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Abstract: Condition diagnosis of power transformers using acoustic signals is a nonstop, contactless
method of equipment maintenance that can diagnose the transformer’s type of abnormal condition.
To heighten the accuracy and efficiency of the abnormal method of diagnosing abnormalities by
sound, a method for abnormal diagnosis of power transformers based on the Attention-CNN-LSTM
hybrid model is proposed. This collects the sound signals emitted by the real power transformer in
the normal state, overload, and the discharge condition. It preprocesses the sound signals to obtain
the MFCC characteristics of the sound signals. It is then grouped into a set of sound feature vectors
by the first- and second-order differences, and enters the Attention-CNN-LSTM hybrid model for
training. The training results show that the Attention-CNN-LSTM hybrid model can be used for the
status sound detection of power transformers, and the recognition of the three states can achieve an
accuracy rate of more than 99%.

Keywords: transformer sound diagnostics; attention mechanism; Mel cepstrum coefficient;
Attention-CNN-LSTM

1. Introduction

The power transformer is one of the most important pieces of equipment in the power
system. The state in which it operates has a direct impact on the power supply and the
safety of the power system. With the increase in user electricity consumption, more and
more transformers are invested in the power grid, so transformer monitoring and fault-
detection technology play a vital role in the power grid’s fault-prevention ability and safe
and steady operation.

The failure of power transformers is mainly based on insulation failures, and some
noninsulating primary faults can be converted into insulation faults. A variety of factors
cause the factors that lead to insulation deterioration of transformers [1,2]. Currently, the
primary methods for transformer abnormality and fault diagnosis are oil chromatography
diagnosis, vibration diagnosis, infrared thermal imaging diagnosis, acoustic diagnosis,
and spectral diagnosis [3–11]. Among these diagnostic methods, acoustic diagnosis has
the advantages of easy assembly, fast diagnosis, and no direct contact with equipment
compared with other diagnostic methods. Usually, sound methods for abnormalities
and fault diagnosis are judged mainly by experienced people through the human ear.
However, this method has a large human impact and is only suitable for more obvious
failure occurrences.

Deep learning machine learning models based on neural networks have emerged as
the prevalent trend as machine learning gains popularity. The use of deep learning to judge
faults has also been applied to many fields and has gained excellent results [12–15]. In
the research of transformer voiceprint fault detection, the literature [16] proposes a model
based on Mel time spectrum-convolutional neural network transformer core voiceprint
recognition, through the vibration signal and sound data of the iron core under different
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operating states to achieve the identification of three voltage conditions. Although the
recognition accuracy of this method for three working conditions has reached 99%, it is nec-
essary to install vibration sensors and sound sensors, which are more complex in practical
applications, and the installation position has a more significant impact on experimental re-
sults. The literature [17] proposes a backpropagation (BP) neural network diagnostic model
based on transformer vibration and noise, by acquiring transformer vibration and noise
signals, obtaining eigenvalues after fast Fourier transformation. Entering them into the BP
neural network for fault diagnosis, this method is more accurate for obvious mechanical
fault identification, but the recognition accuracy for transformer discharge, overload, and
other abnormal phenomena is low. The literature [18] proposes a transformer voiceprint
recognition model based on improved Mel-frequency cepstral coefficients (MFCC) and
vector quantization (VQ) algorithms, first used for computational recognition by principal
component analysis and VQ algorithm, and the recognition accuracy rate reaches 93%.
Although this method retains most of the MFCC characteristics, the difference between
the sounds of different operating conditions of the transformer may exist in the discarded
MFCC, so this method is less accurate in identifying abnormalities when the transformer’s
sound is not obvious.

As to the above problems, a hybrid transformer abnormal voiceprint recognition
model that uses MFCC combined with convolutional neural networks (CNNs) and long
short-term memory (LSTM) is proposed. It collects the normal operation of the substation
10-kV oil-immersed transformer and the sound of abnormal (overload and discharge as
an example). These three states are samples collected under load on the transformer,
and the two abnormal states of discharge and overload are samples recorded by the
substation during the previous operation of the transformer; an abnormal discharge state
refers to a partial discharge. MFCC is used to feature the collected sound, and after
that the extracted sound features are introduced to the CNN-LSTM hybrid model, and
the attention mechanism is introduced to identify the three working conditions of the
transformer accurately.

2. Acquisition and Analysis of Transformer Sound Signals
2.1. Time Domain Analysis

Transformer vibrations through the windings, core, insulating oil, and other acces-
sories, move outward in the form of sound through the transformer tank. The sound
contains a wealth of equipment status information. In terms of the sound acquisition, a
computer is used to connect the DAC sound card and microphone, a microphone is fixed
close to the core of the transformer, and the cycle acquisition is set with 10 s as a sample. The
sensor for the microphone is an electret condenser with a sensitivity of −30 dB +/−3 dB
and a signal-to-noise ratio of 74 dB SPL. The sound card adopts a no-noise reduction card,
the acquisition frequency band covers 0–22,000 Hz, the sampling frequency is 44,100 Hz,
and the sampling channel is mono. Figures 1–3 show the time domain waveform diagram
of the transformer under normal, overload, and discharge conditions. The transformer
operates in a normal state, and the AC will generate alternating magnetic flux through
the winding. This magnetic flux has a periodicity that will cause periodic vibration of the
iron core [19]. This sound is regular, as shown in the time domain waveform diagram
in Figure 1. If the transformer is discharged, the sound of the engine operation will be
mixed with the sound of discharge, and the regularity of the sound is not obvious in the
normal state, as shown in Figure 2. In the event of an overload, the engine hums louder
than during normal operation [20] as shown in Figure 3.
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Figure 1. Normal state time domain waveform plot.

Figure 2. Discharge state time domain waveform plot.

Figure 3. Overload state time domain waveform plot.
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2.2. Grammatic Analysis

Figures 4–6 show the spectrogram of the transformer during normal operation, dis-
charge, and overload. In contrast to the waveform graph, which is represented by a single
time domain, the spectrogram is a representation of sound in the time-frequency domain
that expresses deeper voiceprint characteristics while also fully describing the frequency
and speech energy information in the direction of time. This is advantageous for the
model’s full learning process [21]. The color represents the intensity of sound at a particular
frequency and moment, with yellow representing high intensity and green representing
low intensity. The spectrogram’s horizontal and vertical axes represent frequency and
time in seconds, respectively. The spectrogram shows the composition of the spectrum
from three dimensions, has the characteristics of sound data representation and image
form processing, and uses two-dimensional images to express three-dimensional informa-
tion. Assuming that the speech waveform time-domain signal is x(l), the spectrogram
calculation formula is

xn(m) = W(m)x(n + m), 1 ≤ m ≤ P (1)

Xn(ejw) =
P

∑
m=1

xn(m)e−jwm (2)

w = 2πk/P (3)

Xn(e
2πkj

P ) = Xn(k) =
P

∑
m=1

xn(m)e
−2π jkm

P , 1 ≤ k ≤ P (4)

T(n, k) = |Xn(k)|2, (5)

where xn(m) is the nth frame sound signal obtained after framing the window, W(m) is
the window function, Xn(ejw) is a short-term Fourier change of the framed signal, w is the
angular frequency, P is the number of Fourier conversion points, |Xn(k)| is a short-term
amplitude spectrum estimate of xn(m), and T(n, k) is the spectral energy density function at
time. T(n, k) is a nonnegative real matrix, with time n as the abscissa and k as the ordinate.
A heat map can be drawn, and a color spectrogram can be derived from the transformed
matrix fine image and color mapping. The ordinate of the spectrogram represents the
frequency in (HZ). The abscissa represents the time in (S).

Figure 4. Normal transformer spectrogram.
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Figure 5. Discharge transformer spectrogram.

Figure 6. Overload transformer spectrogram.

The figure demonstrates that the frequency range of the sound when the transformer
is discharged covers the high-frequency band, whereas the sound during normal operation
is primarily concentrated in the low-frequency band. When the transformer is overloaded,
it can be seen that in the range of low- and medium-frequency bands, the intensity of the
sound is greater than the sound intensity during normal operation. From the time and
frequency domain analysis, it is feasible to use sound signals for abnormal transformer
diagnosis.

3. Preprocessing and Feature Extraction of Sound Signals
3.1. Preprocessing of Sound Signals

By preprocessing the sound, the effects of aliasing, high-order harmonic distortion,
high frequency, and other issues on the energy and frequency of the sound signal can be
eliminated [21]. Additionally, high-quality parameters can be input for the subsequent
feature extraction step, enhancing the effect of sound signal feature extraction.
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Although the same device is used to collect samples, due to various factors, there are
also many differences between the individual sound samples collected. In order to narrow
the impact of these differences on sound quality, the data must first be normalized as

Ynom =
X− Xmin

Xmax − Xmin
, (6)

where Xmin and Xmax are the minimum and maximum values of the sound signal.
Any sound signal must be analyzed and processed by using “short-time”, or “short-

time analysis”, because the sound signal is thought to be stable for a short time. As a result,
the sound signal is framed. In voiceprint detection, the frame length will lead to poor
representation of the feature vector, and too long a length will affect the accuracy of the
feature vector, so generally take 20–30 ms as a frame [18]. This paper takes 25 ms as a frame
and the frame shifts to 10 ms. In order to ensure the continuity between adjacent frames,
the overlapping part between the two frames is set up, and the relationship between the
overlapping part and the frame signal is

M = l − Lb/[L(1− b)], (7)

where the number of frames is M, l is the length of the sound signal, L is the frame length,
and b is the overlap rate.

In order to facilitate the calculation and make the sound have good continuity, the
overlap rate is 30% in this article. After framing the sound, a discrete Fourier transform is
required, and directly transforming the sound signal will cause signal distortion. Therefore,
a Hamming window must be added to the frame signal to increase continuity at both
ends and make the low-pass characteristics smoother and less distorted. The Hamming
function is

W[l] = 0.54− 0.64 cos(2πl/(Z− 1)), 0 ≤ l ≤ Z− 1, (8)

where Z is the window length.

3.2. Feature Extraction of Sound Signals

A cepstral parameter derived from the Mel scale frequency domain is the MFCC
coefficient. It involves the nonlinear properties of the frequency that the human ear
hears [22]. The following equation can approximate the MFCC coefficient’s relationship to
frequency,

B(h) = 2595lg(1 +
h

700
), (9)

where B is the Mel frequency and h is the frequency.
The first-order differences and second-order differences of the MFCC coefficients can

reflect the variability of adjacent frames, so this paper uses the MFCC coefficient combined
with the difference as the feature vector of the sound signal. Figure 7 depicts the process
flow of feature extraction.

Figure 7. The process of feature extraction.

In most cases, the signal is transformed into an energy distribution in the frequency
domain by using a fast Fourier transform (FFT) for characteristic observation because it is
challenging to observe the signal’s characteristics in the time domain. FFT conversion is
performed on each preprocessed sound signal, and the calculation formula is:
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Fa(q) =
P−1

∑
n=0

S(n)e−2πiq/P, 0 ≤ q ≤ P, (10)

where S(n) is the input sound signal, and P is the number of Fourier conversion points.
Here, take 512. After FFT transformation of the framed signal, and then Mel filtering, Mel
filtering is achieved by a filter bank composed of multiple triangle bandpass filters. Set
the number of filters to p, and then set the sound signal after Mel filtering to obtain p
parameters mi(i = 1, 2, ..., p), and the calculation formula is

mi = ln(
P−1

∑
q=0
|Fa(q)| × Hi(q)), i = 1, 2, ..., p, (11)

where Hi(q) is the parameter of the filter, which could be summed up as
0, q ≤ f (c− 1)

2(q− f (c−1))
( f (c+1)− f (c−1))( f (c)− f (c−1)) , f (c− 1) ≤ q ≤ f (c)

2( f (c+1)−q)
( f (c+1)− f (c−1))( f (c+1)− f (c)) , f (c) ≤ q ≤ f (c + 1)
0, q ≥ f (c + 1),

(12)

where f (c) is the center frequency of the triangulation filter. According to the calculation of
mi, take the logarithm to perform a discrete cosine transformation, and the transformation
formula is

c(i) =

√
2
P

p

∑
j=1

mjcos[(j− 0.5)
πi
p
], 1 ≤ i, j ≤ p (13)

where c(i) is the MFCC feature of the frame signal, and it is combined into a first-order and
second-order differential as the feature vector of the frame signal.

4. Construction of CNN-LSTM Hybrid Model Based on Attention Mechanism
4.1. Long Short-Term Memory

Long short-term memory (LSTM) is a unique RNN type of memory. LSTM adds gating
devices, which can remember information through cell state. The forgetting gate can avoid
letting too many memories affect the neural network’s processing of the current input, and
each time a new input is entered—based on the latest moment’s input and output—the
LSTM will first select which previous memories to erase. A memory gate is a control unit
that determines whether the data at t (now) is included in the state. It can filter out invalid
data from the current input and extract valid data from it. The neural layer that the LSTM
unit uses to determine the current value of the output is the output gate. After integrating
the current input value with the output value of the moment before it with the sigmoid
function, the output layer will first extract the information from the vector, and then use
the tanh function compression to map the current unit state to the interval (−1, 1). LSTM
introduces the sigmoid function through its three gatings and combines it with the tanh
function to increase the summation steps, reduce the possibility of gradient vanishing and
gradient explosion, and solve both short-term and long-term dependence problems [23–26].
The structure of the LSTM element is shown in Figure 8, and its calculation formula is show
in Equations (14)–(19),

gt = σ(Wg · [zt−1, xt] + bg) (14)

it = σ(Wi · [zt−1, xt] + bi) (15)

Vt = σ(gt ·Vt−1 + it ·Vz) (16)

Vz = tanh(WV · [zt−1, xt] + bV) (17)

ot = σ(Wo · [zt−1, xt] + bo) (18)
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zt = ot ∗ tanh(Vt) (19)

where xt is the network input matrix, and σ is the activation function. Vt−1 is the old cell
state, updated to the new cell state Vt by Equation (16). tanh is the double tangent activation
function, (Wg, Wi, WV , Wo) is the parameter of the network model, and (bg, bi, bV , bo) is the
offset vector of the network. The model updates the weights and biases by minimizing the
objective function.

Figure 8. LSTM unit structure.

4.2. Convolutional Neural Networks

CNN is one of the most widely used neural networks for image recognition, pat-
tern recognition, feature extraction, and natural language processing. The convolutional
layer, pooling layer, fully connected layer, and softmax layer make up CNN’s network
structure, which is a feedforward neural network with deep structure and convolutional
operation [24]. The functions of its layer structure are as follows.

The convolutional layer is the heart of the convolutional neural network. It abstracts
the implied correlation in the input data by using the convolutional kernel matrix and
extracts features. Each layer’s convolution operation is carried out with a rectified linear
unit (ReLU) activation function [27] in the following ways:

f (x) = max(0, x). (20)

After the completion of the activation function process, the filter generates the follow-
ing characteristics,

yl
j = f ( ∑

i∈Mj

xl−1
i ∗ wl

ij + bl
j), (21)

where, in the convolutional layer, j, yl
j is the result of the l filter, f represents the nonlinear

function, operator ∗ represents convolution, wl
ij is the lth layer convolution kernel between

the i input map and the j output map, and bl
j is the bias.

With regard to the pooling layer, the convolutional layer extracts a large number of
features of the input data, and the calculation efficiency is relatively low when performing
feature operations, so it is necessary to solve this problem through the pooling layer.
The pooling layer is responsible for screening the features in the sensory domain and
extracting the most representative features in the region. This can effectively reduce the
output feature’s dimension and the number of required model parameters. Pooling is
divided into average pooling and maximum pooling. Average pooling can keep more
background information about the object and reduce the excessive variance in the estimated
value caused by neighborhood limitations. Maximum pooling, on the other hand, can
keep more texture information about the object while reducing the estimated mean shift
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caused by convolutional layer parameter error. This article uses voiceprint information for
transformer condition monitoring, so the method of maximum pooling is used.

The model’s final layer is the fully connected layer, which connects each neuron with
the neurons before and after it is used and calculates the weight and deviation of the
features to obtain the output of feature information.

4.3. Attention Mechanism

The ability to selectively select significant information from a large amount of infor-
mation is at the heart of the attention mechanism, capture important information useful for
the current task, highlight important features that affect the impact, reduce the impact of
useless features, make the model make the optimal choice, and improve the accuracy of the
model. Its pith is to gain proficiency with a weight dissemination of information highlights
and afterward apply this weight conveyance to the first elements so the undertaking prin-
cipally centers around a few key highlights, disregards irrelevant highlights, and further
develops task effectiveness [28], the design of the consideration component is displayed in
Figures [29–31]:

In Figure 9, x1, x2, ..., xi is the input feature value, h1, h2, ..., hi is the input feature-
specific hidden layer state value, and at is the weight value of the current input that is
equivalent to the state of the historical input’s hidden layer. h′t is the value of the hidden
layer’s state that the final node outputs. The attention mechanism is calculated as

ei = utanh(whi + b) (22)

ai =
exp(ei)

∑n
t=1 exp(et)

(23)

si =
n

∑
t=1

eiai, (24)

where w and b are the weight parameters and biases, ei is the attention probability distribu-
tion value determined by the input vector hi at the i moment, and si is the feature of the
final output.

Figure 9. Attention mechanism structure.
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4.4. CNN-LSTM Hybrid Model Based on Attention Mechanism

The feature vector composed of voiceprint signals after feature extraction cannot
reflect the potential relationship between features, so the CNN network is used to mine
the potential relationship between features, extract the rules between continuous data
and discontinuous data, and form vectors, and then pass them into the LSTM layer in
chronological order to capture long-term components. However, the CNN-LSTM model
may lose data if the time series data is input for an excessive amount of time. Additionally,
the CNN-LSTM model only takes into account the selection of input features and does not
take into account the impact of any one feature on the results. As a result, the attention
mechanism is used in this paper to add various weights to the model’s input features,
enhance the features that have a greater impact on the results, and suppress the features
that have a small impact on the results.

As can be seen in Figure 10, the input layer, the CNN layer, the LSTM layer, the
attention layer, and the output layer make up the majority of the CNN-LSTM hybrid model
that is based on the attention mechanism.

Figure 10. Attention CNN-LSTM model structure schematic.

The hybrid model structure and flow are as follows:

1. Input layer: The MFCC features of the sound samples after feature extraction is passed
into the model through the input layer. If the input length is t, X = [x1, x2, ..., xt] can
be used to represent the input direction.

2. CNN layer: The CNN layer mainly includes the convolutional layer and the pooling
layer, which is to feature further extraction of the feature vector input of the input layer
and extract and screen out the important feature vectors into the LSTM layer. Accord-
ing to the data structure of the voiceprint sample, this paper uses two-dimensional
convolution, the convolution kernel is 9, and the activation function is ReLU. In order
to retain more features, this paper uses the maximum pooling, and the pool size
is 2. After the CNN layer processes the input vector, the incoming fully connected
layer is transformed into a new feature vector (26). The output of the CNN layer is
HC = [hC1, hC2, ..., hCi]

T , and the calculation formula is

C = ReLU(X⊗WC + bC) (25)

P = max(C) + bP (26)

HC = f (WH · P + bH), (27)

where C is the convolutional layer’s output, WC and bC are the weights and biases of
the convolutional layer, respectively, ⊗ is the convolution operator, P is the pooling
layer’s output, max is the maximum pooling mode, and bP is the bias of the pooling
layer. The fully connected layer’s activation function is called f . The fully connected
layer’s weights and biases are WH and bH .

3. LSTM layer: To understand how the data feature time series are related, the CNN
layer passes the extracted feature vectors onto the LSTM layer. In this paper, the LSTM
structure of bidirectional transmission is adopted, and the number of hidden units in
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each layer is 120. The activation function is the RULE function, and the LSTM layer’s
output vector is HL = [hL1, hL2, ..., hLi]

T .
4. Attention layer: In accordance with the weight distribution principle, we input the

vector output of LSTM into the attention layer and assign distinct parameters to
distinct characteristic parameters to create the ideal weight parameter matrix. The
output of this layer is S = [s1, s2, ..., sk]

T .
5. Output layer:The output from the attention layer goes into the output layer, which

then sends the status data for the transformer through the full connection layer. The
output is Y, and the following formula calculates it as

Y = f (WY · S + bY), (28)

where WY and bY are the weights and biases of the output layer.

4.5. Real-Time Transformer Condition Monitoring Process

The normal operation is diagnosed by using the Attention-CNN-LSTM hybrid model
in this paper, discharge and overload of the transformer running in real time, and the
overall diagnostic flow chart is shown in Figure 11.

Figure 11. The transformer monitors the overall flow chart in real time.

The specific steps for detection are as follows.
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1. The sound of the transformer operation is collected in real time through the micro-
phone and converted into data.

2. Preprocess the data collected by the microphone and extract MFCC features to form a
feature vector.

3. Input feature vectors into the trained Attention-CNN-LSTM model for discrimination.
4. If the discrimination result is normal, continue monitoring. If the discrimination

result is the abnormal state (discharge, overload), push the abnormal information and
occurrence time, and continue monitoring.

5. Analysis of Experimental Results

In order to evaluate the Attention-CNN-LSTM model’s superiority and accuracy in
comparison to three other prevalent detection and classification models—CNN, LSTM, and
CNN-LSTM—we set them up for comparative analysis. The results are further analyzed by
using the confusion matrix, which intuitively shows the impact of these four models for
normal, discharge, and the detection effect of these three states of overload.

5.1. Model Training Settings
5.1.1. Sample Settings

The sound samples are divided into 2-s units, the samples of the three states in the
quiet environment and the three state samples under the loud ambient sound are randomly
sorted in order and then put into the model for training in turn, and the training set and the
test set are randomly divided into 8:2 ratio, and the number of samples in each environment
is shown in Table 1.

Table 1. Number of sound samples for each condition of 110-kV transformer.

State Quiet
Environment/pcs

Thunderstorm
Environment/pcs

Fan
Environment/pcs

Normal operation 125 60 75
Overload 75 35 50
Discharge 70 40 45

5.1.2. Evaluate the Performance Index Settings

The confusion matrix M, precision ratio (P), recall (R), and F1-score (F1) are all
utilized in the process of assessing the model’s detection performance, where precision
is the expected outcome of the label sample, which is actually the proportion of the label.
The recall rate is the proportion of the label that is actually the sample of the label, and the
predicted result is the proportion of the label. F1 is defined based on the harmonic average
of accuracy and duplicate check rate. The specific evaluation formula is as follows [32,33],

M =

[
yTP yFP
yFN yTN

]
(29)

P =
yTP

yTP + yFP
(30)

R =
yTP

yTP + yFN
(31)

F1 =
2× P× R

P + R
, (32)

where yTP is the number of data points whose actual abnormal state data points are detected
as abnormal points. The number of data points that are found to be normal in the actual
abnormal state is yFN . The number of data points identified as abnormal by actual normal
operation is yFP; yTN is the number of data points that are detected as normal data points
in actual normal operation.
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P and R can intuitively show the quality of normal points and abnormal points
detected by the hybrid model through percentages, P and R are proportional to the perfor-
mance of the detection model when evaluating the performance of the detection model,
and when P and R are high, the F1 value will be high. The value of F1 has perfect precision
and recall at a value of 1, and its worst value is 0.

5.2. Detection Performance Analysis

One needs to train the model after setting the samples and the evaluation indicators.
One needs to set the number of iterations of the model to 800, the number of batch samples
to 64, the loss function to MSE, and the optimizer to Adam. You then need to put the
training samples into the model for training and the test samples into the model for testing.
The four results of training the model are shown in Figure 12.

Figure 12. Four model training results.

From the figure, Figure 12a is the CNN-LSTM model training results, Figure 12b is
the Attention-CNN-LSTM model training results, Figure 12c is the CNN model training
results, and Figure 12d is the LSTM model training results. It can be seen that the accuracy
(train_acc) of the four models on the training set can reach 100%, but the accuracy (val_acc)
on the test set is quite different. The Attention-CNN-LSTM hybrid model can reach 99.7%
accuracy on the test set, the accuracy of the CNN-LSTM hybrid model reaches 97%, and
the accuracy of the CNN model and the LSTM model on the test set is 90% and 92%,
respectively.

From the Figure 13, Figure 13a is the CNN-LSTM model status diagnostic results,
Figure 13b is the Attention-CNN-LSTM model status diagnostic results, Figure 13c is the
CNN model status diagnostic results, and Figure 13d is the LSTM model status diagnostic
results. In this experiment, 25 test sets were randomly selected from the samples of the four
states, 0 represents the ambient noise state when the transformer is not started, 1 represents
the normal operation of the transformer, 2 represents the partial discharge state of the
transformer, and 3 represents the overload state of the transformer. From the experimental
results, it can be seen that the CNN-LSTM model identifies a sample in normal operation
state and overload state as overload state and normal operation state respectively. The
Attention-CNN-LSTM model only identifies an overloaded sample as a normal operating
state. The CNN model identifies two samples in normal operation as overload, two samples
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in overload as normal operation and one partial discharge sample as normal operation.
The LSTM model identifies three samples of normal operation as overload, one partial
discharge as normal operation, and two overload samples as normal operation.

Figure 13. Four model status diagnostic results.

The above experimental results show that Attention-CNN-LSTM has a smaller loss
in the test set and the highest accuracy in the random test set, so the training effect and
accuracy of the Attention-CNN-LSTM hybrid model are the best among the four models.
The evaluation parameters for the detection performance of the four models are shown in
Table 2.

Table 2. Parameters of performance evaluation.

Model State Precision Recall F1-Score

Attention-CNN-LSTM
Normal operation 99.6% 99.8% 0.997

discharge 99.8% 99.8% 0.998
overload 99.2% 99.4% 0.993

CNN-LSTM
Normal operation 96.4% 97.6% 0.97

discharge 98.2% 98.8% 0.985
overload 96.2% 97.2% 0.967

CNN
Normal operation 90.5% 91.3% 0.909

discharge 91.4% 92.2% 0.918
overload 90.2% 90.3% 0.902

LSTM
Normal operation 92.6% 91.8% 0.922

discharge 93.4% 93.6% 0.935
overload 91.3% 91.5% 0.914

The table demonstrates that, in terms of detecting the three states of the transformer
on precision, recall, and F1, the Attention-CNN-LSTM hybrid model performs best, with
an accuracy that can exceed 99%, followed by the CNN-LSTM hybrid model. Among these
four models, the CNN model and the LSTM model perform poorly. Due to the continuity
of timeline and space of voiceprint features, a single model has limitations in voiceprint
detection, resulting in unsatisfactory detection results.

In summary, the Attention-CNN-LSTM hybrid model has the highest detection per-
formance, which can provide auxiliary decision-making for the real-time detection of
transformers and provide a reference for reducing the losses caused by transformers and
the abnormal detection of electrical equipment.
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6. Discussion and Conclusions

The production and life processes will generate a significant amount of data once we
enter the era of big data. Neural networks and artificial intelligence have been used in
equipment monitoring to ensure work efficiency, effectively reducing the need for human
resources and increasing the accuracy of equipment diagnosis [34]. Sound, as one of the
most critical characteristics of equipment operation, contains a lot of information about how
the equipment is used. This paper, through the collection of transformer sound in the real
scene combined with deep learning in the field of the voiceprint, proposed a transformer
anomaly diagnosis method based on the Attention-CNN-LSTM hybrid model. We input
the feature vector of sound samples, through the Attention-CNN-LSTM hybrid model
for feature learning training, and achieved high accuracy. Therefore, combining sound
and deep learning to monitor equipment operating status may become a future research
direction in the field of voiceprint recognition.
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