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Abstract: Thanks to smart grids, more intelligent devices may now be integrated into the electric
grid, which increases the robustness and resilience of the system. The integration of distributed
energy resources is expected to require extensive use of communication systems as well as a variety of
interconnected technologies for monitoring, protection, and control. The fault location and diagnosis
are essential for the security and well-coordinated operation of these systems since there is also greater
risk and different paths for a fault or contingency in the system. Considering smart distribution
systems, microgrids, and smart automation substations, a full investigation of fault location in SGs
over the distribution domain is still not enough, and this study proposes to analyze the fault location
issues and common types of power failures in most of their physical components and communication
infrastructure. In addition, we explore several fault location techniques in the smart grid’s distribution
sector as well as fault location methods recommended to improve resilience, which will aid readers
in choosing methods for their own research. Finally, conclusions are given after discussing the trends
in fault location and detection techniques.

Keywords: fault location; smart grids; fault classification; low-voltage and DC smart grids; resiliency
of smart grids; microgrids; artificial intelligence; local measurement-based techniques

1. Introduction

Smart grids (SGs) are a “electric power system that utilizes information exchange and
control technologies, distributing computing and associate sensors and actuators” [1] to
empower customers and provide secure and reliable energy. The SGs integrate distributed
energy resources (DER), advanced sensing technologies, control methods, and communi-
cation technologies into the electrical grid to offer an intelligent manner to operate with
bidirectional power flow and self-healing capability [2,3]. As depicted in Figure 1, the
SG is separated into different domains in accordance with the standard IEC 62913-1 ED2.
These domains that are described in the Smart Grid Architecture Model (SGAM), using
an architectural approach [4], include bulk generation, transmission, distribution, DER,
customer premises, and cross-sectional domain. Additionally, the distribution domain has
been divided into three categories: distribution grid management, microgrids (MGs), and
smart substation automation.

The integration of more renewable energy resources (RER), storage systems, and
controllers into the distribution grid will guarantee system reliability, improve system
resiliency, and maintain the current and voltage in safe ranges. However, as an increasing
number of different technologies are introduced into the grid, a growing number of impor-
tant failure points, if not properly handled, will lead to cascading failures and subsequent
blackouts [5]. Therefore, a suitable fault management system [6,7] is required to detect,
classify, localize, diagnose, isolate, and restore the system to normal functioning.
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time needed for outage restoration [9,10]. Fault diagnosis and location are important to 
ensure this self-healing capability, stability, and enhanced system performance by reduc-
ing undesirable impacts such as power outages and component failures [11]. 

The detection and isolation of abnormal events are the focus of fault diagnosis [12]. 
The process of diagnosis begins after detection. The type of problem that is present and 
possibly what caused it can be determined by diagnosing the severity of the problem. It 
can also help assess whether a fault is developing but is not yet substantial enough to 
threaten the system [13]. The major considerations for developing a fault location strategy 
are locating the power outage inside the system to handle it, improving the fault detection 
procedure, and deciding whether an online or offline location approach will be employed 
[14]. 

The SGs systems need more accurate fault location algorithms, fault predictions, and 
privacy-preserving schemes [15,16], as more generation sources based on inverters, sen-
sors, and communication systems are added. Since there are more dynamic and unbal-
anced loads, intermittent and unbalanced generation sources, various operating modes 
(connected, isolated, interconnected), different topologies (star, ring, mesh, or intercon-
nected), different failure points will be created, and various conductor sizes will make 
fault locating a crucial task. Additionally, rapid communication is necessary for the inte-
gration of direct current (DC) MGs with small line impedance, significant fault current 
deviation, and high sampling rates [17]. Figure 2 displays a few of the challenges in fault 
location that have been discussed in the literature. 

Several reviews on the fault management system of SGs have been conducted, taking 
into account, a wide range of fault types [11,18,19], MGs fault diagnostics and detection 
methods [20–22], fault management in hybrid MGs [23], fault tolerant control systems of 
AC/DC [24], MGs machine learning (ML)-based approach [25], fault detection, location, 
isolation, service restoration (FDIR), and protection methods in low voltage DC-grids 

Figure 1. Smart Grid Domains. Vision for Smart Grid [8].

One of the key features of SGs is their self-healing ability to locate and isolate dis-
turbances, reduce fault frequency, reschedule grid resources to avoid critical situations,
maintain the service continuity of the electric grid under any conditions, and shorten the
time needed for outage restoration [9,10]. Fault diagnosis and location are important to
ensure this self-healing capability, stability, and enhanced system performance by reducing
undesirable impacts such as power outages and component failures [11].

The detection and isolation of abnormal events are the focus of fault diagnosis [12]. The
process of diagnosis begins after detection. The type of problem that is present and possibly
what caused it can be determined by diagnosing the severity of the problem. It can also
help assess whether a fault is developing but is not yet substantial enough to threaten the
system [13]. The major considerations for developing a fault location strategy are locating
the power outage inside the system to handle it, improving the fault detection procedure,
and deciding whether an online or offline location approach will be employed [14].

The SGs systems need more accurate fault location algorithms, fault predictions, and
privacy-preserving schemes [15,16], as more generation sources based on inverters, sensors,
and communication systems are added. Since there are more dynamic and unbalanced
loads, intermittent and unbalanced generation sources, various operating modes (con-
nected, isolated, interconnected), different topologies (star, ring, mesh, or interconnected),
different failure points will be created, and various conductor sizes will make fault locating
a crucial task. Additionally, rapid communication is necessary for the integration of direct
current (DC) MGs with small line impedance, significant fault current deviation, and high
sampling rates [17]. Figure 2 displays a few of the challenges in fault location that have
been discussed in the literature.

Several reviews on the fault management system of SGs have been conducted, taking
into account, a wide range of fault types [11,18,19], MGs fault diagnostics and detection
methods [20–22], fault management in hybrid MGs [23], fault tolerant control systems of
AC/DC [24], MGs machine learning (ML)-based approach [25], fault detection, location,
isolation, service restoration (FDIR), and protection methods in low voltage DC-grids
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(LVDC) [17,26–28], in smart distribution grids [6,15,29–31], and power system protec-
tion [32]. There is still a need for a review of fault location methods and techniques in
the SG’s distribution domain, considering distribution grid management, MGs (AC, DC,
and hybrid MGs), and smart substation automation (communication and attack failures).
Table 1 compares the primary topics covered in this study to reviews from other SGs.
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Various authors also discuss various fault location techniques and methods for SGs and
MGs, including impedance-based methods [6], traveling wave-based fault location meth-
ods [33], high-frequency component-based methods (S-transform) [34], knowledge-based
methods [35], intelligent approaches [36,37], adoption methods with load estimation [38,39],
location via SCADA systems, and a lot of intelligent electronic device (IED) data [40,41],
as well as using intelligent devices like smart meters, smart sensors, phasor measurement
units (PMU), and switching devices [42,43]. However, these methods are still not enough
to carry out a full investigation of fault location in SGs over the distribution domain. The
contributions and increased value of this research can be summarized as follows:

1. This paper identifies recent publications on smart grids and microgrids to give readers
an overview of the challenges these systems experience while dealing with different
fault types and the methodologies used it to locate them;

2. The challenges with fault location techniques and the types of faults that impact
electric power systems (EPS), SGs, and MGs are also briefly summarized. This subject
has already been covered in depth in several articles, so here is a summary with a
focus on the ones that cover it in depth;

3. This document also covers cutting-edge methodologies for troubleshooting SGs and
MGs. considering fault monitoring systems, fault-tolerant controls, communication
structures used to ensure self-healing and automatic fault location, and the application
of intelligent algorithms used to detect and reduce risk;

4. This review also analyzes fault location techniques for DC and low voltage networks
and fault location techniques to increase the resilience of these intelligent systems,
considering meteorological factors and examining fault location techniques for storage
systems and electric vehicles that support the systems’ resilience but have been
underexploited in prior studies;

5. We talk about the current research trends, problematic areas, and potential uses for
fault location techniques in the future.
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Table 1. Topics covered in this review.

Fault Location in
Reference

[6] [7] [11] [15] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [32] This
Review

Distribution grid
√

* —
√ √

—
√ √

—
√ √

—
√

— — — —
√

—
√ √

Microgrids —
√ √ √ √ √

—
√ √ √ √ √ √ √ √ √

—
√ √ √

Distribute energy
resources

√ √ √ √ √ √
—

√ √ √ √ √ √
—

√ √ √ √ √ √

Energy Storage System — —
√

— — — — —
√

— — — — — —
√

— — —
√

Electric transportation
√

— —
√

— — —
√

— — — — — — — — — — —
√

Communication
infrastructure — —

√ √ √
— — —

√ √
—

√ √ √ √ √ √ √
—

√

Identification of sensor
gaps for faults location

√ √ √
—

√ √
—

√ √ √ √ √ √ √
—

√ √ √ √ √

* Symbol
√

indicates that the topic is covered in the article, while the symbol — indicates that the topic is not covered.
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The objective of this paper is to provide a thorough review of SG fault location
methodologies by considering the challenges that come with SG disruptions and addressing
any obvious faults. Additionally, we provide a thorough analysis of the advantages of
several fault location methods and techniques suggested in the literature on SGs and MGs.
We also review the challenges and offer suggestions for further initiatives.

This document’s remaining sections are structured as follows: Section 2 describes the
challenges in fault location in SGs and MGs. Section 3 focuses on the potential solutions for
fault location. Methods for locating faults to increase resilience are covered in Section 4.
Section 5 offers some trending topics and conclusions.

2. Research Methodology

This study provides a thorough analysis of the SG and MG fault location-based
methodologies. To choose and combine top-notch research articles in this single review
work, a thorough search of research databases and repositories was conducted. The process
for researching and choosing the papers for this review can be summed up as follows:

• Some of the databases or digital libraries used in this work are MDPI, ELSEVIER, IEEE
Xplore, IET Digital Library, and Springer Link;

• The following research questions to search databases’ papers was: (“fault location*
OR “ “fault mitigation*” OR “fault detect*”, OR “fault monitor*” OR “fault diagnosis*”
OR “fault tolerance*” OR “Cyberattack*”) AND (“smart grid*” OR “MG*” OR “micro-
grid*” OR “microgrid* cluster*” OR “distribution system*” OR “DC* microgrid*” OR
“hybrid* MG*”);

• A bibliometric analysis of several databases, including the Web of Sciences and Scopus,
was done using the software “Bibliometrix”. Using this tool, we can identify the
tendency and classify the information using a factorial technique, a conceptual struc-
ture map, a topic dendrogram, and knowledge of the most significant and referenced
papers [44];

• When it was decided that the literature was directly relevant to the review criteria, it
was added to this study;

• The period considered for the revised work was 2010–2023, and its abstracts and
conclusions were checked first. Numerous pieces of academic literature on the use of
fault location in power systems are identified using online databases;

• We also examine a few book chapters, standards, and technical papers published by
forums with an emphasis on smart grids.

Out of 167 reviews of research literature in the final document, 122 are journal papers,
25 are conference papers, and the remaining are books, technical reports, and standards.

3. Fault Location Challenges

Conventional protection systems’ methods for fault location can be problematic when
there are bidirectional faults, so protection systems for SGs must use methods for fault
location that can be based on scalable mathematical models and supplement them with
cutting-edge technology like numerical relays to ensure sensitivity and operational speed.

The SG is susceptible to the same kinds of failures that can happen in a traditional
centralized network; when this happens, the intelligent system must handle the tasks of
swiftly managing, diagnosing, and isolating the type of failure to safeguard the system’s
components and maintain normal operations. The SG requires the integration of several
components, such as failure indicators, equipment automation, a control center, signal
monitoring through intelligent devices, and advanced communication techniques to carry
out the correct diagnosis, identification, and protection of the system. This is done to ensure
that all the protection systems (PS) operate as expected [45].

3.1. Common Electrical Power System Failures

Lightning, winds, storms, contamination of insulation materials, cable deterioration,
physical contact with animals, falling trees, overloads, and protection failures caused by
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factors like current fluctuation and bidirectionality are just a few of the many things that
can lead to failures in both a traditional system and an SG [6,45]. According to [46] “An
electrical fault is defined as an abnormal electrical current in the electrical power system”,
which can be further classified into two categories. Internal faults that can happen, for
instance, on the AC side of a converter or on the DC system of energy storage, as well as
external faults like a phase-to-ground fault [45].

3.2. Common Types of Smart Grid Power Failures

Open circuit faults (series faults) and short circuit faults (shunt faults) are the two
principal types of power failures that can occur in an SG. Shunt faults are, for instance,
generated by the union between two phases, but series faults might be created by broken
conductors that result in broken lines [45]. According to [47,48] short-circuit failures account
for between 75% and 80% of power outages in an SG. The typical types of power failures in
SGs are depicted in Figure 3. Symmetric and asymmetric faults are two different categories
of short circuit failures. Three-phase ground faults (ABCG) and three-phase faults (ABC)
are examples of symmetric faults. Phase-to-ground faults (P-G), phase-to-phase failures
(P-P), and faults of two phases to ground (P-P-G) are examples of asymmetric faults.
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Figure 3. Common types of power failures (open circuit and short circuit failures).

Other faults and/or abnormal conditions in the power system include the magnetizing
inrush current of a transformer, the starting current of an induction motor, and conditions
during power swing. However, it can be difficult to distinguish between normal and
non-normal conditions. There are some inherent operating conditions in the electrical
system that are abnormal.

The authors in [49] divided the SGs failures into three categories according to the
various SGs layers, including physical or component faults, communication faults, and
software or hardware level faults. In addition, they provide sufficient details about different
failures for various physical systems and components inside the SG architecture. Figure 4
displays the type of faults in the SG infrastructure described in [49].

In conventional energy sources like diesel generators and synchronous machines,
problems with the stator, rotor, crankshaft, and fuel leaks are all possible. Localized
overheating, winding faults, and core faults in conventional power transformers can
reduce their dielectric capacity and cause damage to the transformers. Likewise, smart
transformers are susceptible to the same defects, such as short and open circuit failures,
that affect DER and power converters. Underground cables in the distribution grid may
have mechanical problems, thermal runaway, and general wear and tear. Furthermore,
there are a variety of reasons why overhead lines can fail, including lightning strikes, short
circuits, human error, and lack of maintenance [49]. Reduced output power from cells,
modules, and by-pass diode defects in DER resources like photovoltaic (PV) panels resulted
in decreased voltage and current signals in MGs. Faults in the gearbox, generator, power
electronics, and power converters in wind turbines can result in deterioration, imbalanced
voltage, and current, and low generation efficiency [49].
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3.3. Categories of Power Failures in a SG

SG power failures are classified based on their duration and how the network operated
at the time of the disturbance. The following categories are listed in [45]:

3.3.1. Incipient Failures

It is a system failure that happens for a predetermined amount of time. The Fourier
and Laplace wave transforms, among others, are used to detect and classify failures by
controlling the amplitude and duration of the failure. Impedance-based techniques are also
employed, which are helpful for identifying and categorizing problems in underground
cables [45].

3.3.2. Abrupt Failures

Abrupt failures are those sudden changes in signals brought on by a system power
supply malfunction. Digital relays and digital process transform techniques like wavelet
transform (WT) are frequently employed for the classification and detection of these errors,
but they are frequency-sensitive [45].

3.3.3. Intermittent Failures

These are short transitory failures that can be related to an incipient failure that
ultimately results in a permanent failure. In order to detect this type of failure, EPS nodes
typically use distance relays and carrier signal monitoring systems [45].

3.4. Power Failures in Microgrids (MGs)

An MG is part of the distribution domain of SGs and can operate in both grid-
connected and island modes, the latter of which means it can operate independently
without being connected to a main power source. Because the faults seen in island mode
are less than those seen in MG connected to the network, traditional PS cannot distinguish
between the fault and network disturbances and does not perform as well [50].
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Currently, several methods have been put forth to create a protective system that
enables the MG to be protected, considering general characteristics like reliability, but more
importantly, the ability to respond to any change in the load. In general, the right technique
for an MG should consider protecting the main network and power equipment in addition
to acting rapidly in the case of failures within or outside the MG [50].

3.4.1. AC Microgrids

The active power, reactive power, imbalance component, and harmonics are the four
primary parts of an ACMG that need to be synchronized. However, as the distributed
energy sources are DC, power converter implementation is necessary, which has an adverse
effect on the way in which harmonics appear. Additionally, the protection against failure
in AC circuits is based on so-called overcurrent principles. The fact that microgrids can
operate in both island mode and grid-connected mode presents a challenge for protection
systems because of the large short-circuit current variation [51]. The majority of ACMG
failures are transient and very short-duration [52,53]. Shunt and series faults are the two
types of faults seen in the MG power line [54]. Some of the faults that can occur in an ACMG
include high- andlow-impedancee faults [55,56], short circuit faults [25], and voltage sag
faults [57].

3.4.2. DC Microgrids

In terms of dependability, efficiency, ease of control, integrating renewable energy
sources, and connecting DC loads, a DC microgrid outperforms an AC microgrid; it must
be considered that most distributed energy sources are DC-powered (photovoltaic panels,
energy storage, electric vehicles, etc.). Despite the many benefits of DC microgrids, it can be
difficult to design a trustworthy protection system due to the fault current’s characteristics.
In a DC MG, the fault current is quite large and can reach excessive values in a matter
of seconds since the line impedance is relatively low [58]. The faults in DC MGs can be
classified into two categories Short-circuit fault and arc fault, as shown in Figure 5. DC bus
faults, DC feeder faults, and source faults are the potential locations for failures in a DC
system [27,59].
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3.4.3. Hybrid Microgrids

The hybrid MGs reduce the number of conversion stages and interface converters
while combining the benefits of both ACMGs and DCMGs to increase efficiency, power
quality, and reliability. Like ACMGs or DCMGs, hybrid MGs are susceptible to short-circuit
faults that result in converter switch faults and distribution line faults [60]. As soon as the
MGs start to run, they are vulnerable to the occurrence of fault modes in the plants, sensors,
or actuators. Due to the similarity of voltage/current profiles produced by the converter
switching activity, unintentional tripping happens.

Islanding faults [61] and cyberattacks [62] on the communication systems represent
another challenge to the MG’s regular operation.

3.4.4. Islanding Faults

Microgrid islanding fault is a condition where the microgrid unintentionally discon-
nects from the microgrid due to a power system fault [61]. Techniques for islanding fault
detection are divided into two categories: remote and local. The operating points of the
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generation units and storage units typically change when microgrid failures occur. The
microgrid may eventually become disconnected from the power system due to faults on
the power system side [61]. The term “islanding” refers to the intentional or unintentional
disconnection from the power system. The islanding fault in the microgrids poses the
following drawbacks [61]:

• It is a hazard for personnel, as they may consider the systems inactive while the
generation units are feeding power to the loads;

• The voltage and frequency may not be kept at an acceptable standard;
• When the microgrid is out of phase, circuit reclosers re-connect it to the utility grid.

As a result, the ideal solution to this highly significant problem should be quick and
accurate detection of the islanding fault.

The functionality of microgrid control and protection may eventually be decentralized
or centralized. Fault detection and location determination could be coordinated between
these units to ensure always selective islanding detection by using real-time synchronized
high-speed communication, measurements from multiple locations at the same time, and
knowledge of the type, status, and location of various DER units. The effective operation
of the protections in MGs will depend on how well communication and control work to
solve faults [61].

3.4.5. Cyberattacks

Another risk to the regular operation of MG controllers is cyberattacks on the com-
munication systems, which disrupt the information flow between smart sensors, local
actuators, and controllers [24]. This is due to the widespread use of IoT devices and in-
secure protocols, which expand the attack surface. A specific case could be a false data
injection (FDI) attack on the synchronization system of an MG, which plays a crucial role
in the daily operation of power systems and the connection of isolated MGs to the main
grid [63]. These synchronization systems typically employ open data transmission pro-
tocols such as IEC 61850, Modbus, or DNP3, which lack encryption and authentication
mechanisms and provide remote access to control the generator governor [62,63].

A cybercriminal could send corrupted control commands to cause a generator to trip,
which could lead to stability issues or a possible outage, even if the attacker could exploit
system resonance, this could pose a greater risk to the MG [63]. It is necessary to use a
fault detection metric to differentiate between cyberattacks and current sensor or actuator
faults [64,65]. The Kalman filter, state estimation methods, and computational intelligence
tools like intrusion detection systems (IDS) and intrusion protection systems (IPS) are
the most frequently used methods for detecting cyberattacks [63,66]. IEC 62351 standard
recommendations could be used to assist in the application of TLS, X.509 certificates, and
digital signatures to secure the transfer of messages within devices in the MG [64] to protect
communications [67].

In the literature, there are different protection models for microgrids both in DC and
AC, that follow the conventional principles; some of these are:

• Overcurrent protection: It works on the same theory as traditional overcurrent protec-
tion in that a maximum programmed current value must be considered such that if
it is exceeded, the protection operates; however, MR in DC cannot apply this theory.
The selectivity of the PS is directly impacted by this function, which may lead to
extremely long fault-clearing durations or the disconnecting of EPS components that
are not expected during the fault. The issue can be resolved by using a self-adjusting
relay that is configured using optimization techniques and improves the speed of data
transmission and reception in the PS to handle the dynamic fault current [58,68];

• Directional overcurrent protection: it is the principle that is most frequently applied
since the current in a system with DG can flow in any direction. This rule can be
used to ensure selectivity in the case of a mesh topology. Additionally, if a quick
communication system is connected to this, it can aid in more quickly locating the
fault [58];
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• Differential overcurrent protection: it is one of the most suitable for an MR since it
only measures the amplitude current at the ends of the device to be protected and
operates quickly. However, to effectively utilize this protection, quick communication
and advanced relays are required [58,69];

• Distance protection: In the case of the distance principle, it must be considered that, for
instance, a DC line behaves differently from an AC line because the conductor’s induc-
tance has a considerably smaller impact and there is no fundamental frequency default.
This protection requires measuring the voltage and current at the measurement site,
the voltage at a closed point and then estimating the fault distance iteratively [58,69].

4. Fault Location Methods in Smart Grids and Microgrids

The fault distance and the faulty section must be in the distribution domain of SG.
A fault location method’s objective is to identify the precise area of the system that is
being impacted by the fault occurrence and to determine the fault’s specific location with
accuracy, precision, and quick restoration [70].

There are three fault location methodologies for power systems: traditional, observant,
and intelligent, according to [70]. It is essential to reduce fault-location technique errors
in the SGs by ensuring the accuracy of the information relating to the system with a
fast, secure communication infrastructure, fault-tolerant control, and innovative decision-
making algorithms. Observation is an example of conventional methodology; in this
scenario, a customer notifies the operator when they notice downed wires or a burned-
smelling cable. Under the observant methodology, we found intelligent meters or local
detectors that alerted the system operator through communication feedback. Finally, there
is the intelligent methodology, which uses smart sensors or expert systems (expert systems,
ANN, GA) to find the fault. Figure 6’s fault location methodologies are described in [70].
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Prior to the fault location, it is important to detect the fault (fault detection) and
determine the fault type (fault classification).

4.1. Fault Detection and Classification-Based Methods in SG

Several reviews have been published on fault detection and classification methods in
SGs [9,21,25,45,71–73]. Model-based, knowledge-based, and signal-processing techniques
are among the most widely used for fault detection [74]. The safety and stability of the
EPS are ensured by a quick and accurate failure detection technique. The magnitudes of
current, voltage, and frequency [75] must be continuously monitored before, during, and
after the failure enters the SG to locate and identify the type of failure that entered the
system. Additionally, there needs to be a self-adjusting technique that enables the electrical
magnitudes to be returned to the values established before the fault occurred.

The fault classification methodologies are based on logic flow or learning algorithms
(intelligent techniques) using Artificial Neural Network (ANN), data mining techniques,
and hybrid methods that combine artificial intelligence and signal processing tools [73,76,77].

The authors of [78] proposed a real-time hierarchical architecture for frequency distur-
bance occurrences in power systems utilizing PMUs data. Recurrent neural network (RNN)
and long short-term memory (LSTM) were employed in this strategy to precisely identify
and localize the fault. PMUs are used in 118, 38, and 14 IEEE bus systems to monitor,
protect, and control the system. This technique, which can categorize and localize the
event in real time, utilizes rate-of-change-of-frequency (ROCOF) data obtained by PMUs
and deep learning (DL) method. Information loss and cyberattacks are potential problems
with this approach that must be handled in SGs applications. It is suggested in [79] to
use wavelet packet transform (WPT) and extreme learning machines (ELM) to classify
fault events in grid-connected PV systems. At the point of common coupling (PCC), the
sample of the post-fault voltage signal is processed using the WPT. A logarithmic energy
entropy criterion is implemented to reduce the dataset size. The ELM is used to classify the
different fault events. The method was validated on a 250 kW grid-connected photovoltaic
model, which demonstrated its ability to quickly identify different fault resistances and
fault locations.

The authors in [80] developed a classification-based traveling wave feature fault
location in an active distribution system. The correlation between the transient waveform
of traveling waves and the fault location is examined using the WT. A linear discriminant
analysis (LDA) is used to reduce the dimension of fault data and to select the representative
fault features. Additionally, the fault data set is trained and tested using the naive Bayesian
classification model based on kernel distribution to identify the faulty area. This method
improved the accuracy of the fault localization for a single-phase ground fault, but it still
must be tested in other kinds of failures to determine its efficacy.

The authors in [81] proposed an algorithm for fault location and classification based on
mathematical morphology (MM) and random forest (RF). The MM is used to pre-process
voltage and current data, then, the signal norms are using as a feature for the RF algorithm
for fault location and classification. To confirm this method’s efficacy, a more complex
system must be used for validation.

A MG intelligence-based defect detection and categorization system is suggested
in [82]. This technique utilized the Hilbert–Huang transform (HHT) and the boosting
ensemble approach. The boosting ensembled approach is an adaptive machine learning
technique that classifies the data space with high accuracy and low program complexity
by using a non-convex optimization procedure. The HHT is used for feature extraction
from signals’ transient behavior to reduce noise sensitivity. Additionally, the accuracy of
the proposed algorithm was compared with other intelligence-based studies, including
decision tree (DT), support vector machine (SVM), k-nearest neighbor (KNN), Nave Bayes
(NB), RF, deep neural network (DNN), and ELM, having simple topologies and close
accuracy to them. This method can detect internal and external faults, making it suitable
for backup MG protection.
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The authors in [83] proposed an intelligent fault diagnostic system based on feed-
forward neural networks (FF-NNs) and signal processing methods for distribution grids
that considered the intermittent nature of renewable energy sources. The discrete wavelet
transform (DWT) and Stockwell transform (ST) are used to decompose the time-domain
current signals into the time-frequency domain to obtain the feature extraction. FF-NNs
were trained and evaluated for fault classification after the features were collected. The
suggested method’s accuracy in classifying failures was shown to be more than 99.9%,
demonstrating independence from the uncertainties of renewable energy sources. The
authors in [84] suggested a signal-processing solution for ML fault classification that makes
use of a fault type module. The ML models were trained with the three-phase voltage and
current data. To identify the fault type, classification techniques such as the linear SVM,
KNN, and baggage tree were utilized. A framework for fault localization, classification,
and detection as provided in the literature is shown in Figure 7.
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4.2. Fault Location Based-Methods in SGs

Due to the non-homogeneity of the branch circuits, the techniques described for
the location of faults in transmission lines are difficult to apply to distribution systems;
therefore, a method for locating faults in distribution systems must consider the constraints
for obtaining the data and the costs of implementing these techniques.

There are many different methods for locating faults in the literature. One of these is
based on the relationship between voltage and current in relation to the phases involved.
However, this method is inaccurate due to the large number of estimates that must be made
by only taking the substation’s current and voltage measurements into account.

Extracting current and voltage measurements from each DG unit and submitting
them to a multi-class support vector machine (MSVM) classifier is another method for
locating faults in ACMG in mesh topology that’s also proposed in [85]. The fault zone
is located using a communication link between two neighboring DGs to compare their
impedance during the injection of a high-frequency harmonic signal. The line with the
lowest high-frequency impedance or the highest harmonic current at that high frequency
is employed in this procedure [85]. This technology locates the fault more quickly and
is resistant to topological changes, dynamic loads, and unbalanced circumstances, but it
needs a communication system and sophisticated signal processing or filtering methods,
which make it challenging to use in practical applications.

Therefore, it is crucial that the EPS generally have intelligent equipment installed that
can provide effective monitoring, measurement, and protection. This includes equipment
like digital relays, digital fault recorders, and intelligent measurement elements, among
other equipment, which generates a high degree of confidence and high performance
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in intelligent applications. It is also important that each protection communication in-
frastructure be significantly modernized to detect and locate faults more quickly than a
traditional PS.

Fault location methods are classified as automatic (intelligent) or traditional techniques.
Table 2 contains the methods related to automatic fault location; they are described in detail
in [15].

Table 2. Fault location methods and techniques.

Fault Location Methods Techniques References

Physical location of a fault waveforms values Direct three-phase circuit analysis, Local current and
voltages values [40,70]

Travelling wave phenomenon

WT, Double terminal, Principal component analysis (PCA),
Parks transformation, Teager energy operator (TEO),
Ensemble empirical mode decomposition (EEMD),

Mathematical morphology function (MMF)

[6,33,80,86]

Knowledge-based approaches Artificial intelligence, ANN, Fuzzy, Expert systems, SVM,
Multi Agent-based [12,87–90]

Signal processing Short time Fourier transform (STFT), WT.
Differential equation-based approach, Laplace-transform [6]

Phasor based algorithm

Impedance measurement [11]

Active impedance estimation (AIE) [91]

Apparent impedance measurement [40]

Sequence components [40]

High frequency impedance [92]

Power quality data Inject high frequency harmonics [40]

Measurement of high harmonic impedances [85]

Hybrid methods Communication-based [93,94]

The most popular approaches for fault location in the SGs domain include impedance
methods, phasor-based methods, and signal processing-based methods. Hybrid methods
with communication architectures are becoming more popular [93]. These methods incorpo-
rate the advantages of intelligent devices such as switches, fault sensors, power probe units
(PPU), etc., with intelligent algorithms that analyze signals in transient and steady states,
power flow, synchronization angles, and create pattern recognition in a large database.

Sequence components, synchronized voltage and current, graph marking, multi-agent-
based, decision tree, impedance-based, travelling wave, fuzzy logic, SVM, expert system
techniques, and genetic algorithms are a few of the fault location techniques that have been
used [21,45]. These techniques are depicted in Figure 8.

The authors of [95] offer a thorough analysis of ML-based EPS fault diagnostics. The
authors of this paper examine many ML approaches used for fault diagnosis, including
unsupervised, supervised, reinforcement learning, and various intelligent models that can
be used for fault detection. Unsupervised learning is the method of training models to look
for underlying structures or hidden patterns in data. Hard clustering and soft clustering
are the two sorts of strategies used in this learning to solve issues where there is only input
data and no goal class labels. We can use K-means, K-medoids, and hierarchical techniques
for hard clustering, and fuzzy C-means and Gaussian mixture models for soft clustering.

The use of supervised learning is appropriate when the model can be trained using
both input and output data, and when the trained data can predict the behavior of observed
data. It is utilized for regression or classification, depending on the needs. The following
methods are employed for classification: Logistic regression (LR), KNN, SVM, neural
networks (NN), NB, discriminant analysis (DA), DT, and ensemble methods (EM) models.
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Regression models include gaussian process regression (GPR), regression tree (RT), and
support vector regression (SVR).
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On the other hand, reinforcement learning is a reward and punishment-based learning
method in which the critic serves as both a guide and a means of punishment and reward
for proper behavior. Q-learning and deep reinforcement learning (DRL) are two examples
of reinforcement learning algorithms used for defect diagnosis. The model, in contrast
to supervised learning, focuses on the similarity between reference faults and sampling
faults (action) as a reward for training. Regarding knowledge-based approaches for fault
diagnosis, see [95] for more details. The various ML approaches for defect identification
are shown in Figure 9 and are discussed and explained in [90].
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In the SGs domain, creating an online fault location is becoming more and more
crucial. The use of fault monitoring technologies, communication infrastructure, fault-
tolerant control approaches, data feature extraction, and intelligent algorithms has led to
the development of many techniques for locating faults in SGs systems.
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4.2.1. Fault Monitoring Technologies

The use of modern monitoring technologies with artificial intelligence data processing
techniques enhances online fault detection and fault location [96–99]. Based on decision
tree algorithm (DTA), the authors in [96] develop a fault monitoring system for electrical
automation equipment. The fault monitoring system can detect the fault using the current
monitoring data, and the DTA can improve fault classification accuracy. The authors
in [97] present a technique for cloud-computing-based fault location for distribution lines
that increases the grid’s level of reliability and visibility. A front-end smart grid sensor,
a back-end cloud computing platform to receive and store the sensor data, and wireless
connectivity using 4G technology make up the monitoring system. With this approach,
the operating status of the grid could be observed in real-time, and the status of the line
(alarms, temperature, conditions), as well as the location of the fault, could be determined
by statistical processing and analysis of the relevant data. However, the efficiency of
handling faults on standard cloud service platforms may decline because of changes in SG
or MG topology. Hierarchical fault monitoring [98] and artificial intelligence solutions [99]
might increase efficiency.

In [98], the authors suggested a fault location approach in a distribution network
based on traveling waves and cloud-edge computing on a hierarchical fault monitoring
and control system that is not impacted by the line parameter or topological changes. A
traveling wave acquisition module (TWAM) situated at the end of each branch and an
edge-computing gateway situated at the front end of each main feeder carry out the fault
location with accuracy, reliability, and speed. A hierarchical fault monitoring and control
system is created by the edge computing gateway, which identifies the defective branch by
evaluating the traveling wave variation characteristics. The suggested hierarchical fault
monitoring and control system is depicted in Figure 10. The authors of [99] proposed a
fuzzy association rule-based fault monitoring system that can assess the system’s fault
condition. This technique improved the performance in monitoring alarms and fault
judgment accuracy by utilizing edge computing technology and an expert knowledge base.
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4.2.2. Communication Infrastructure for Self-Healing and Automatic Fault Location

The communication infrastructure is crucial to guarantee self-healing and automatic
fault location [100–103]. According to [100], there are two methods for implementing self-
healing service restoration in SGs: distributed automatic fault location devices, isolation,
and service restoration (D-FLISR), and centralized fault location, isolation, and service
restoration (C-FLISR) [100]. D-FLISR used intelligent electronic devices (IEDs) to locate and
clear the fault. Communication using IEC 61850 and the general oriented substation event
(GOOSE) protocol will enable the switches that energize the faulty zone during a fault
event. To make all the self-healing processes accessible in one location, C-FLISR requires
a dependable communication infrastructure and high-performance computing. For the
purpose of automatically locating faults and isolating fault sections, the C-FLISR takes data
from fault indicators and fault records.

The authors in [101] proposed a hybrid peer-to-peer (P2P) communication system for
fault location based on interactions between numerical relays and smart meters. In [80], a
wide-area protection method with PMU was proposed to isolate the internal and external
fault sections in an MG. The PMU sends the voltage and current phasor to the central
controller through communication links, which identify the fault section according to the
local measurements. The authors in [81] proposed a fault locator device for medium-voltage
(MV) cable fault location by considering a traveling wave (TW) method and employing
Wing sensors for sensing TW pulses associated with faults. This method used a LoRa
communication module to interconnect the monitoring units. This solution shows the
low complexity and low cost of electronic devices; it can be a solution for SGs, and its
performance should be evaluated.

Artificial intelligence-based approaches and multi-agent strategies can enhance the
automation process in these kinds of solutions [91,104,105]. The authors in [104] present
a framework for fault location in a radial distribution system based on machine learning
algorithms and a multistage approach to determining the occurrence of the fault region.

There are four steps in the framework: First, the voltage and current data are processed.
Next, the fault distance is estimated using ANN via a multilayer perceptron neural network.
Third, the fault is identified using a decision tree technique. Finally, the fault region is
identified. However, further topologies and the incorporation of distributed generation
(DGs) units are required for this methodology to be validated. In [90], the authors proposed
a protection multi-agent scheme for a loop-based MG using IEDs. Traditional overcurrent
relays were outfitted with IEDs to act as agents within a multi-agent architecture, and
they used the IEC61850 standard using GOOSE technology to share the collected data
between the relays. In addition, the proposed solution employed a token feature (operation
permission) in the communication strategy to avoid adjacent zones from failing when loop
MGs experience fault conditions. This approach ensures the functioning of the fault zone
protection strategy regardless of MG topological changes, DGs capacity, or fault location
and does not require a central controller or multi-layer structure.

Hybrid methods that combine knowledge and communication have been used for
fault detection and isolation in EPS [105]. The authors in [105] proposed a bioinspired
probabilistic Boolean network (PBN) model for an intelligent power router (IPR) device
to fault detection and isolation of multiple faults. The PBN method that models the
uncertainty of the gene interactions can characterize possible failure modes given the state
of its variables This model can detect and classify single and multiple faults and provide
a probability of fault and failure occurrence, which allows better maintenance planning.
This method is a possible solution for smart grids and requires further study before the
integration of MGs.

4.2.3. Control Methodologies for Fault Mitigation

A fault or failure may cause the system to operate incorrectly, perform poorly, or be-
come unstable. With fault-tolerant controls (FTC), new control methods in SGs must ensure
the reliability and accuracy of their main components [106–108]. The authors in [106] pro-
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vide an overview of multiagent systems’ (MAS) fault-tolerant cooperative control (FTCC)
for locating and identifying faults. More work is required in FTCC for MAS susceptible to
various fault categories as there are still some faults that are challenging to identify, such
as intermittent, incipient, and compound faults, which can have serious effects on these
systems. The authors in [108] present an adaptive fault-tolerant control technique, by using
Takagi-Sugeno (T-S) fuzzy systems, fuzzy logic systems, command-filtered adaptive fuzzy
tracking, and neural networks in nonlinear systems with actuator faults.

The authors in [85] describe a method for fault diagnosis method and a fault tolerant
control framework with plug-and-play (PnP) capabilities. This method was centered on
a data-driven approach to give reliability and flexibility for advanced monitoring and
controlling methodologies which prevent changing the control that was predesigned while
performing fault detection and fault-tolerant control. The effectiveness of the data-driven
fault tolerant control design was tested on the DC motor benchmark test system and needs
to be investigated in non-linear systems and SGs [109].

In [107] the authors describe a method for fault diagnosis and fault tolerant control
framework in an integrated manner with PnP capabilities. This method was focused on a
data-driven approach to provides reliability and flexibility for advanced monitoring and
control methodologies because it avoids changing the predesigned control while realizing
the fault diagnosis and fault tolerant control [107]. The effectiveness of the data-driven fault
tolerant control design was tested on the DC motor benchmark test system and needs to be
investigated in non-linear systems and SGs [109]. In [110], the authors presented a sensor
failure detection system, an observer-based residual generation method, and recursive
online model estimation for AC MG. In order to provide the residuals needed for fault
detection, an observer is first established, which estimates a basic linear model using the
control signal produced by the MG’s secondary control. A warning signal can be generated
as a result of the recommended technique’s ability to quickly identify sensor issues. The
authors in [111] proposed a “federal-Kalman-filter-based fault-tolerant controller” to ensure
reliability in case of faults on sensors, actuators, or communication networks. The federal-
Kalman filter used multiple independent Kalman filters to process corresponding data
from several sensors. Also, this Kalman filter provides the capability of fault diagnosis and
signal reconfiguration.

A fault-tolerant supervisory controller for a hybrid AC/DC MGs based on the state
machine approach was proposed by [112]. This controller can achieve fault-resilient and
optimal power flow in the hybrid AC/DC MG. Furthermore, it proposed a procedure
to increase the tolerance of the supervisory controller towards different failures in solar,
wind, and battery systems. This solution can determine the maximum available power
under faulty conditions and increase the SC tolerance towards different failures and it also
requires validation in hardware in the loop simulations to prove its effectiveness.

4.2.4. Data Feature Extraction for Fault Localization and Intelligent Methods for Fault
Detection and Minimization

Identifying and extracting relevant features of the system characteristics during a fail-
ure condition is essential after data preprocessing. This feature mining assists in identifying
the correct pattern in the acquired fault data. There are several data-feature extraction meth-
ods for fault detection and localization proposed in the literature based on time-domain
methods, frequency-domain methods, and time-frequency-domain methods [113]. In [113],
the authors provide an overview of fault detection and localization techniques and explain
the different methods for feature extraction and anomaly detection. Figure 11 shows the
methods discussed in [113].

Additionally, with the correct available data for feature extraction supervised or non-
supervised learning algorithms have been utilized for fault detection and localization.
ML [114], ANN [115], DNN learning methods, and MAS have been more popular in the
field of fault diagnosis and location [116–118]. The authors in [114] review the application
of ML in SGs and summarize the use of ML methods in fault diagnosis, such as convolu-
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tional neural network (CNN) for the distribution system, DNN with layer-wise relevance
propagation (LRP) for nuclear power plant reactors faults, heterogenous graph attention
network (HGAT) for power equipment failures, graph convolutional network (GNN) for
cascading faults, and RF for photovoltaic grid-connected faults. In [116], the authors used
grayscale images and then CNN and LSTM to localize and diagnose the fault. This method
was applied in a spacecraft system and should be a solution for fault location in space MGs.
The proposed method simultaneously transforms high-dimensional abnormal fault data
from spacecraft into grayscale images for image-based fault diagnosis to precisely locate
the component on which the fault has occurred and determine the type of fault. A CNN
can extract features directly from images and simplify the computation process for fault
diagnosis; the LSTM is a variant of an RNN that can learn and extract features from pattern
fault data and complete the fault classification.
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The authors in [117] proposed a MAS system and Big-Data storage and mining technol-
ogy for fault discrimination, location, isolation, and service restoration in active distribution
network (ADN) based on inverter-based DGs. The MAS system is used for service restora-
tion. To process the data, the big data platform uses distributed computing, distributed
storage, and mining technologies. A feature extraction module extracts the local features
from the voltages and current series, and the agents process the remote features. Then, a
differentiated operation examines both local and remote properties simultaneously. Finally,
a statistical classifier will then decide based on differential or local features (fault or not
fault). The microprocessor-based relays perform fault discrimination and fault location
using this local and remote electrical information. An RF algorithm was used for fault
classification. This method can reduce fault processing time and increase system reliability.
The author in [118] proposed a fault diagnosis-optimized method of building electrical
systems based on a radial basis function (RBF)-backpropagation (BP) neural network. The
fault information is clustered using fuzzy c-means, and fault future data mining is done
using a singular value decomposition (SVD). The RBF-BP then decides which classification
to allocate the faults based on the clustered fault data. This technique, which increases
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the reliability of fault diagnostics in building electrical systems, should be examined in
a real-time simulation. Figure 12 shows a proposed flowchart of ML methods for SGs
fault diagnosis.
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For fault detection, intelligent protection techniques have been deployed. To identify
the location of the fault, the authors in [119] use LSTM networks and empirical wavelet
transforms. The authors in [120] proposed a hybrid clustering algorithm based on the KNN
algorithm and K-means algorithm to provide reduced computational complexity in fault
scenarios and aim to enable real-time data processing for fault localization. The authors
in [121] proposed a noise-based decomposition technique called “ensembled empirical
mode decomposition (EEMD) technique” and “adaptive multi-kernel extreme learning
machine” (AMKELM) for high-impedance faults (HIFs) location in MGs. The EEMD
technique is used to decompose the fault current and extract the current amplitude signal to
calculate the differential energy profile. The extracted features are used to formulate the data
matrix, and the AMKELM is implemented in HIF locations in MGs with different topologies,
connections, and DG variations. This method provides efficient and reliable results for
fault location; however, it needs to be applied in a larger system to see its performance.

4.3. Fault Location Based-Methods in Low-Voltage and DC Smart Grids

In LVDC, the main challenge for a fault protection strategy is to quickly detect, locate,
and isolate the faults to minimize voltage collapse since DCMGs components are partic-
ularly sensitive to disturbances and faults [59]. To identify and locate short-circuit faults,
many protection strategies have been employed, concentrating on local, measurement-
based protection algorithms and integrating fault indicator measurements [122–126]. The
authors of [122] proposed a numerical calculation method to analyze the fault behavior
of the system and obtain fault indicator sets and their thresholds to develop a protection
algorithm. This protection algorithm still must be tested in various grid topologies or condi-
tions besides pole-to-pole midpoint short circuit faults. For the purpose of fault detection in
DCMGs, the authors of [123] proposed a threshold-based protection method based on local
measurements of voltage and current. The suggested approach relies on a threshold viola-
tion in the i–r plane detected by the system’s installed IEDs to generate a trip signal for the
corresponding CB. The protection scheme’s reliability, security, and promptness (t = 0.500 s)
are all guaranteed by this method without the aid of communication-assisted signals.

The authors in [124], presented a fault location method for high resistance faults using
PPU units in DCMG. The fault location is obtained by considering the damping frequency
and attenuation of the probe current. The damped resonant frequency is obtained using the
fast Fourier transform (FFT), and the attenuation constant is calculated from the peak values
of the underdamped probe current response by using the least-squares (LS) technique. This
method improved the fault location accuracy using PPU for DC systems because it did
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not require online data to calculate the fault. Figure 13 shows the schematic diagram of
low-voltage DCMG with PPU units. The authors in [125] proposed an offline fault location
method for low-voltage DC lines. This method used a fault location module connected to
the positive and negative poles of the DC line and used the residual current of the DC line
after the tripping for fault location. This method only uses the local current to calculate
the fault distance and can locate the fault points of DC lines accurately and faster (above
t = 1 ms).
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In [126] the authors proposed two methods, bus fault search and line fault search,
respectively, for fault detection and isolation for LVDC networks in rural villages. Power
protecting devices (PDDs) were employed to protect the LVDC in a ring topology and
to isolate the faulty section for restoring the grid. Both methods can identify the faulty
segment by looking at the sudden increase in current and drop compared with the rated
threshold values of current and voltage simultaneously. The bus fault method used the
voltage measurement through each CB bus to detect a faulty bus segment. In this method
an active bidirectional converter is used to send the current signals in the grid for tripping
the bus and measured the voltage. Once the measured bus voltage is not increased, the
fault is detected. The second method (line fault search method) used the measurement
line voltage and compared it with the rated threshold voltage, and again if the measured
voltage was not increased the fault was detected. According to the simulation results, both
methods could precisely identify and isolate the fault; however, the authors recommend
the line fault searching method as it took a short amount of time to restore the grid after
isolation of the faulty segment, improving grid performance. This method requires relays
inserted at both ends of the grid lines and communication and may not be efficient in
rural environments where there is no access to communications. This method should be
evaluated under real-world conditions or in real time to observe its effectiveness.

Other authors [127] suggested a positive channel metal oxide semiconductor (PMOS)
self-powering DC solid-state circuit breaker (CB) to protect against DCMG ground short-
circuit fault events. This CB is adjustable in accordance with voltage levels and doesn’t
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need any additional auxiliary circuits or sophisticated control mechanisms. By cutting off
the positive terminal in the event of a short circuit fault, the PMOS prevents an electric
shock and achieves the short-circuit current blocking effect without the need for extra
power supplies. In [128], the authors proposed a fault location principle for AC circuit
breakers (ACCB) in a loop type DC grid based on steady-state currents and a fault isolation
(2-step isolation) scheme. based on AC circuit breakers (ACCB) for a loop type DC grid.
The voltage source converter (VSC) architecture’s is altered by the primary isolation, but
the connection between the AC/DC component and some of the fault current is kept.
The DC fault current component is restricted enough to allow the natural zero-crossing
to arise, and the secondary isolation removes the fault section by ACCB at the natural
zero-crossing point. The fault can be identified using the cable’s inductance between the
fault and the measurement point along with the Fourier series of the fault current and
voltage to determine its amplitude and phase from the measured impedance. This solution
could be used in hybrid MG to avoid the installation of numerous DCCBs; however, it must
be tested in real time to ensure its efficacy [128].

The authors of [129] proposed a fault location for flexible DC distribution grids based
on traveling wave differential current and improved gray correlation degree analysis. In
order to determine the location of the fault, this approach examines the traveling wave
differential current in the positive and negative directions at the beginning and end of
the line. It then calculates the similarity of the two waveforms using an improved gray
correlation. This technique lowers investment costs and increases the accuracy of fault
location in DC distribution networks.

Local and Nonlocal Fault Location Methods

• Nonlocal methods

The authors in [130] developed a data-driven method for fault location on active
power distribution systems employing smart meters (SM) at the LV level and remote
fault indicators (RFIs) at the MV level, as shown in Figure 14. This technique employed
overcurrent notifications from RFI with directional elements at the MV grid and outage
reports from smart meters at the LV grid to locate the faulted line sections fast. Combining
outage reports and overcurrent notification, an optimization model based on mixed integer
linear programming (MILP) is suggested to locate the faulty line section. This method
increases the system’s resilience and reliability, but it may have asynchronization problems
and a lack of RFIs with directional elements that are not included in the system.
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The author in [131] developed a SG fault identification algorithm (SGFI) that can
detect the problem’s location and identify the fault device using information gathered from
smart meters and customer announcements. A tree graph is employed to simulate the
LV network, and big data analysis is applied to examine the fault probability database
created from actual network data. The fault location attribute table with the defective
device’s identification number is sent by the SFGI algorithm to the operations control center.
This approach was used in a network with a tree structure, and it must be tested with the
incorporation of MGs or distributed generation.

The authors in [132] proposed a big data-supported MG fault diagnosis and analysis
technology. In order to extract the MG’s fault feature information, this technique combined
Rayleigh entropy, wavelet decomposition, and a back propagation neural network (BPNN).
The fault type and phase can be forecast by the BPNN. This big data approach is tested
in an experimental setting using hardware-in-the-loop simulation tests, and it produces
accurate results for five-line fault categories in MG. To see the method’s universality, it
must, however, be applied to other faults.

• Local methods

The authors in [133] presented a local-measurement-based technique for online fault
location estimation in multi-source DCMG. Without requiring communication, this model-
based approach considers sources and loads that are connected at both cable ends. This
model is used along with the local measurement to estimate the fault location and is
independent of the MG topology. This method can differentiate between external and
internal faults based on estimated fault distance.

A high-speed directional pilot protection for MVDC distribution systems is proposed
in [134], which determines the fault direction based on high-frequency differences between
traveling waves on the fault cables and (backward) adjacent cables. The practical imple-
mentation of this approach is greatly simplified, and it is appropriate for MVDC systems.
The authors in [135] proposed a local-measurement-based distance relay for fault detection
in DCMG. The protection scheme used a DC distance relay with directional capabilities,
also integrated an inductor at the end of each line. Furthermore, the relay includes an
auxiliary circuit for processing local voltage and current measurements at the fault instant.
The proposed relay can provide backup protection during forward external faults, assess
selectivity under bolted faults and various fault resistances, and work properly in the
presence of energy storage systems. Additionally, this method provides an estimation for
fault location and can identify different types of faults within their threshold settings under
high fault resistance.

5. Fault Location Methods to Improve Resilient Power Generation

When we discuss faults, we’re referring to various short circuits that happen across
the grid. Fault-finding techniques must be capable of quickly and precisely identifying
the precise location of a breakdown in the grid to restore service, ensure supply continuity,
and provide quality assurance. Resilience is the capacity to anticipate, react to, and recover
from external failure events, including natural disasters, extreme weather, and man-made
attacks because improving the electrical system’s reliability is more crucial than ever.

Natural disasters are predicted to increase in frequency and intensity because of
climate change [136]. In this continuously changing environment, power systems must
be designed and operated to tolerate extreme events like these and recover from them,
maintaining supply quality and minimizing outages. The fundamental elements of a
resilient power system have several meanings. According to [137], the main elements of
resilience are robustness, resourcefulness, rapid recovery, and flexibility, and they apply to
all essential infrastructures.

• Rapid recovery: contingency plans, emergency operations, returning to normal opera-
tion as soon as possible after a disaster [137];

• Robustness: continuing to operate and withstanding high-impact rare (HR) events [137];
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• Resourcefulness: effectively managing a disaster as it evolves, identifying and priori-
tizing options to control and mitigate the damage [137];

• Flexibility: It is the capacity to adapt to abrupt and temporal events [138], allocating
the resources to handle variations quickly and effectively in load and generation [139].

According to [140], the main characteristics of resilient critical infrastructure are
resistance, reliability, redundancy, and response and recovery.

• Resistance: shield yourself from harm or interruption by building yourself up to
withstand potential threats;

• Redundancy allows for the switching of regular operation using backup installations
or extra capacity, while reliability ensures that the system and its components are
correctly constructed to run under a variety of conditions;

• Response and recovery are contingency measures.

5.1. Fault Location Methods Considering Meteorological Factors

The following is a list of fault location techniques used in power systems, including
hybrid, traveling-wave, knowledge-based, and impedance-based techniques. To learn more
about the applications and conclusions derived using these methods, consult [141].

5.1.1. Impedance-Based Approaches

The impedance-based approaches use measurements of fundamental-frequency volt-
age and current along with network topology and electrical knowledge to identify the
fault location.

5.1.2. Traveling Wave Methods

Traveling-wave techniques determine the location of the fault by using high-frequency
components and precise temporal data.

5.1.3. Knowledge-Based Methods

This approach, which may be categorized as quantitative or qualitative, relies on a
sizable amount of historical data to extract the underlying knowledge of the fault situations.

Like transmission systems, it is important to take the meteorological environment’s in-
formation source into account while developing problem detection algorithms for SGs [142].
The authors in [142] proposed a knowledge-based fault diagnosis technique for transmis-
sion networks that considers climatic conditions. Typhoons, snow, wind, ice rain, and hail
are only a few examples of the meteorology aspects that are considered by a knowledge-
based method based on the spiking neural P system (SNPS). This technique employed the
SCADA system’s temporal order data, the action messages from the protection devices,
and the weather data to identify the failures. This approach is efficient and effective for
fault diagnosis in transmission networks, but it needs to be verified for fault events and
self-healing techniques for catastrophic weather events in distribution networks.

5.2. Mitigating Energy System Vulnerability

It may be possible to combine operational and hardening measures to encourage
the power system’s resilience. The former is used for resilience-based planning of power
systems, whereas the latter is used for resilience-based reaction and restoration actions. The
amount of time until an incident happens must be considered in forecast-based operational
and hardening plans. Table 3 provides a convenient summary of the planning, response,
and restoration time scales for actions to improve the electrical system’s resilience.
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Table 3. Outage comparison between typical and natural disaster outages [143].

Sr Number Typical Outage The Outage Was Caused by a Natural Disaster

1 Low impact, high probability High impact, low probability

2 Few faults (component failures) Multiple faults (catastrophic damage)

3 No Spatial-temporal correlation Spatial-temporal correlation

4 Most power plants remain in service Generation units may be out of service

5 Supported by contingency analysis tools—Unforeseen event The network remains intact Network was
damaged/collapsed

6 Only involve infrastructure for the electrical grid Interdependent infrastructures

7 Quick and complete restoration Long restoration

The many resilience-based planning, response, and restoration techniques that are
frequently used at the transmission and distribution level are listed in the following sections.
You can read [143–145] for more information.

The robustness of SGs is increased by energy storage systems and demand response [146,147].
Therefore, it is essential to ensure the functionality of these systems and manage any
faults [148].

5.3. Energy Storage Systems

To preserve the efficiency, reliability, and health status of batteries, electric vehicles
(EV), etc., a reliable fault detection, localization, and isolation strategy for energy storage
systems (ESS) is necessary [149–151]. ESS fault modes are divided into three categories:
battery faults, sensor faults, and actuator faults [149,152]. According to [149] there are
different studies on battery fault diagnosis, and the most widely used is the model-based
method. Signal processing methods are more commonly used in a data-driven approach
than machine learning methods. A phenomenological model like the equivalent circuit
model (ECM) is used to diagnose sensor and actuator faults. The fault diagnostic methods
are classified into knowledge-based, model-based, and data-driven.

• Knowledge-based methods: used battery system knowledge and observation to de-
tect, isolate, and estimate the fault section. The most widely used knowledge-based
methods are graph theory, fuzzy logic, and expert systems [149];

• Model-based methods: Methods that use a model: A residual signal is obtained by
contrasting the measurable signal with the signal produced by the model. Due to the
development of high-fidelity battery models and a better knowledge of battery system
dynamics, model-based methods are the most frequently utilized for diagnosing
faults in lithium-ion battery systems. It is possible to categorize these techniques
into four groups: state estimation, parameter estimation, parity space, and structural
analysis theory;

• Data-Driven methods: These techniques did not rely on a precise analytical model or
the experience of experts to detect faults; instead, they exploited data to do so. The
most popular data-driven techniques include information fusion, machine learning,
and signal processing.

The sensor fault diagnosis methods used in a battery system are divided into sensor-
topology-based, model-based, and fusion. The actuators’ fault diagnosis methods include
model-based and signal-processing techniques. A thorough comparison of these method-
ologies is also provided by the authors in [149]. Figure 15 displays the several methods
examined in that review for battery, sensor, and actuator faults.
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For the batteries of a hybrid electric car, the authors in [150] proposed a nonlinear fault
detection and isolation method. The battery management system in this technique was
generated using a nonlinear parity equation residual generation (NPERG) methodology.
As a comparison to the fault signals, the NPERG scheme generates residual values for
the voltage and fan setting sensors in a healthy system. To create an inverse model and
prevent nonlinearities in the system, a sliding mode observer is additionally used. More
dynamic systems would make it more difficult to adopt this strategy because it necessitates
the creation of models and prior knowledge of several failures.

Electric Vehicles

The current, voltage, and temperature sensors as well as the fan motor frequently
develop failures in these systems. The only fault that is considered for the motor fan is
total failure, which occurs when it is unable to cool the battery continuously. Sensor faults
include intermittent signal loss caused by bad wiring connections and sensor bias caused
by time or temperature drift.

The authors in [151] presented a fault diagnosis method for lithium-ion batteries
in EVs based on signal processing and two-dimensional feature clustering. Discharging
voltage signals are divided up into intrinsic mode functions using the symplectic geometry
mode decomposition (SGDM) technique. Comprehensive anomaly detection employs
a correction step known as a density-based spatial clustering of applications with noise
(DBSCAN). The distinction between faults and inconsistency may be made based on the
clustering results, which also reveal the battery fault evolution process and the type of
voltage anomaly. As much as 43 days before the thermal runaway, this approach can detect
faults early, identify the fault cells, and determine the type of voltage anomaly.

The authors of [153] presented an examination of a distribution system’s faults because
of the widespread integration of plug-in electric vehicles (PEVs). According to this research,
the node where the PEVs are connected has an increase in voltage and current. The system
and loads may be affected by wave distortion caused by high switching frequencies that
can generate too much heat.

The authors in [154] proposed a signal-based fault diagnosis method for lithium-ion
batteries in EVs based on voltage signals. The variational mode decomposition (VMD)
algorithm is a signal-based technique that is used to identify voltage signal characteristics
related to either long-term battery state variations or local responses to external excitation.
Then a generalized dimensionless indicator (GDI) is used to reduce the impact of the quality
and quantity of training data. Finally, a clustering algorithm is utilized to find the outliers
that represent battery cell abnormalities in feature sequences and diagnose the fault. This
approach can reliably identify the fault types, duration, and magnitude as well as the initial
state of the fault.
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In [155], the authors proposed an online semi-supervised-data-driven approach for
EV battery fault detection based on Bayesian optimization (BO) and support vector data
description (SVDD). To train the SVDD and create a base fault detection model, the pro-
posed method employed unlabeled data like temperature and voltage. The BO iteration is
used to find the optimal parameter by iteratively training the model using a small amount
of battery management system (BMS) data or manually labeling samples and maximizing
the fault detection capability. Figure 16 shows the proposed model described in [155]. This
technique can be utilized in the real-world operation of an EV to offer real-time alerts for
minor and early battery system faults and has a low modeling cost and high modeling
efficiency. It also increases the safety of the battery system. This method’s following
step requires validating the fault location capabilities and acquiring more advanced fault
diagnosis in battery systems.
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The authors of [74] proposed a data-driven fault diagnostic technique for connecting
a series lithium-ion battery pack based on SVM. There are four steps in this procedure.
The method can successfully diagnose faults by first employing an optimal filter based
on the discrete cosine transform (DCT), then analyzing the covariance matrix (CM) of the
filtered data, then using a grid search method to optimize the kernel function parameter
and penalty factor. Finally, the method can successfully diagnose faults by training the
SVM parameters using condition indicators. This method can reflect the severity of the
system fault and detect the voltage in real-time.

The authors in [156] proposed a fault detection classification scheme based on DWT
and LDA for hybrid MGs integrated with battery energy storage systems (BESS). The DWT
provides localization in the time and frequency domain, and LDA is a robust classifier for
fault diagnosis in large datasets. It is capable of detecting, classifying, and identifying the
faulty line in connected and islanded hybrid MG and it should be evaluated in intercon-
nected or networked MGs to validate its effectiveness. In [157], the authors proposed a
fault location approach for distribution networks with charging load access based on graph
theory and DL. To create the model, the distribution network topology is first divided up
into a number of Y-shaped structures using graph theory. Next, a generalized network
learning (GNL)-based DL technique is used to extract the mapping relationship between the
collected data and the fault location. A complex physical model and data analysis are used
to detect the fault type and location. This technique is adaptable to various distribution
network structures with charging loads and is unaffected by topological changes.
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6. Future Works and Conclusions
6.1. Future Works
6.1.1. Real-Time and Online Fault Location

The SG’s domain fault localization methodology must consider comprehensive, so-
phisticated deep learning models, multi-agent systems, and fault-tolerant controls in real
time to detect and locate the concurrent occurrence of multiple fault events or cascade
failures in the SG system [158]. Furthermore, for online fault location, it is critical to con-
sider an artificial intelligence model for detecting cyberattacks and updating missing or
inaccurate data [78], as well as topics that could continue to be developed, such as neural
networks, deep learning, discrete wavelet transforms, and signal processing.

In order to identify online faults in these systems, it is also important to create a
multicriteria fault detection and localization system that is based on rapid communication
systems and incorporates adaptive emotional learning techniques [159].

Additionally, it’s important to design adaptive protection schemes for these SGs that in-
corporate rapid restoration and on-line fault location utilizing more sophisticated algorithms.

6.1.2. Adaptable Fault Location Techniques and Hybrid Techniques

It is important for fault location methods to be resilient and adaptive, working prop-
erly regardless of the network’s operating mode. A comprehensive framework for network
failure detection can be created using a combination of heuristic network data, meteorologi-
cal data, and geospatial data. Another practical option that has the potential to significantly
increase the effectiveness of the fault prediction methods using only data from existing
infrastructure, such as a smart meter [160], independent of the effects of controller devices
and DG controllers, is the use of chemical analysis and electrical data associated with
equipment [161].

In order to test the effectiveness of hybrid methods based on communication, such as
the wide area traveling fault location (WATWFL) technique using IEC61850 and SCADA
systems, they must be implemented in real-time applications for MGs. This is because
traveling waves require effective devices for data collection [162].

Furthermore, it may be necessary to use more reinforcement learning or advanced
machine learning-based fault location techniques using Micro-PMU [162] or intelligent
sensors in other types of MGs, such as ad-hoc or networked MGs, to evaluate their efficacy.

6.1.3. Energy Storage Systems

The traditional battery management system (BMS) primarily focuses on simple faults,
such as thermal faults and sensor faults; however, in the years ahead, the BMS fault
diagnosis should be focused on an AI algorithm to achieve battery system fault detection
and location, a large-scale battery array, accurate state estimation, and a fault diagnosis
algorithm for battery health management [163]. The voltage at the feeder’s beginning
should be the focus of methods for fault location for electric vehicles in both grid-to-
vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Fault isolation, which protects a
specific fault from battery, sensor, and actuator faults, is a requirement for a safer battery
system [163]. To ensure long life, high energy, and low cost, stand-alone EV charging
stations require attention to automatic fault detection and location [164].

Investigating a battery pack’s temperature distribution can produce valuable fault
features. The nature of the problem on the thermal runaway vehicle is still unknown, but
acceptable fault features can also be produced through feature transformation and the
merging of various electrical and thermal characteristics. Accurate early defect warning and
diagnosis, as well as efficient fault decoupling with accompanying mechanism illustration,
will be accomplished after the development and statistical analysis of the fault pattern
library [151].

Another future direction is the development of an intelligent infrared detection and
location system for SGs using an edge-cloud framework [165,166]. This solution combines
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the infrared technology used for fault diagnosis with a data-driven approach to achieve
automatic and intelligent methods.

6.2. Conclusions

In this article, we review both fault location methods proposed in SG’s domain and
fault location approaches to improve resilience. While considering numerous literature
articles on the subject, we also looked at the challenges of troubleshooting and the most
typical types of distribution system failures. This article also covered the problems caused
by these failures, as well as the challenges in locating the fault for various MG types,
communication systems, and energy storage systems. Along with these issues, we also
highlighted the main sources of fault location methods in SGs and MGs based on traveling
waves, knowledge-based signal processing, and a phasor-based algorithm, among others.

According to the reviewed literature, the main challenges faced in fault location
techniques are the following: (i) Several operation modes and diverse types of power
failures; (ii) Existing gaps in hybrid solutions that use communication infrastructures and
adaptive protections. (iii) More practical experience with this kind of intelligent system.

Future research should focus on developing studies that examine the performance
of more intelligent algorithms made to deal with self-recovery, communication issues,
and meteorological conditions. It is also necessary to test and validate the use of various
localization approaches based on local or non-local measurements, fault-finding strategies
for storage systems, and fault-finding strategies for electric vehicles in real-time scenarios.

Future research should also concentrate on the possibility of online techniques and
approaches based on expert systems or bioinspired algorithms, such as multi-agent sys-
tems or emotional learning, to improve the resilience and autonomy of the autonomous
restoration capabilities of future power systems.
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Nomenclature

Indices
t milliseconds
Abbreviation
AC Alternating Current
ACCB AC Circuit Breaker
ADN Active Distribution Network
AIE Active Impedance Estimation
AMKELM Adaptive multi-kernel extreme learning machine
ANN Artificial Neural Networks
BESS Battery Energy Storage System
BMS Battery Management System
BO Bayesian Optimization
BP Back Propagation
BPNN Back Propagation Neural Network
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CB Circuit Breaker
C-FLISR Centralized Fault Location, Isolation, and Service Restoration
CM Covariance Matrix
CNN Convolutional Neural Network
DA Discriminant Analysis
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DC Direct Current
DCCB DC Circuit Breaker
DCT Discrete Cosine Transform
DER Distribute Energy Resources
D-FLISR Distributed Automatic Fault Location, Isolation, and Service Restoration
DG Distributed Generation
DL Deep Learning
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DT Decision Tree
DTA Decision Tree Algorithm
DWT Discrete Wavelet Transform
ECM Equivalent Circuit Model
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machines
EPS Electrical Power System
EM Ensemble Methods
EV Electric Vehicles
FDI Fault Data Injection
FDIR Fault Detection, Location, Isolation, Service Restoration
FF-NNs Feedforward Neural Networks
FFT Fast Fourier Transform
FTCC Fault-Tolerant Cooperative Control
G2V Grid-to Vehicle
GDI Generalized Dimensionless Indicator
GNL Generalized Network Learning
GNN Graph Convolutional Network
GOOSE General Oriented Substation Event
GPR Gaussian Process Regression
HGAT Heterogenous Graph Attention Network
HHT Hilbert-Huang Transform
HIF High-Impedance Faults
HR High Impact Rare
IDS Intrusion Detection Systems
IED Intelligent Electronic Device
IoT Intelligent Electronic Device
IPR Intelligent Power Router
IPS Intrusion Protection Systems
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LR Logistic Regression
LRP Layer-Wise Relevance Propagation
LS Least-Squares
LSTM Long Short-Term Memory
LVDC Low-Voltage DC
MAS Multi Agent systems
MGs Microgrids
MILP Mixed Integer Linear Programming
ML Machine Learning
MM Mathematical Morphology
MMF Mathematical Morphology Function
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MSVM Multi-Class Support Vector Machine
MV Medium-Voltage
MVDC Medium-Voltage DC
NB Nave Bayes
NN Neural Networks
NPERG Nonlinear Parity Equation Residual Generation
PBN Probabilistic Boolean Network
PCA Principal Component Analysis
PCC Point of Common Coupling
PDD Power Protection Devices
PEVs Plug-in Electric Vehicles
PMOS Positive Channel Metal Oxide Semiconductor
PMU Phasor Measurement Units
PnP Plug-and-Play
PPU Power Probe Units
PS Protection Systems
PV Photovoltaic
RBF Radial Basis Function
RER Renewable Energy Resources
RF Random Forest
RFI Remote Fault Indicators
RNN Recurrent Neural Network
ROCOF Rate-of-Change-of-Frequency
RT Regression Tree
SCADA Supervisory Control and Data Acquisition
SGAM Smart Grid Architecture Model
SGDM Symplectic Geometry Mode Decomposition
SGFI SG Fault Identification
SGs Smart Grids
SM Smart Meter
SNPS Spiking Neural P System
ST Stockwell Transform
STFT Short Time Fourier Transform
SVD Singular Value Decomposition
SVDD Support Vector Data Description
SVM Support Vector Machine
SVR Support Vector Regression
TEO Teager Energy Operator
T-S Takagi-Sugeno
TW Travelling Wave
TWAM Travelling Wave Acquisition Module
V2G Vehicle-to-Grid
VMD Variational Mode Decomposition
VSC Voltage Source Converter
WATWFL Wide Area Travelling Fault Location
WPT Wavelet Packet Transform
WT Wavelet Transform
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