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Abstract: Research on batteries’ State of Charge (SOC) estimation for equivalent circuit models based
on the Kalman Filter (KF) framework and machine learning algorithms remains relatively limited.
Most studies are focused on a few machine learning algorithms and do not present comprehensive
analysis and comparison. Furthermore, most of them focus on obtaining the state space parameters of
the Kalman filter frame algorithm models using machine learning algorithms and then substituting
the state space parameters into the Kalman filter frame algorithm to estimate the SOC. Such algorithms
are highly coupled, and present high complexity and low practicability. This study aims to integrate
machine learning with the Kalman filter frame algorithm, and to estimate the final SOC by using
different combinations of the input, output, and intermediate variable values of five Kalman filter
frame algorithms as the input of the machine learning algorithms of six main streams. These are: linear
regression, support vector Regression, XGBoost, AdaBoost, random forest, and LSTM; the algorithm
coupling is lower for two-way parameter adjustment and is not applied between the machine learning
and Kalman filtering framework algorithms. The results demonstrate that the integrated learning
algorithm significantly improves the estimation accuracy when compared to the pure Kalman filter
framework or the machine learning algorithms. Among the various integrated algorithms, the
random forest and Kalman filter framework presents the highest estimation accuracy along with
good real-time performance. Therefore, it can be implemented in various engineering applications.

Keywords: Kalman Filter; random forest (RF); XGBoost; AdaBoost; support vector regression (SVR);
long short-term memory (LSTM)

1. Introduction

Owing to the rapid development of the modern energy industry, energy storage
batteries have been widely implemented in various fields, such as electric vehicles, energy
storage power stations, data centers, communication base stations, and others. Lithium
batteries have become the primary choice for energy storage batteries due to their high
energy density and long cycle life. The efficient and safe management of lithium batteries
has become crucial for engineering applications. Adequate battery management can help
in achieving balanced charge and discharge for Li-ion batteries and can reduce the risk
of excessive battery capacity consumption, which can lead to fires or explosions. Real-
time and accurate estimation of a battery’s state of charge (SOC) is essential for battery
management. However, the SOC of a lithium battery corresponds to its complex internal
physical and chemical reactions, along with the external working environment. Therefore,
it has highly complex nonlinear time-varying characteristics and is difficult to measure
directly, which considerably hinders engineering design and research.
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Most of the previous studies conducted on lithium batteries’ SOC estimation have been
focused on the Kalman filter frame algorithms [1–3] and machine learning algorithms [4–9].
The Kalman filter frame algorithm dynamically estimates the SOC by using the circuit
model of the battery to establish a state space model. It presents a moderate computational
complexity with acceptable accuracy, but the complex relationship between the long time
series data is underutilized. Machine learning algorithms can be used to determine the
complex relationship between long time series data through the regression fitting of labeled
time series data. However, the machine learning model is difficult to explain, the utilization
efficiency of the data is low, and the accuracy is often insufficient for a small amount of data.
Few studies have been conducted on SOC estimation that combine the machine learning
and Kalman filter frame algorithms; they were primarily focused on a few machine learning
algorithms and did not present a comprehensive analysis and comparison of different
machine learning algorithms. Furthermore, most of them were focused on obtaining the
state space parameters of the Kalman filter frame algorithm model using machine learning
algorithms and then substituting the state space parameters into the Kalman filter frame
algorithm to estimate the SOC [10–12]. Such algorithms are highly coupled and present
high complexity and low practicability.

This study aims to simply and comprehensively integrate the machine learning and
Kalman filter frame algorithms, and to estimate the final SOC by using different combi-
nations of the input, output, and intermediate variable values of five Kalman filter frame
algorithms, i.e., EKF, UKF, MIUKF, UKF-VFFRLS, MIUKF-VFFRLS [3], as the input of
six mainstream machine learning algorithms, i.e., linear regression, support vector Re-
gression [13], XGBoost [14,15], AdaBoost [16], Random Forest [17,18], and LSTM [19,20];
the algorithm coupling is lower for two-way parameter adjustment and is not applied
between the machine learning and Kalman filtering framework algorithms. The results
demonstrate that the integrated algorithm significantly improved the estimation accuracy
when compared to the pure Kalman filter framework or machine learning algorithms.
Among the integration algorithms, the XGBoost, AdaBoost, and Random Forest integration
algorithms present high accuracy. The Random Forest integration algorithm presents the
highest accuracy along with good real-time performance, and can be implemented in
various engineering applications. In the cases which have strict real-time requirements,
pure machine learning algorithms such as the XGBoost and Random Forest algorithms can
be implemented due to their high speed and good accuracy.

2. General Design

To comprehensively analyze the various integrated algorithms and compare their per-
formance with pure machine learning algorithms or pure Kalman filter frame algorithms,
three aspects of grouping were considered in the design process. In the first group, the
measured current and voltage are considered as input variables and the pure machine
learning algorithms are considered as the control group with the target algorithm. In the
second group, the feature variables obtained by the Kalman filter algorithm are considered
as the input variables. The third group performs feature filtering on the feature variables
obtained using the Kalman filter framework algorithms, from which, the three most impor-
tant feature variables were selected as the input variables. The SOC estimation problem
is essentially a prediction problem of time series; therefore, the time sliding window of
variables is used for each grouping and the statistics of the time sliding window are used
to transform and reorganize the input variables.

A large number of feature variables are obtained from the Kalman filter framework
algorithms, and many of them exhibit linear correlations with each other. The conventional
machine learning algorithms (not deep learning algorithms such as LSTM) present limited
processing performance or are sensitive to linear redundancy. Consequently, the transfor-
mation and reorganization of the input variables in the third group are only performed in
the LSTM algorithm.

The overall block diagram of the algorithm is depicted in Figure 1.
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3. Experimental Setting
3.1. Experimental Data Acquisition

The battery cell used in this paper is a 37 Ah/3.7 V ternary material Li-ion high power
density cell manufactured by CATL (Contemporary Amperex Technology Co., Limited
from Ningde City, Fujian Province, China), the mode name is S5E891 and the cut-off voltage
range is 2.8~4.2 V. Considering that the voltage will drop sharply at the initial stage of
every UDDS discharge cycle, in order to ensure battery safety, the protection voltage is set
to 3.2 V. According to this voltage window, the measured battery capacity is 32 Ah, which
is used as the reference capacity of SOC.

The experimental platform comprises the battery cells, power battery test system,
and high/low temperature humidity and heat alternating test box. In this study, we used
the test data from the U.S. Urban Road (UDDS) [21] under cycle conditions to verify the
effectiveness of the algorithm; all the conditions were tested below a temperature of 25 ◦C.
The battery was first fully charged for half an hour and then discharged for 13 UDDS cycles.

During this cycle, the SOC dropped from 100% to 1.2%, the voltage dropped from
4.18 V to 3.21 V (dropped from the cut-off voltage of 4.2 V in fact, the voltage at the initial
stage of discharge droped rapidly due to the existence of ohmic internal resistance, so the
first sample data shows 4.18 V due to the sampling interval.), the interval for experimental
data acquisition was set to 1 s, and a total of 20,000 data samples were collected.
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3.2. Running Environment

The algorithms were run on a PC (Lenovo Savior R9000P, CPU by AMD Ryzen
5800H (16 cores)) with a Windows 10 operating system. Matlab R2019b was used as the
compilation language for the Kalman filtering framework algorithms, and Python 3.8
was used as the compilation language for the machine learning algorithms. The libraries
used by the machine learning algorithm are Pandas 1.4.2, Scikit-learn1.0.2, Numpy 1.22.3,
Pytorch 1.8.1, and XGBoost 1.4.2.

3.3. Design of Input Variables

The proposed design considers the different situations in which the measured vari-
ables, the variables obtained through the Kalman filter frame algorithms and the variables
obtained after the filtering of the feature variables, are used as inputs for comparison.
Furthermore, it considers the time series of the input variable and its statistics as the
transformation input feature variables for comparative analysis.

3.3.1. Combination of Input Variables Based on Measured Variables

The measured current and voltage variables, the transformation of the sliding win-
dow with 50 time points, and the transformation of statistics of the sliding window with
50 time points are considered as the inputs of the six machine learning algorithms for
experimental comparison.

(a) Variable Ontology

We used the measured voltage, Ut, and current, It, to estimate the SOCt at time, t,
as follows:

SOCt = F(Ut, It) (1)

where, F represents the function fitted by the algorithm.

(b) Transformation variables of sliding window with 50 time points

The SOCt at time, t, is estimated by the voltage, Ut−49, Ut−48, . . . , Ut, and current,
It−49, It−48, . . . , It, at time, t, and before 49 time points, as shown below:

SOCt = F(Ut−49, Ut−48, . . . , Ut; It−49, It−48, . . . , It) (2)

where, F represents the function fitted by the algorithm, each segment separated by a
semicolon refers to a time series combination of a variable, and the input variables of
49 time points before time 0 are filled with the value of time, 0.

(c) Transformation variables of statistics of sliding window with 50 time points

The SOCt at time t is estimated by using the statistics of the mean, standard deviation,
and median of the voltage and current measured at time, t, and at the previous 49 time
points, as shown below:

SOCt = F(Mean(Ut−49, Ut−48, . . . , Ut), Median(Ut−49, Ut−48, . . . , Ut),

Std(Ut−49, Ut−48, . . . , Ut), Mean(It−49, It−48, . . . , It),

Median(It−49, It−48, . . . , It), Std(It−49, It−48, . . . , It))

(3)

where, F represents the function of the algorithm fitting, Mean represents the function of
determining the mean value of the variable, Median represents the function of determining
the median of the variable, Std represents the function of determining the standard devia-
tion of the variable, and the input variables of 49 time points before time, 0, are filled with
the value of time, 0.
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3.3.2. Combination of Input Variables Based on Kalman Framework Algorithm

The measured current, voltage, and statistics of 27 variables based on Kalman filter
frame algorithm, the transformation of the sliding window with 50 time points, and the
transformation of statistics of the sliding window with 50 time points, are considered as
the inputs of the six machine learning algorithms for experimental comparison.

(a) Variable Ontology

The Kalman filter framework algorithm establishes the state equation based on the
equivalent circuit model of the battery to estimate the battery terminal voltage and SOC. It
dynamically corrects the state variable using the error of the measured terminal voltage.
In this paper, we employ the common second-order equivalent circuit DP model, whose
circuit structure is depicted in Figure 2.
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It can be observed that the DP model comprises a voltage source, ohmic internal
resistance, and RC network, where Uocv represents the battery open circuit voltage, R0
represents the battery ohmic internal resistance, and Ut represents the battery terminal
voltage. The parallel network constructed by R1 and C2 is used to describe the long-term
concentration polarization effect, the parallel network constructed by R2 and C2 is used to
describe the short-term electrochemical polarization effect, and U1 and U2 represent the low
order and high order polarization voltages of the second-order circuit model, respectively.

According to Kirchhoff’s law, the output voltage of the DP model is given as follows:
Ut = Uocv − IR0 −U1 −U2
.

U1 = − 1
C1R1

U1 +
1

C1
I

.
U2 = − 1

C2R2
U2 +

1
C2

I

(4)

where,
.

U1 and
.

U2 represent the derivatives of U1 and U2 corresponding to time, respectively.
The general form of the state variables of the state equation of the above circuit model

is X = (U1, U2, SOC)T that the superscript T refers to the transposition of the matrix.
The five algorithms based on the second-order model of Li-ion batteries, i.e., EKF,

UKF, MIUKF, UKF-VFFRLS and MIUKF-VFFRLS, follow the framework of Kalman filtering.
Their state variables follow the general form presented above, which includes five output
variables, i.e., U1 gain, ∆U1, U2 gain, ∆U2, SOC gain, ∆SOC, estimated terminal voltage,
UT, and estimated SOC; these five variables are closely related to the final real SOC value.
Therefore, a total of 25 variables, obtained from five variables in five algorithms, are selected
as the input variables of the machine learning algorithm. The original measured current
and voltage variables are the basic variables used to estimate the SOC, and are also included
in the input variables. Therefore, a total of 27 variables are used to estimate the SOC, as
shown below:
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SOCt = F(Ut, It, ∆U1EKF
t , ∆U2EKF

t , ∆SOCEKF
t , UTEKF

t , SOCEKF
t ,

∆U1UKF
t , ∆U2UKF

t , ∆SOCUKF
t , UTUKF

t , SOCUKF
t ,

∆U1MIUKF
t , ∆U2MIUKF

t , ∆SOCMIUKF
t , UTMIUKF

t , SOCMIUKF
t ,

∆U1UKF−VFFRLS
t , ∆U2UKF−VFFRLS

t , ∆SOCUKF−VFFRLS
t , UTUKF−VFFRLS

t , SOCUKF−VFFRLS
t

∆U1MIUKF−VFFRLS
t , ∆U2MIUKF−VFFRLS

t , ∆SOCMIUKF−VFFRLS
t , UTMIUKF−VFFRLS

t , SOCMIUKF−VFFRLS
t )

(5)

where, F represents the function fitted by the algorithm, and the superscript refers to the
corresponding Kalman filter framework algorithm.

(b) Transformation variables of sliding window with 50 time points

The SOCt is estimated by the 27 input variables at time, t, and before 49 time points.
The input variables of the 49 time points before time, 0, are filled with the value of time 0.
This formula is omitted due to its complexity.

(c) Transformation variables of statistics of sliding window with 50 time points

The SOCt at time, t, is estimated by using the statistics of the mean, standard deviation,
and median of 27 input variables at time, t, and the previous 49 time points. The input
variables of 49 time points before time, 0, are filled with the value of time, 0. This formula
is also omitted due to its complexity.

3.3.3. Combination of Input Variables after Elimination of Redundant Variables Based
on Kalman Frame Algorithm Variables

The transformation of the time sliding window increases the computational complex-
ity of the tree model algorithms (Random Forest, XGBoost, and AdaBoost) due to the large
number of algorithm variables based on the Kalman filtering framework, which consider-
ably increases the computational time of the experiment. Furthermore, Linear Regression
and SVR are sensitive to the redundant feature variables; therefore the redundant variables
must be eliminated. Additionally, the LSTM algorithm performs a performance comparison
between all the feature variables and the selected feature variables. Therefore, in this paper,
we employed the recursive feature elimination method to eliminate the redundant variables
based on the Kalman filter framework, which ultimately selects the three most important
feature variables corresponding to the different algorithms, as the input.

(a) Variable ontology after PEF recursive feature elimination

We employed a top-down method, in which all the features were included at the
beginning, and some were gradually discarded to analyze the results. The evaluation
method is described below.

We divided the data set into five parts, each of which was disjoint, of the same
size. We then successively selected one of these five parts as the validation set, and the
remaining four parts were used as the training set. Therefore, five separate model training
and validation actions were performed. The average of the five validation results was
considered as the validation error of this model.

Lastly, the three most important features for each algorithm were selected, as shown
in Table 1.

(b) Transformation variables of sliding window with 50 time points after PEF recursive
feature elimination

The SOCt is estimated by the three most important input variables at time, t, and
before the 49 time points. The input variables of the 49 time points before time, 0, are filled
with the value of time, 0. This formula is omitted due to its complexity.

(c) Transformation variables of statistics of sliding window with 50 time points after PEF
recursive feature elimination
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The SOCt at time, t, is estimated by using the statistics of the mean, standard deviation,
and median of the three most important input variables at time, t, and the previous 49 time
points. The input variables of the 49 time points before time, 0, are filled with the value of
time, 0. This formula is omitted due to its complexity.

Table 1. The three most important features of each algorithm.

Algorithm
Feature Sorting

First Feature Second Feature Third Feature

XGBoost SOCEKF ∆U1EKF SOCUKF−VFFRLS

AdaBoost SOCEKF ∆U1UKF−VFFRLS SOCUKF−VFFRLS

RF SOCEKF ∆U1UKF−VFFRLS SOCUKF−VFFRLS

LR SOCUKF−VFFRLS SOCMIUKF SOCMIUKF−VFFRLS

SVR SOCUKF−VFFRLS SOCMIUKF SOCMIUKF−VFFRLS

LSTM SOCEKF ∆U1UKF−VFFRLS SOCUKF−VFFRLS

3.4. Parameter Design of the Algorithm

We analyzed a total of 20,000 data elements, of which 80% were randomly selected as
the training set and 20% were selected as the test set, and random seed was set to 2022.

The settings for the hyperparameters of the algorithm were determined based on the
basic principles of machine learning algorithm training to ensure the convergence of the
algorithm and to avoid falling into the local optimum point as much as possible.

The Kalman filtering framework algorithms and parameters were the same as the
existing paper [9].

4. Results and Discussion

Improving the estimation accuracy and satisfying the real-time production require-
ments are crucial factors in engineering applications and research. Therefore, the accuracy
and time consumption of the machine learning algorithms must be comprehensively ana-
lyzed. In this section, the accuracy and time consumption of each algorithm were compared
and analyzed based on the aforementioned experimental settings.

4.1. Analysis of Accuracy of the Algorithm

The accuracy of the algorithm is determined by the final output. Therefore, the
accuracy of the integrated algorithm can be analyzed by analyzing the accuracy of the
export algorithm, i.e., the six machine learning algorithms. The accuracy is generally
determined by the RMSE and MAE values. RMSE is significantly affected by outliers when
compared to MAE.

The RMSE and MAE of all the algorithms when selecting the different input variables
are listed in Tables 2 and 3.

Table 2. Comparison of algorithms’ RMSE when selecting different input variables.

Inputs
Algorithms

XGBoost AdaBoost RF LR SVR LSTM

Current, Voltage 1.3100% 1.3200% 1.3400% 2.2200% 2.2700% 1.5200%

Sliding windows with 50 time
points for current and voltage 0.4300% 0.5120% 0.7850% 1.6400% 2.6900% 0.1790%

Statistics of sliding windows with
50 time points for current and
voltage

0.3600% 0.2710% 0.4220% 1.6800% 2.3500% 1.7895%

TOP 3 important feature variables 0.0161% 0.0174% 0.0108% 0.2090% 0.2760% 0.0964%
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Table 2. Cont.

Inputs
Algorithms

XGBoost AdaBoost RF LR SVR LSTM

Sliding windows with 50 time
points for TOP 3 important
feature variables

0.0180% 0.0182% 0.0127% 4.5100% 0.2680% 0.2310%

Statistics of Sliding windows
with 50 time points for TOP 3
important feature variables

0.0145% 0.0156% 0.0094% 0.1850% 0.2330% 0.1475%

27 features 0.0135% 0.0166% 0.0101% 0.0251% 0.0967% 0.0898%

Sliding windows with 50 time
points for 27 features \ \ \ \ \ 0.0861%

Statistics of sliding windows with
50 time points for 27 features \ \ \ \ \ 0.9160%

Table 3. Comparison of algorithms’ MAE when selecting different input variables.

Inputs
Algorithms

XGBoost AdaBoost RF LR SVR LSTM

Current, Voltage 0.7730% 0.8040% 0.7570% 1.7800% 1.7400% 1.0400%

Sliding windows with 50 time
points for current and voltage 0.2970% 0.2610% 0.4760% 1.3200% 2.1600% 0.1250%

Statistics of sliding windows with
50 time points for current and
voltage

0.2100% 0.0901% 0.1610% 1.3800% 0.1820% 1.4667%

TOP 3 important feature variables 0.0091% 0.0095% 0.0051% 0.1490% 0.1570% 0.0682%

Sliding windows with 50 time
points for TOP 3 important
feature variables

0.0113% 0.0109% 0.0070% 0.3250% 0.1410% 0.1630%

Statistics of Sliding windows
with 50 time points for TOP 3
important feature variables

0.0082% 0.0085% 0.0044% 0.1350% 0.1710% 0.0997%

27 features 0.0075% 0.0087% 0.0051% 0.0197% 0.0547% 0.0647%

Sliding windows with 50 time
points for 27 features \ \ \ \ \ 0.0644%

Statistics of sliding windows with
50 time points for 27 features \ \ \ \ \ 0.0197%

The RMSE of Kalman filtering framework algorithms are shown in Table 4.

Table 4. The RMSE of Kalman filtering framework algorithms.

Inputs
Algorithms

EKF UKF MIUKF UKF-VFFRLS MIUKF-VFFRLS

Current, Voltage 1.2891% 1.2434% 1.3307% 0.7754% 0.7020%

The MAE of Kalman filtering framework algorithms are shown in Table 5.
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Table 5. The MAE of Kalman filtering framework algorithms.

Inputs
Algorithms

EKF UKF MIUKF UKF-VFFRLS MIUKF-VFFRLS

Current, Voltage 1.1964% 1.0248% 0.7796% 0.2461% 0.2261%

The RMSE cluster histograms of each algorithm when selecting the different input
variables are illustrated in Figures 3 and 4.
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The MAE cluster histograms of each algorithm when selecting different input variables
are shown in Figures 5 and 6.

We can observe that the integrated algorithm exhibits a significant improvement in
the estimation accuracy when compared to the pure Kalman filter framework or machine
learning algorithm. When we used the pure Kalman filter framework algorithm, MIUKF-
VFFRLS exhibits the highest accuracy, and the RMSE and MAE of the algorithm are 0.7020%
and 0.2261%, respectively. When we use the pure machine learning algorithm, AdaBoost
exhibits the highest accuracy for the “input current and voltage with 50 time sliding window
statistics,” and the RMSE and MAE are 0.2710% and 0.0901%, respectively. The RMSE and
MAE of the integrated algorithms are significantly lower than that of the pure Kalman
filter framework and machine learning algorithm, except for the linear regression when
“50 time sliding windows of the three most important features” is considered as the input
and the LSTM algorithm when “statistics of 27 features with 50 time sliding windows” is
considered as the input.
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Furthermore, it can be observed from Figures 3–6 that among all the integrated
algorithms, XGBoost, AdaBoost, and Random Forest exhibit higher accuracy. Among them,
the Random Forest integrated algorithm exhibits the highest accuracy with the number of
0.0094% for RMSE and 0.0044% for MAE when “50 time sliding windows statistics of the
three most important features” is used. Additionally, the Linear Regression algorithm with
“27 features” considered as the input also exhibits high accuracy.

The deep learning algorithm, LSTM, exhibits a lower accuracy when compared to the
tree model algorithm, except for the “current and voltage for 50 time sliding windows”
input. The accuracy is not as good as that of the Linear Regression algorithm even when
“27 features” is considered as the input. From the perspective of the size of the model
parameter scale, the Linear Regression algorithm is less than the tree model algorithm,
and the tree model algorithm is less than the deep learning algorithm. The accuracies of
the models with low- and medium-scale parameters are more optimized, indicating that
empirical evidence is crucial in selecting an appropriate algorithm for actual problems.
Thus, it does not mean that when the algorithm model is larger, the accuracy is better. The
tree model has good regression performance, which indicates that the prediction ability
corresponding to its parameter scale is better adapted to the SOC estimation of battery in
this working condition and similar cycle scale.

4.2. Analysis of Time Consumption of the Algorithm

The time consumption of the integrated algorithm can be obtained by summing up
the total time consumption of the Kalman filter framework algorithm and the machine
learning algorithm. Table 6 presents a comparison of the time consumption of each machine
learning algorithm for different inputs.

Table 6. The time consumption comparison of each machine learning algorithm for different inputs (s).

Inputs
Algorithm

XGBoost AdaBoost RF LR SVR LSTM

Current, Voltage 0.0171 4.19 0.0991 0.0001 0.00015 1.16

Sliding windows with 50 time points for current and
voltage 0.218 11.5 0.117 0.00156 0.00312 1.71
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Table 6. Cont.

Inputs
Algorithms

XGBoost AdaBoost RF LR SVR LSTM

Statistics of sliding windows with 50 time points for
current and voltage 0.189 4.234 0.28 0.001 0.001 0.5

TOP 3 important feature variables 0.0468 3.95 0.28 0.0000609 0.00016 1.08

Sliding windows with 50 time points for TOP 3
important feature variables 0.051 14.2 0.293 0.003 0.003 1.66

Statistics of Sliding windows with 50 time points for
TOP 3 important feature variables 0.036 4.18 0.264 0.001 0.001 0.5

27 features 0.0355 5.37 0.271 0.000406 0.0005 1.12

Sliding windows with 50 time points for 27 features \ \ \ \ \ 1.65

Statistics of sliding windows with 50 time points for
27 features \ \ \ \ \ 0.5

The time consumption statistics of the Kalman filter framework algorithm are as show
in Table 7.

Table 7. Time consumption of Kalman filter frame algorithm (s).

Algorithms
Data

All Data Test Set

EKF 0.4375 0.0875

UKF 1.5781 0.3156

MIUKF 1.9375 0.3875

UKF + VFFRLS 2.0469 0.4094

MIUKF + VFFRLS 3.8125 0.7625

The Kalman filter frame algorithms can be implemented simultaneously; therefore,
when multiple Kalman filter frame algorithms are used, the longest time consumption is
added to the time consumption of the machine learning algorithm to estimate the total time
consumption. Table 8, Figures 7–9 present the total time consumption of the integrated
algorithms for the test set data.

Table 8. The total time consumption of the integrated algorithms for test set data (s).

Inputs
Algorithms

XGBoost AdaBoost RF LR SVR LSTM

Current, Voltage 0.0171 4.19 0.0991 0.0001 0.00015 1.16

Sliding windows with 50 time points for current
and voltage 0.218 11.5 0.117 0.00156 0.00312 1.71

Statistics of sliding windows with 50 time points
for current and voltage 0.189 4.234 0.28 0.001 0.001 0.5

TOP 3 important feature variables 0.45618 4.35938 0.68938 0.7625609 0.76266 1.48938

Sliding windows with 50 time points for TOP 3
important feature variables 0.46038 14.60938 0.70238 0.7655 0.7655 2.06938

Statistics of Sliding windows with 50 time points
for TOP 3 important feature variables 0.44538 4.58938 0.67338 0.7635 0.7635 0.90938
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Table 8. Cont.

Inputs
Algorithms

XGBoost AdaBoost RF LR SVR LSTM

27 features 0.798 6.1325 1.0335 0.762906 0.763 1.8825

Sliding windows with 50 time points for
27 features \ \ \ \ \ 2.4125

Statistics of sliding windows with 50 time points
for 27 features \ \ \ \ \ 1.2625Energies 2023, 16, x FOR PEER REVIEW 14 of 17 
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It can be observed that XGBoost, Random Forest, Linear Regression, and SVR present
low time consumption. The time consumption of the Kalman filter framework algorithm
contributes the most to the total time consumption of the integrated algorithm. This time
consumption can be considerably reduced by using a pure machine learning algorithm
with a voltage and current input. Therefore, pure machine learning algorithms can be
considered in situations with strict real-time requirements; the XGBoost and Random Forest
algorithms are preferred in these situations due to their high speed and good accuracy.
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5. Conclusions

Accurate and fast SOC estimation is the basic requirement for the efficient operation
and safe management of lithium batteries. The estimation of lithium batteries’ SOC ex-
hibits strong nonlinear characteristics due to the complex physical and chemical changes
in lithium batteries. Improving the estimation accuracy and satisfying the requirements
of real-time production is crucial for engineering applications and research. The existing
studies are focused on the Kalman filter frame algorithms and machine learning algorithms,
and few studies have been conducted on the integrated algorithms. Furthermore, most of
these studies employ machine learning algorithms to estimate the parameters in the Kalman
filter frame algorithm, and the estimated parameters are then substituted into the Kalman
filter frame algorithm to estimate the final SOC. This results in highly coupled algorithms
with complex design and low practicality. In this study, we try to integrate the machine
learning and Kalman filter frame algorithms in an easier and more comprehensive way;
the output variable of the Kalman filter algorithms are used as the inputs of the machine
learning algorithms to estimate the final SOC. We integrate five mainstream Kalman filter
frame algorithms and six machine learning algorithms, conduct time series and statistics
transformation on the input variables, and perform a comparison of the various input
combinations; the algorithm coupling is lower when a two-way parameter adjustment is
not applied between the machine learning and Kalman filtering framework algorithms.
The results demonstrate that the integrated algorithm significantly improved the estima-
tion accuracy when compared to the pure Kalman filter framework or machine learning
algorithms. Among the various types of integration algorithms, the XGBoost, AdaBoost,
and Random Forest algorithms exhibit high accuracy. The Random Forest integration
algorithm presents the highest estimation accuracy along with good real-time performance,
and can thus be implemented in various engineering applications. Pure machine learning
algorithms can be considered in situations with strict real-time requirements; the XGBoost
and Random Forest algorithms are preferred in these situations due to their high speed
and good accuracy.

This paper verifies the integrated algorithm of the collected data of a discharge cycle
of lithium battery under the UDDS working condition and 25 ◦C experimental condition.
Data with other working conditions, different temperatures and longer periods are not
verified due to the limited time and energy available. If the experimental data is further
expanded, algorithms with larger parameters, such as LSTM, may show better performance.
Further research can be expanded in this direction.
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