is defined as a supervised
binary classification problem. The main objective of a binary classifier for FDIAs is to clas-
sify measurements as being either secure (z) or attacked (za = z + a). A binary classification
problem can be defined as:

yi =

{
0, i f a = 0
1, i f a 6= 0

(12)

where yi = 0 and yi = 1 indicate there is no attack or there is an attack on a measurement,
respectively, and a is the attack vector.

A deep neural network (DNN) is a subset of machine learning inspired by the or-
ganization or structure of the human brain. DNN is one of the fastest growing artificial
intelligence technologies. DNN methods have been proposed widely to detect FDIAs
with high accuracy [58,59]; however, this technique requires more time and data for a
training phase [60,61]. In feed-forward DNN models, the information flows in only one
single direction from the input, through optional hidden layers, to the output, as shown in
Figure 2.
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A DNN consists of activation functions, weights, neurons, an input layer, hidden
layers, and an output layer. The input layer comprises neurons that receive the input
variables and transfer them to subsequent layers in the network. The number of neurons in
the input layer must be the same as the number of the features or attributes in the dataset.
The hidden layers are placed between the input and the output layers; the number of
hidden layers and the number of neurons in each layer are determined experimentally.
The weights in the network are constantly updated so the output can reliably predict an
outcome based on the original input. The strength or the magnitude of connection between
two neurons is called a weight. The value of the weights is usually small and falls within
the range of 0 to 1. Neurons have two important roles: first, they determine the sum of
the weighted inputs, and second, they initiate an activation process to normalize the sum.
Weights are associated with each input of the neuron. The network learns these weights
during the learning phase. The activation function, which can be either linear or nonlinear,
is the decision-making center at the neuron output. Three common activation functions are
sigmoid, tanh, and rectified linear unit (ReLU).
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4. Methodology

As mentioned earlier, DSSE calculation and FDIA detection are typically performed
on measurements separately. In conventional cases, DSSE calculation is performed in the
first stage, and then BDD is performed to identify FDIAs on measurements from SE results.

In data-based approaches, as shown in Figure 3a,b, two separate DNNs are consid-
ered: one to execute DSSE calculations and one to perform the binary FDIA detection. In
this study, as shown in Figure 3c, FDIA detection and DSSE calculation are performed
simultaneously using a single DNN model. The method is compared to traditional ap-
proaches that perform BDD and DSSE calculation using two independent DNN models.
Traditional approaches use a regression-based DNN to perform DSSE calculation and a
classification-based DNN to detect FDIAs. A description of regression-based DNNs and
classification-based DNNs in the context of DSSE and BDD is provided in [62]. In this
paper, we assume the attacker injects false data into the original measurements by directly
modifying the measurement vector: z → za . (This can also be modeled as za = z + a.)
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In this study, the bus voltage and branch current magnitudes are considered as avail-
able measurements which are obtained from the PMU devices installed on a limited number
of buses in the distribution network.
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The attack models (Va and Ib) on voltage and branch current magnitudes are expressed
in (13) and (14), respectively:

V =


V1
V2
· · ·
VN

→ Va =


Va,1
Va,2
· · ·

Va,N

 (13)

I =


I1
I2
· · ·
IN

 → Ib =


Ib,1
Ib,2
· · ·
Ib,N

 (14)

The proposed DNN model consists of input, two hidden, and output layers. The
number of neurons in the input layer is equal to the number of available PMU measure-
ments (N). The first and second hidden layers have 900 and 400 neurons, respectively. The
tanh function is considered as the activation function for both hidden layers. The output
layer consists of Nb regression nodes and N + 1 classification nodes. Nb is the number of
state variables: the voltage magnitudes and phase angles of all buses. N is the number of
PMU measurements in the distribution networks: one voltage magnitude and one current
magnitude per PMU. The output nodes corresponding to regression use a linear activation
function. The classification nodes in the output layer use a softmax activation function,
allowing the algorithm to identify only one output node as being the most likely output.
Having N + 1 classification nodes allows the DNN to identify which PMU measurement, if
any, was affected by FDIA. Note that if multiple measurements are attacked with the same
vector injection, the algorithm will only report one of them because the softmax function
is used as the classification layer activation function. Stochastic gradient decent (SGD) is
used as the optimizer. All other hyperparameters are set to their default values using the
TensorFlow library 2.4.1 package in Python.

In order to evaluate the DSSE results (i.e., the regression outputs), mean percent error
(MPE) and mean absolute error (MAE) are calculated using (15) and (16):

MPE =
1
n

n

∑
i=1

∣∣∣∣ x̂i − xi
xi

∣∣∣∣× 100 (15)

MAE =
1
n

n

∑
i=1
|x̂i − xi| × 100. (16)

In both equations, x̂ is the estimated value, x is the actual value, and n refers to the
data set size.

Accuracy and F1-score, defined below, are used for binary classification outputs:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

F1 =
2× precision× recall

precision + recall
. (18)

In (17), TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives. Precision and recall are calculated as follows:

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + TN
. (20)
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A confusion matrix can be used to analyze the performance of a given classifier.
Correctly classified and misclassified outcomes are represented on the on and off diagonals
of the confusion matrix, respectively. Where these values are nonzero, we highlight the
entries as blue (correct) or red (incorrect).

5. Results
5.1. Case Study I

For one of the case studies, the effectiveness of the proposed method is evaluated
on the IEEE 33 bus distribution network (shown in Figure 4). “True” values of electrical
parameters are calculated by power flow calculations.
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Figure 4. IEEE Standard 33 Bus Distribution System.

Measurements are randomly calculated based on their probability density function for
each Monte Carlo trial. The sets of assumptions are defined as follows:

1. The number of Monte Carlo trials is chosen as NMC = 12,000;
2. A Gaussian distribution, with 3σ = 50% of the nominal value, is considered for power

injection on the buses.
3. Three PMUs are assumed as the available measurement devices in the network which

are located at buses 9, 16, and 31 [63]. Voltage and branch current magnitudes from
each PMU are used for FDIA detection and for performing DSSE using the proposed
method. For each PMU, 12,000 samples are given according to the number of Monte
Carlo trials.

4. Two types of attack vectors are injected into available measurements:

(1) za = {(1± .05)z, (1± 0.1)z}, as in [40].
(2) za = ∼ N (µz, σz), where µz and σz are the average and standard deviation

of each measurement vector, respectively. In this case, we assume that the
attacker knows the distribution of each measurement and wants to falsify
measurements based on the true measurement distribution.

5. For training and test sets, 67% and 33% of of the data were used, respectively.
6. The pseudo-measurements of active and reactive power injections and flows are

generated to make the system observable and to perform WLS calculations with the
inclusion of the PMU measurements.

7. Voltage magnitudes and phase angles for all the buses are considered as a state
variable: x = [δ2, · · · , δN , V1, · · · , VN ], where δN , VN are the voltage phase angle and
magnitude, respectively, and N is the number of buses. It is assumed that there are no
measurement devices installed in the slack bus and δ1 = 0 and V1 = 1.

8. The standard deviation is considered as 50% of the nominal value for pseudo-measure-
ments and 3% of the actual value of active and reactive power flow measurements. A
Gaussian error, with 3σ = 1%, is added to PMU measurements (voltage and branch
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current magnitudes) to model uncertainty. To model the zero injection buses, the error
of virtual measurements is considered to be 10−8.

5.1.1. False Data Injection Attacks on Measurements with za = {(1± 0.05)z, (1± 0.1)z}
In this case, we inject FDIAs at random to measurement samples, and we allow 10%

of each available measurement (Na = 1200) to be falsified randomly by FDIAs (za =
{(1± 0.05)z, (1± 0.1)z}).

In Figure 5, true and attacked measurements for 120 consecutive samples are shown.
As it is clear, after FDIA, the true measurements are changed to falsified values, and we
aim to identify theses erroneous measurements using the proposed method.
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Figure 5. Original and attacked measurements for 120 samples when za = {(1± 0.05)z, (1± 0.1)z}.

Next, the FDIA detection and DSSE results from the proposed method are discussed.
Also discussed are the appropriate binary classification-only or regression-only DNN
model and the WLS method. All model performances are analyzed for the case where
10% of each of the available measurements (Na = 1200) are falsified randomly by FDIAs
(za = {(1± 0.05)z, (1± 0.1)z}).

Table 1 shows the results for the proposed method for the and appropriate binary
classification-only methods. It shows that the proposed method successfully detected
the FDIAs on the PMU measurements when false data za = {(1± 0.05)z, (1± 0.1)z} are
injected randomly in 10% of available measurements. The accuracy and F1-score of the
proposed method are 0.930 and 0.889, respectively, which are better than when performing
the binary classification only (i.e., 0.882 and 0.814, respectively).

Table 1. Confusion Matrix Showing Bad Data Detection Results and Accuracy Values Obtained Using
the Proposed Method and the Binary Classification-only DNN Model when Na = 1200 (10%), and
za = {(1± 0.05)z, (1± 0.1)z}.

Joint DNN Regression and Classification DNN Classification Separately

FD
IA

|V9| 421 3 0 0 0 0 0 245 0 0 0 0 179 0
|V16| 110 260 0 0 0 0 0 0 248 0 0 0 122 0
|V31| 71 0 229 3 7 4 0 0 0 228 3 3 80 0
|I9−10| 40 0 0 266 2 2 0 0 0 0 268 0 42 0
|I16−17| 36 0 0 0 201 0 0 0 0 0 0 199 38 0
|I31−32| 1 0 0 0 0 228 0 0 0 0 0 0 229 0

A
ct

ua
lV

al
ue

s

No
FDIA 0 0 0 0 0 0 2076 0 0 0 0 0 0 2076

|V9| |V16| |V31| |I9−10| |I16−17| |I31−32|
No

FDIA |V9| |V16| |V31| |I9−10| |I16−17| |I31−32|
No

FDIA
Predicted Values Predicted Values

Accuracy = 0.9295
F1-Score = 0.8885

Accuracy = 0.882
F1-Score = 0.8142
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The results of DSSE calculation from the proposed method, the regression-only, and
the WLS method are shown in Figure 6. As it is clear from this figure, the proposed method
has a better performance in both MPE and MAE compared to the other methods in the
presence of bad data. When no bad data are present, both of the DNN-based methods
(regression-only and combined regression and classification) have similar performance for
the state estimation. The WLS estimator has the worst performance in both cases, and the
performance is significantly worse in the presence of bad data measurements.
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5.1.2. False Data Injection Attacks on Measurements with za = ∼ N (µz, σz)

In this case, we assume that the attacker knows the distribution of each measurement
and wants to falsify measurements based on the true measurement distribution.

In Figure 7, 103 measurements before and after FDIAs are shown. We aim to identify
falsified measurements by applying the proposed method. The FDIA detection and DSSE
regression results are shown when the FDIAs’ vector is constructed with za = ∼ N (µz, σz).
It is clear from the figure that attacked samples come from the same distribution as true
measurement samples, making them more difficult to identify.
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The results in Table 2 for the proposed method and for the appropriate binary
classification-only methods show that the proposed method successfully detected most
FDIAs on all three PMUs when false data za = ∼ N (µz, σz) were injected randomly to 5%
of the available measurements. Furthermore, it shows that the proposed method works
better than an independent binary classification method. The accuracy and F1-score of the
proposed method (0.924 and 0.556, respectively) are better than when performing binary
classification only (0.909 and 0.403, respectively).

Table 2. Confusion Matrix Showing Bad Data Detection Results and Accuracy Values Obtained
Using the Proposed Method and the Binary Classification-only DNN Model when Na = 600 (5%),
za = ∼ N (µz, σz).

Joint DNN Regression and Classification DNN Classification Separately

FD
IA

|V9| 74 8 1 1 2 1 7 45 0 1 0 0 0 48
|V16| 6 74 0 0 0 0 3 5 44 0 0 0 0 34
|V31| 0 1 57 0 0 0 18 7 0 29 0 0 0 40
|I9−10| 2 0 0 16 2 0 57 0 0 0 1 0 0 76
|I16−17| 0 0 1 1 1 1 71 0 0 0 0 0 0 75
|I31−32| 0 0 0 0 0 1 73 0 0 0 0 0 0 74A

ct
ua

lV
al

ue
s

No FDIA 0 0 4 13 7 20 3437 0 0 0 0 0 0 3481

|V9| |V16| |V31| |I9−10| |I16−17| |I31−32|
No

FDIA |V9| |V16| |V31| |I9−10| |I16−17| |I31−32|
No

FDIA
Predicted Values Predicted Values

Accuracy = 0.9242
F1-Score = 0.5556

Accuracy = 0.9090
F1-Score = 0.4028

Figure 8 shows the results of DSSE calculation from the proposed method, the
regression-only method, and the WLS method. It is clear from the figure that the pro-
posed method has a better performance in the MPE and MAE criteria compared to other
methods in the presence of bad data. Similar to what was seen in the previous case study,
when no bad data are present, both DNN-based methods (regression-only and combined
regression and classification) have similar performance for state estimation. The WLS
estimator has the worst performance in both cases, and the performance is significantly
worse in the presence of bad data measurements.
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Table 3 shows the results for the proposed method and the appropriate binary classifica-
tion-only method, showing that the proposed method successfully detected most FDIAs
on all three PMUs when false data za = ∼ N (µz, σz) were injected randomly to 10% of
the available measurements. It also shows that the proposed method works better than
an independent binary classification method. The accuracy and F1-score of the proposed
method (0.907 and 0.856, respectively) are better than when performing binary classification
only (0.839 and 0.403, respectively).

Table 3. Confusion Matrix Showing Bad Data Detection Results and Accuracy Values Obtained
Using the Proposed Method and the Binary Classification-only DNN Model when Na = 1200 (10%),
za = ∼ N (µz, σz).

Joint DNN Regression and Classification DNN Classification Separately

FD
IA

|V9| 271 25 39 22 10 28 5 91 4 3 0 0 0 68
|V16| 0 312 11 5 5 3 3 13 73 1 0 0 0 60
|V31| 2 1 283 8 1 15 4 13 0 65 0 0 0 71
|I9−10| 0 0 0 244 31 22 0 4 0 0 2 0 0 143
|I16−17| 0 0 0 0 235 22 5 0 0 0 0 0 0 116
|I31−32| 3 0 0 0 0 222 5 0 0 0 0 0 0 140A

ct
ua

lV
al

ue
s

No FDIA 81 0 0 0 13 0 2024 0 0 0 0 0 0 3093

|V9| |V16| |V31| |I9−10| |I16−17| |I31−32|
No

FDIA |V9| |V16| |V31| |I9−10| |I16−17| |I31−32|
No

FDIA
Predicted Values Predicted Values

Accuracy = 0.9068
F1-Score = 0.8557

Accuracy = 0.8393
F1-Score = 0.4028

Figure 9 shows the results of DSSE calculation from the proposed method, the
regression-only method and the WLS method. It is clear from the figure that the pro-
posed method has a better performance in MPE and MAE criteria compared to other
methods in the presence of bad data. Once again, when no bad data are present, both the
DNN-based methods (regression-only and combined regression and classification) have
similar performance for state estimation. The WLS estimator has the worst performance
in both cases, and the performance is significantly worse in the presence of bad data
measurements.
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Table 4 shows the execution time for the proposed method, regression-only method
and the WLS method when the testing data are the same for each method. As it is clear,
the execution time is decreased significantly when regression and binary classification are
performed simultaneously by a joint DNN model. The WLS execution time is ten times
greater than for the other methods because, as mentioned earlier, the Jacobian matrix,
which is based on physical parameters of a network, is recalculated in each iteration, which
increases the execution time. Therefore, by applying the proposed method which is a
data-based approach, the execution time is decreased significantly.

Table 4. Execution time for the proposed method, regression-only method, and WLS method.

Joint DNN Regression
and Classification

DNN Regression
Separately WLS

FDIA |V| θ |V| θ |V| θ

a = [±90%, 105%] 0.62 (s) 0.42 (s) 1.35 (s) 0.78 (s) 30.91 (s)

a = [mean, STD]
N = 5% 0.40 (s) 0.47 (s) 0.35 (s) 0.58 (s) 23.49 (s)

a = [mean, STD]
N = 10% 0.63 (s) 0.56 (s) 1.02 (s) 0.75 (s) 27.55 (s)

5.2. Case Study II

The modified IEEE standard 69 bus distribution network (shown in Figure 10) is
chosen for the second case study. The effectiveness of the proposed method is evaluated
using this system. The system is suitably adapted to include a mix of commercial and
residential loads and DGs. A set of experimental data (available for a time period of one
year), obtained from Open Energy Information (OpenEI) [64], is utilized with the simulation
time step of 1 h. Three photovoltaic (PV) panels are placed [65] on buses 21, 62, and 64 with
maximum generation of 929.7 kW, 1075.2 kW, and 992.5 kW, respectively.
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The hourly data of power generation of a photovoltaic system are computed and
adopted based on actual data for Bozeman, MT, USA [66,67]. The reactive power of bus i is
defined as:

Qi(t) = Pi(t)

√
1− P f 2

i (t)

P fi(t)
, (21)

where P fi(t) ∼ Uni f (0.85, 0.95).
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1. Three PMUs—located at buses 20, 60, and 67 [63]—are assumed as the available
measurement devices in the network. The bus voltage and branch current magnitudes
from each PMU are used for detection of FDIAs and for performing DSSE using the
proposed method. We have 8760 samples with a temporal resolution of one sample
per hour for each PMU, resulting in data for one year.

2. Two types of attack vector are injected into available measurements:

(1) za = {(1± 0.05)z, (1± 0.1)z} [40].
(2) za = ∼ N (µz, σz), where µz and σz are the average and standard deviation

of each measurement vector, respectively. In this case, we assume that the
attacker knows the distribution of each measurement and wants to falsify
measurements based on the true measurement distribution.

3. All the data are then split into train and test sets with a ratio of 67% and 33%.
4. The pseudo-measurements of active and reactive power injections and flows are

generated to make the system observable and to perform WLS calculations with the
inclusion of PMU measurements.

5. Voltage magnitudes and phase angles for all buses are considered as state variable: x =
[δ2, · · · , δN , V1, · · · , VN ], where δN , VN are voltage phase and magnitude, respectively,
and N is the number of buses. It is assumed that there are no measurement devices
installed in the slack bus and that δ1 = 0 and V1 = 0.

6. The standard deviation is considered as 50% of the nominal value for pseudo-measure-
ments and 3% of the actual value of active and reactive power flow measurements. A
Gaussian error, with 3σ = 1%, is added to the PMU measurements (i.e., the voltage
and branch current magnitudes) to model the uncertainty. To model zero injection
buses, the error in virtual measurements is considered to be 10−8.

5.2.1. False Data Injection Attacks on Measurements with za = {(1± 0.05)z, (1± 0.1)z}
In this case, we inject the FDIAs at random to measurement samples, and we allow

10% of each available measurement (Na = 876) to be falsified randomly by the FDIAs:
za = {(1± 0.05)z, (1± 0.1)z}.

The results in Table 5 for the proposed and appropriate binary classification-only
methods show that the proposed method successfully detected most FDIAs on each PMU
measurement when the false data, za = {(1± 0.05)z, (1± 0.1)z}, are injected randomly to
10% of available measurements. The false data are the same for the independent binary clas-
sification method. The table shows that the accuracy and F1-score of the proposed method
(0.954 and 0.5334, respectively) are better than when performing the binary classification
only (0.916 and 0.521, respectively).

Table 5. Confusion Matrix Showing Bad Data Detection Results and Accuracy Values Obtained
Using the Proposed Method and the Binary Classification-only DNN Model when Na = 876, and
za = {(1± 0.05)z, (1± 0.1)z}.

Joint DNN Regression and Classification DNN Classification Separately

FD
IA

|V20| 36 2 1 1 0 2 1 34 0 1 5 1 1 1
|V60| 1 31 3 0 0 0 2 1 31 1 0 1 1 1
|V67| 2 0 27 0 0 0 1 4 0 25 0 0 1 0
|I20−21| 0 0 0 1 0 0 31 4 0 0 3 0 0 29
|I60−61| 0 0 0 0 0 0 33 0 0 0 1 0 0 132
|I67−68| 0 0 0 0 0 0 42 0 0 0 2 0 0 40A

ct
ua

lV
al

ue
s

No FDIA 0 0 0 3 3 3 2666 0 0 0 108 10 0 2557

|V20| |V60| |V67| |I20−21| |I60−61| |I67−68|
No

FDIA |V20| |V60| |V67| |I20−21| |I60−61| |I67−68|
No

FDIA
Predicted Values Predicted Values

Accuracy = 0.9546
F1-Score = 0.5334

Accuracy = 0.9166
F1-Score = 0.5231
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The results of DSSE calculation from the proposed method, the regression-only method,
and the WLS method are shown in Figure 11. It is clear from this figure that the proposed
method has a better performance with respect to the MPE and MAE criteria compared
to other methods in the presence of bad data. When no bad data are present, both DNN-
based methods (regression-only and combined regression and classification) have similar
performance for state estimation. The WLS estimator has the worst performance in both
cases, and the performance is significantly worse in the presence of bad data measurements.
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5.2.2. False Data Injection Attacks on Measurements with za = ∼ N (µz, σz)

The results in Table 6 for the proposed method and appropriate binary classification-
only method show the proposed method successfully detected most FDIAs on each PMU
measurement when false data za ∼ N (µz, σz) are injected randomly to 5% of available
measurements, and it works better than an independent binary classification method.

The accuracy and F1-score of the proposed method (0.9723 and 0.722, respectively) are
better than when performing binary classification only (0.970 and 0.702, respectively).

Figure 12 shows the results of the DSSE calculation from the proposed method, the
regression-only method, and the WLS method. As it is clear from Figure 12, the proposed
method has a better performance in the MPE and MAE criteria compared to the other
methods in the presence of bad data. This is similar to what was seen in the previous case
study. When no bad data are present, both DNN-based methods (regression-only and
combined regression and classification) have similar performance for state estimation. The
WLS estimator has the worst performance in both cases, and the performance is significantly
worse in the presence of bad data measurements.
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Table 6. Confusion Matrix Showing Bad Data Detection Results and Accuracy Values Obtained Using
the Proposed Method and the Binary Classification-only DNN Model when Na = 438 (5%), and
za = ∼ N (µz, σz).

Joint DNN Regression and Classification DNN Classification Separately

FD
IA

|V20| 22 2 2 2 0 0 4 22 3 1 2 0 0 4
|V60| 0 18 0 1 6 1 3 0 17 0 2 4 1 5
|V67| 0 0 25 1 0 4 7 1 0 24 1 0 2 9
|I20−21| 0 0 1 21 0 0 9 0 2 1 18 0 0 10
|I60−61| 0 2 0 0 18 1 10 0 2 0 0 17 2 10
|I67−68| 0 0 0 0 1 8 22 0 1 0 0 0 9 21A

ct
ua

lV
al

ue
s

No FDIA 0 0 0 0 0 1 2699 0 0 0 0 0 1 2699

|V20| |V60| |V67| |I20−21| |I60−61| |I67−68|
No

FDIA |V20| |V60| |V67| |I20−21| |I60−61| |I67−68|
No

FDIA
Predicted Values Predicted Values

Accuracy = 0.9723
F1-Score = 0.7224

Accuracy = 0.9705
F1-Score = 0.7021
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Figure 12. DSSE Results Obtained Using the Proposed Method, the Regression-only DNN Model,
and WLS with or without Bad Data when Na = 438 (5%), and za = ∼ N (µz, σz).

Table 7 shows the results for the proposed method and the appropriate binary classifica-
tion-only method, where the proposed method successfully detected most FDIAs on each
PMU measurement when false data za = ∼ N (µz, σz) are injected randomly to 10% of
available measurements, and it works better than an independent binary classification
method. The accuracy and F1-score of the proposed method (0.9619 and 0.792, respec-
tively) are also better than when performing the binary classification only (0.957 and 0.770,
respectively).
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Table 7. Confusion Matrix Showing Bad Data Detection Results and Accuracy Values Obtained Using
the Proposed Method and the Binary Classification-only DNN Model when Na = 876 (10%), and
za = ∼ N (µz, σz).

Joint DNN Regression and Classification DNN Classification Separately

FD
IA

|V20| 64 1 1 2 1 0 4 64 0 2 1 1 0 5
|V60| 0 47 1 0 9 0 4 0 45 2 0 9 1 4
|V67| 0 3 53 4 3 0 1 0 5 52 2 4 0 1
|I20−21| 1 1 1 52 0 0 4 1 2 0 52 0 0 4
|I60−61| 0 10 0 0 47 1 13 0 14 0 0 41 3 13
|I67−68| 0 0 0 0 0 13 41 0 0 0 0 0 13 41A

ct
ua

lV
al

ue
s

No FDIA 0 0 0 0 0 4 2505 0 0 0 0 0 8 2501

|V20| |V60| |V67| |I20−21| |I60−61| |I67−68|
No

FDIA |V20| |V60| |V67| |I20−21| |I60−61| |I67−68|
No

FDIA
Predicted Values Predicted Values

Accuracy = 0.9619
F1-Score = 0.7921

Accuracy = 0.9574
F1-Score = 0.7709

The results of DSSE calculation from the proposed method, the regression-only method,
and the WLS method are shown in Figure 13. It is clear from this figure that the proposed
method has a better performance in the MPE and MAE criteria compared to the other
methods in the presence of bad data. Once again, when no bad data are present, both DNN-
based methods (regression-only and combined regression and classification) have similar
performance for state estimation. The WLS estimator has the worst performance in both
cases, and the performance is significantly worse in the presence of bad data measurements.
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In Table 8, the execution time for the proposed method, regression-only method,
and WLS method are shown when the testing data are the same for each method. It is
clear from the table that the execution time is decreased significantly when regression
and binary classification are performed simultaneously by a joint DNN model. WLS
execution time is ten times greater than that of the other two methods. As mentioned
previously, each iteration recalculates the Jacobian matrix, which is based on physical
parameters of a network, and this increases the execution time. Therefore, by applying
the proposed method, which is based on a data-based approach, the execution time is
decreased significantly.

Table 8. Execution time for the proposed method, regression-only method, and WLS method.

Joint DNN Regression
and Classification

DNN Regression
Separately WLS

FDIA |V| θ |V| θ |V| θ

a = [±90%, 105%] 0.41 (s) 0.63 (s) 0.24 (s) 0.15(s) 43 (s)

a = [mean, STD]
N = 5% 0.24 (s) 0.23 (s) 0.15 (s) 0.15 (s) 51 (s)

a = [mean, STD]
N = 10% 0.17 (s) 0.15 (s) 0.18(s) 0.23 (s) 59 (s)

6. Conclusions

In this paper, a new method using a DNN approach is proposed to simultaneously
perform DSSE calculation and FDIA detection on measurements in distribution networks.
Voltage magnitudes and phase angles are defined as state vector variables in this study.
The proposed method considers the constraints of DG penetration and limitations on the
installation of measurement tools in distribution networks, making it more applicable in a
real-world setting. A single DNN model with two hidden layers is designed to perform both
regression (DSSE calculation) and binary classification (FDIA detection), and the results are
compared when regression and binary classification are carried out with two separate DNN
models using the same hyperparameters as the proposed DNN model. Moreover, DSSE
calculation—based on the WLS method, along with PMU and pseudo-measurements—is
performed to make a comparison between data-based and model-based approaches. In
this work, we showed that DSSE calculation can be performed precisely from corrupted
measurements and simultaneously identify FDIAs on corrupted measurements with high
accuracy. We consider two case studies to verify the proposed method: IEEE 33-bus system
without DG, and IEEE 69-bus systems with DGs. MPE and MSE values are considered to
evaluate DSSE results for the proposed method, disjoint DNN method, and WLS method.
Accuracy and F1-score are considered for evaluating the binary classification task. False
data vectors are defined as being of two types: 1—za = {(1± 0.05)z, (1± 0.1)z}, and
2— za = ∼ N (µz, σz).

For the 33-bus case study, DSSE is performed using the proposed method, achieving
0.93% and 1.99% MPE for the first and second false data vectors, respectively. The accuracy
for bad data detection is 93% and 92% for the first and second false data vectors, respectively,
when 10% of each of the PMU measurements are corrupted by FDIAs. The execution time
for the proposed method (min: 0.40 (s)–max: 0.63 (s)) is much faster than for the WLS
method (min: 23.49 (s)–max: 30.91 (s)). For the 69-bus case study, DSSE is performed using
the proposed method, achieving 1.98% and 2.01% MPE for the first and second false data
vectors, respectively. The accuracy for bad data detection is 0.95 and 0.72 for the first and
second false data vectors, respectively, when 10% of each of the PMU measurements are
corrupted by FDIAs. The execution time for the proposed method (min: 0.15 (s)–max:
0.63 (s)) is much faster than for the WLS method (min: 43 (s)–max: 51 (s)). The difference in
execution time between simultaneous and disjoint DNN models was insignificant.
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