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Abstract: This paper presents the first approach to a current control problem for the direct matrix
converter (DMC), which makes use of the deep reinforcement learning algorithm. The main objective
of this paper is to solve the real-time capability issues of traditional control schemes (e.g., finite-set
model predictive control) while maintaining feasible control performance. Firstly, a deep Q-network
(DQN) algorithm is utilized to train an agent, which learns the optimal control policy through
interaction with the DMC system without any plant-specific knowledge. Next, the trained agent is
used to make computationally efficient online control decisions since the optimization process has
been carried out in the training phase in advance. The novelty of this paper lies in presenting the first
proof of concept by means of controlling the load phase currents of the DMC via the DQN algorithm
to deal with the excessive computational burden. Finally, simulation and experimental results are
given to demonstrate the effectiveness and feasibility of the proposed methodology for DMCs.

Keywords: matrix converter; current control; deep reinforcement learning; deep Q-network

1. Introduction

The direct matrix converter (DMC) is a promising topology due to its numerous
advantages, such as sinusoidal input and output currents, controllable input power factor,
and compact design without a DC-link capacitor [1–3]. These prominent features make
the DMC an alternative to the traditional back-to-back converter in various industrial
applications where size and lifetime are critical issues.

In the past few decades, numerous modulation and control methods for DMCs have
been introduced in the literature, among which the space vector modulation (SVM) has
gained the most popularity for its inherent capability to track both the reference output
voltage vector and input current vector simultaneously [4,5]. However, with the rapid
development of digital processors and power devices, the SVM is now being challenged
by the model predictive control (MPC) due to its simpler theoretical complexity, easier
implementation, and better dynamic response [6–8]. The MPC method involves solving a
finite-horizon optimization problem at each time step by predicting future system behav-
ior, optimizing a cost function and applying only the first control input of the sequence.
Although the MPC has been considered an emerging alternative to the traditional SVM,
the computational burden of solving the optimization problem, the accurate modeling
of system dynamics and constraints, and the selection of appropriate cost functions are
well-known obstacles to its real-world applications [9–16]. The first major challenge is
the computational complexity associated with solving the optimization problem due to
the fast switching frequencies and complex dynamics of the system. This can result in
high processing times and control delays. To address this challenge, various approaches
have been proposed, such as reduced-order models and optimization algorithm improve-
ments [9–11]. Another critical challenge is the precise modeling of the system dynamics
and constraints, which are typically complex and nonlinear. Researchers have proposed
adaptive and robust methods that can account for uncertainties and modeling errors in
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real time [12–14]. Additionally, the selection of an appropriate cost function for the MPC
controller is crucial, as it affects the control performance, energy efficiency, and system
stability. Recent research has focused on developing new cost functions that can balance
these competing objectives more effectively [15,16]. Addressing these challenges is crucial
for the continued development and application of MPC in power electronics, and ongoing
research is focused on developing new and improved methods to overcome these issues.

Recently, the fast growth of artificial intelligence technology has changed the tradi-
tional control strategy of the past few decades [17–19]. Reinforcement learning (RL) is a
subfield of machine learning concerned with how an agent can learn to take actions that
maximize a cumulative reward signal in an uncertain environment. RL is a powerful ap-
proach for building intelligent systems that can learn from experience and make decisions
based on complex and dynamic inputs. In recent years, there has been growing interest in
RL as a result of its success in a wide range of domains, from playing complex games such
as Go and chess to controlling complex robotic systems. RL has also shown promise in
addressing real-world problems, such as optimizing energy consumption and navigating
autonomous vehicles [20–23]. In contrast to the MPC, RL agents try to find the optimal
control policy during the training process before their real-world implementation, which
makes it possible to avoid the computationally costly online optimization in each sampling
period. Furthermore, the RL control method can be trained in field applications to take
parameter variations and parasitic effects into account. As a result, RL has become an
active research area with many ongoing studies exploring new algorithms, applications,
and theoretical foundations.

Motivated by the aforementioned shortcomings of the MPC method and the superior-
ity of the RL method, the potential of utilizing RL methods in power electronics is being
explored [24–27]. Deep Q-Network (DQN) is a type of RL algorithm that uses a neural
network to approximate the Q-function, which estimates the expected return for taking
a particular action in a given state. DQN has shown promising results in various appli-
cation scenarios with continuous states and discrete actions [28,29]. Although the DQN
algorithm has emerged as a promising method for controlling power electronics systems, it
faces significant challenges that need to be addressed. One of the primary challenges of
using DQN in power electronics is the issue of high-dimensional state and action spaces.
This can make it difficult to train the neural network effectively and can result in slow
convergence and poor performance. Another challenge is the stability of DQN during
training. DQN can suffer from issues such as overfitting, instability, and divergence, which
can result in poor performance or even catastrophic failure of the controller. Addressing
this challenge requires developing methods for stabilizing DQN during training, such
as target network updating, experience replay, and parameter initialization. Due to the
aforementioned challenges, no attempt has been made to incorporate the DQN algorithm
with the DMC system.

In view of the above observations, this paper is concerned with a novel approach
to the current control problem for the DMC, which makes use of the DQN algorithm.
Specifically, an agent is trained without any plant-specific knowledge to find the optimal
control policy by direct interaction with the system. Thus, the online optimization process
is carried out in advance. The main merit of this proposal is that the computational burden
problems can be alleviated by deploying the proposed solution. Furthermore, the proposal
can be easily expanded to different power converters with finite switching states. Finally,
the performance evaluation of the proposed methodology for DMCs in comparison to
the state-of-the-art finite control set model predictive current control approach is given to
confirm the effectiveness and feasibility of the proposal.

We contribute two main points to the relevant literature. (1) To the best of the authors’
knowledge, this is the first time the DQN algorithm is incorporated with the current control
method of the DMC. (2) Another important contribution of this paper is that the heavy
computational burden can be reduced dramatically by the utilization of the trained agent
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so as to carry out the optimization problem in the training phase in advance, which allows
for low-cost processors.

2. Proposed DQN-Based Current Control Method for DMC

The common topology of a three-phase DMC is shown in Figure 1, which consists of
nine bi-directional switches to connect the input voltage source to the output load. An input
filter (Li, Ri, Ci) is installed to eliminate high-frequency harmonics of the input current
and reduce the input voltage distortion supplied to the DMC. The DMC performs AC/AC
power conversion in a single stage, while the indirect matrix converters (IMC) achieve
this in two stages, namely, rectification and inversion stages. The implementation of DMC
requires 18 reverse-blocking IGBTs while the IMC consists of 12 reverse-blocking IGBTS
and 6 reverse-conduction IGBTs. In comparison, the virtual DC-link stage of IMC makes
it easier to construct with fewer switches, such as the sparse matrix converter, which is
beyond the scope of this paper.

Figure 1. Common topology of the three-phase DMC.

According to Figure 1, the instantaneous relationship between the input and output
quantities can be described as uoA

uoB
uoC

 =

 SaA SbA ScA
SaB SbB ScB
SaC SbC ScC

 uea
ueb
uec

 (1)

 iea
ieb
iec

 =

 SaA SaB SaC
SbA SbB SbC
ScA ScB ScC

 ioA
ioB
ioC

 (2)

where uoA, uoB, uoC and uea, ueb, uec are the output and input phase voltages of the DMC,
ioA, ioB, ioC and iea, ieb, iec are the output and input currents of the DMC, respectively,
Sxy = 1 with x ∈ (a, b, c) and y ∈ (A, B, C) means the switch is on while Sxy = 0 means the
switch is off.

For safe operation, the input phases should not be short-circuited, and the load should
not be open-circuited. Thus, the switching constraints of the DMC can be expressed as

SaA + SbA + ScA = 1

SaB + SbB + ScB = 1

SaC + SbC + ScC = 1

. (3)

Therefore, there are 27 valid switching states for the DMC.
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The basic RL setting consists of an agent and environment. At each time step k, the
agent observes the current state Ok of the environment, and an action Ak is taken according
to the policy π. Based on Ok and Ak, the environment is updated to Ok+1, and a reward
Rk is produced, both of which are received by the agent. The observation–action–reward
cycle continues until the training process is complete. The goal of the agent is to use RL
algorithms to learn the best policy as it interacts with the environment so that given any
state, it will always take the most optimal action that produces the most reward in the
long run [30]. The action-value function Qπ(Ok, Ak) is introduced to evaluate the expected
cumulative discounted reward as [28]

Qπ(Ok, Ak) = E
{

∞

∑
i=k

γi−kRi | O = Ok, A = Ak

}
(4)

= E{Rk + γQπ(Ok+1, Ak+1) | O = Ok, A = Ak} (5)

where γ ∈ [0, 1) is the discount factor allowing the control task to be adjusted from
short-sighted to far-sighted, and E{·} denotes the expected value.

In the DMC, the observation consists of the measured input phase voltage (ueα, ueβ),
output load current (ioα, ioβ), and the errors between the measured and the reference load
current (∆ioα, ∆ioβ), which looks as follows:

O =
[
ueα, ueβ, ioα, ioβ, ∆ioα, ∆ioβ

]
. (6)

According to the constraints in Equation (3), when only one zero switching state is
included, the action space A contains 25 options, which can be defined as

A = {S0, S1, S2, . . . , S24}. (7)

To improve the policy of the agent with trial and error, an appropriate reward function
should be designed. In this paper, the DMC should operate with the load current accurately
following the reference value. Thus, the reward function is defined as

R = −(∆i2oα + ∆i2oβ). (8)

The reference value of the load current is given as

i∗o = [I∗om cos φo I∗om cos(φo − 2π/3) I∗om cos(φo + 2π/3)] (9)

where φo is the expected angle of the load current and I∗om is the amplitude of the expected
load current.

According to Equations (4) and (5), the expectable return is represented by the action-
value function based on the state–action pair at each time step. To maximize the expected
cumulative reward over time, a new policy π′ better than π can be found as

π′(Ok) = arg max
A

Qπ(Ok, A) (10)

Thus, one major challenge in the DQN algorithm is to derive an accurate mapping
from state–action pairs to values. With the help of the neural network, the Qπ(Ok, Ak) can
be estimated by a universal function approximator Qπ

θ (Ok, Ak) with weights and biases
(critic parameters) represented by θ. The network has four layers: an input layer, two
hidden layers, and an output layer. The hidden layers are fully connected, and the ReLU
function is adopted as the activation function.

To train the network, state transition experiences Ei = {Oi, Ai, Ri, Oi+1} are stored in
the experience buffer, from which a random mini-batchM of M experiences is sampled to
update θ by reformulating the Bellman equation in Equation (5) as a minimization problem
of the loss LQ:
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min
θ

LQ

s.t. LQ =
1
M ∑
Ei∈M

(
Qπ

θ (Oi, Ai)−
(

Ri + γ max
A

Qπ
θt
(Oi+1, A)

))2 (11)

where Qπ
θt
(Oi, Ai) is the target critic, which improves the stability of the bootstrapping

methods. The parameters θt of the target network are updated periodically:

θt ← θ, after every NT steps. (12)

At last, the tradeoff between exploration and exploitation is performed to avoid the
learning algorithm converging into a suboptimal policy. Therefore, the ε-greedy policy is
introduced as

Ak =

arg max
A

Qπ
θ (Ok, A), with probability 1− ε

a random element from A, with probability ε
(13)

where ε updates at the end of each training step:

ε = ε · (1− εdecay). (14)

Note that ε is set to zero when the training process has been completed. The schematic
of the overall control structure with a learning routine is presented in Figure 2, and the
learning pseudocode is given in Algorithm 1.

Figure 2. Schematic depiction of the DQN learning routine.
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Algorithm 1 DQN pseudocode
Initialize the critic Qπ

θ (O, A) with random parameter values θ.
Initialize the target critic Qπ

θt
(O, A) with parameters: θt = θ.

for episode=1 to max-episode do:
Observe the initial state O0.
for step=1 to max-step do:

1. For the current observation Ok, select the action Ak based on Equations (13) and (14).
2. Execute action Ak. Observe the next observation Ok+1 and reward Rk.
3. Store (Ok, Ak, Rk, Ok+1) in the experience buffer.
4. Sample a random mini-batch of experiences (Oi, Ai, Ri, Oi+1) from the experience buffer.
5. Update the critic parameters using Equation (11).
6. Update the target critic parameters using Equation (12).
7. Reset the environment and break if Ok+1 is the terminal state.

end for
end for

3. MPC Method for DMC

First, the input filter model is established for the prediction of input voltages and
currents. In this paper, the LC filter with a damping resistor is adopted, as shown in
Figure 3.

Figure 3. Circuit of the input filter.

The continuous system model of the input filter in Figure 3 can be described by the
following equations:[

due
dt

diL
dt

]
= A

[
ue
iL

]
+ B

[
us
ie

]

=

[
− 1

RinCin
1

Cin
− 1

Lin
0

][
ue
iL

]
+

[
1

RinCin
− 1

Cin
1

Lin
0

][
us
ie

]
(15)

where Lin, Cin, and Rin are the filter inductance, the filter capacitance, and the filter damping
resistance, respectively.

A discrete state space model can be derived when a forward Euler approximation is
applied to a continuous-time system described in the state space form of Equation (15).
Considering a sampling period Ts, the discrete-time input filter model can be described as

[
ue(k + 1)
iL(k + 1)

]
= G

[
ue(k)
iL(k)

]
+ H

[
us(k)
ie(k)

]
=

[
G11 G12
G21 G22

][
ue(k)
iL(k)

]
+

[
H11 H12
H21 H22

][
us(k)
ie(k)

]
(16)

where G = eATs , H = A−1(G− I)B. Using Equation (16), the value of ue and iL in the next
sampling instant can be predicted.
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The model of the resistance–inductance load is given by

dio

dt
=

1
Lo

(uo − Roio) (17)

where Lo and Ro are the inductance and resistance of the load.
Similarly, using the forward Euler approximation, the equation for the load current

prediction can be derived as

io(k + 1) =
(

1− Ro

Lo
Ts

)
· io(k) +

Ts

Lo
uo(k) (18)

For 27 different switching states of the DMC, the corresponding load voltage vector
uo(k) and input current vector ie(k) are calculated to predict the value of io(k+ 1), iL(k+ 1),
and ue(k + 1) in the next sampling interval. The source current is(k + 1) is calculated by

is(k + 1) =
us(k + 1)− ue(k + 1)

Rin
+ iL(k + 1). (19)

The current control objectives of the DMC are twofold: to regulate the grid-side current
is for unit power factor operation and to adjust the output current io for symmetrical and
sinusoidal three-phase load current. The reference values for io are the same as Equation (9),
and is and are defined as follows:

i∗s =
[

I∗sm cos ϕin I∗sm cos(ϕin − 2π/3) I∗sm cos(ϕin + 2π/3)
]T (20)

where ϕin and I∗sm are the expected phase angle and amplitude of the source current.
The errors of the predicted source current iP

s and load current iP
o in static two-phase

coordinates can be expressed as

∆is =
(
∆isα ∆isβ

)T
= Tabctoαβ

(
iP
s − i∗s

)
(21)

∆io =
(
∆ioα ∆ioβ

)T
= Tabctoαβ

(
iP
o − i∗o

)
(22)

where

Tabctoαβ =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(23)

The cost function is designed to penalize differences from the reference value:
g = λ ∗ g1 + g2
g1 = ∆i2sα + ∆i2sβ

g2 = ∆i2oα + ∆i2oβ

(24)

where λ is the weighting factor for the source current control. In this paper, the DQN
method is trained to focus on the output current. Thus, for a fair comparison, λ is set to 0.
In practice, λ = 1 provides a fairly good load current in comparison to λ = 0 due to the
fact that ue is controlled to be more sinusoidal.

In each sampling period, all 27 possible switching states are used to calculate the cost
function, and the switching state corresponding to the minimum value of the cost function
is applied to the DMC in the next sampling time.

In practical applications, due to the delay of the digital controller, the switching state
selected at a certain moment can only be applied to the converter in the next moment,
and the switching state applied at that moment may not be the optimal one for the next
moment, which may result in significant errors. In order to make the selected optimal
switching state act on the converter at a reasonable time, a two-step prediction strategy is
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usually adopted. The specific implementation process is as follows: based on the sampled
value of the current system state x(k), predict the value of the controlled variable x(k + 1)
in the next moment, and then further traverse all switching states based on this prediction
to obtain the predicted value of the controlled variable x(k + 2) in moment k + 2, which
means the optimal switch is selected and applied to the system at moment k + 1.

4. Results

To verify the effectiveness and feasibility of the proposed DQN-based current control
method, a 3 × 3 DMC model is established, and the training of the DQN is handled
with the use of the Reinforcement Learning Toolbox. Further, the experimental prototype
(see Figure 4) has been built. The high-speed insulated gate bipolar transistor module
(FF300R12KE4_E), which consists of two common-emitter-IGBTs, is used in the prototype.
The controller includes a Digital Signal Processor (TMS320F28377) and Field Programmable
Gate Array (10M50DAF484). The three-step commutation is implemented. The detailed
model parameters are listed in Table 1, and the training parameters used in the DQN
method are listed in Table 2.

 

Figure 4. Experimental prototype.

Table 1. Circuit parameters of the DMC.

Parameters Value

Source phase voltage (Us) 50 V
Source voltage frequency ( fin) 50 Hz

Sampling period (Ts) 200 µs
Input filter inductance (Lin) 2 mH
Input filter capacitance (Cin) 20 µF
Input filter resistance (Rin) 20 Ω

Load frequency ( fo) 70 Hz
Load resistance (Ro) 10 Ω
Load inductance (Lo) 10 mH

Load current reference (I∗om) 3 A
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Table 2. Training parameters of the DQN method.

Parameters Value

Discount factor (λ) 0.85
Hidden network layer number (l) 2

Hidden layer 1 neuron number (n1) 6
Hidden layer 2 neuron number (n2) 8

Target network update frequency (NT) 20
Mini-batch size (M) 256

Replay buffer size (D) 1× 105

Maximum training steps (S) 1200
Maximum episode length (K) 2000

Figure 5 shows the output performance of the three-phase DMC with the MPC and
proposed DQN methods. The input voltage of the DMC is set to 50 V, and a 3 A load current
reference is imposed on the load. As is depicted in Figure 5, sinusoidal load currents are
generated, which means the reference can be accurately tracked. From the perspective of
waveform qualities, the proposed DQN method achieves a similar output performance to
the MPC method.

Figure 5. Comparison of the load current with the MPC and proposed method.

MAE =
1
N

N

∑
k=1
|I(k)− I∗(k)|

MSE =
1
N

N

∑
k=1

(I(k)− I∗(k))2. (25)

To present the comparison of the two aforementioned control schemes clearly, some
measurements (defined in Equation (15)) in the steady state are listed in Table 3. The values
of the total harmonic distortion (THD) show that MPC achieves slightly better performance,
but it has higher mean absolute errors (MAE) and mean square errors (MSE) due to the
fact that MPC does not ensure a zero error in the steady state. Based on the results, it
can be indicated that the proposed DQN method has almost the same performance as the
MPC method.
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Table 3. System measurements of io.

Control Method Measurement Value

MPC
THD (io) 8.44%
MAE (io) 0.398
MSE (io) 0.202

DQN
THD (io) 8.73%
MAE (io) 0.1536
MSE (io) 0.0396

The goal of the proposed DQN method is to train an agent that learns the best policy
as it interacts with the environment so that, given any state, it will always take the most
optimal action that produces the most reward in the long run. As for MPC, the best
switching state is selected by solving an optimization problem at each time step. The
objective is to minimize a cost function that captures the desired behavior and any penalties
for violating constraints. In this paper, the agent is trained to learn the policy that is similar
to MPC.

However, the proposed DQN method is not identical to the MPC method. First, the
policy used in the proposed method is pre-trained, which alleviates the time-consuming
traversal process in the MPC method. Second, in the training process, a discount factor is
used to compute the expected reward, which not only helps the agent to learn more quickly
but also ensures the future reward. In this sense, the DQN method is more like a multi-step
MPC. Third, the RL-based method has the potential to take parameter variations, parasitic
effects, and commutation processes into account through online training.

After the training process, the parameters of the learned agent policy are obtained
by using the function “getLearnableParameters”. The weight w and bias b for each fully-
connected layer are derived. The input variable x consists of the sampled input phase
voltage, output load current, and the errors between the measured and the reference
load current. A Relu function is adopted as the activation function for the output y =
wx + b of each hidden layer, which sets the negative value of y to zero. At last, the action
corresponding to the output layer neuron with the maximum value is selected as the
optimal switching state in this sampling interval.

Finally, experimental tests are conducted to verify the effectiveness of the proposed
method. As shown in Figure 6, lower THD values are achieved by the MPC method.
However, in the proposed DQN method, the agent is trained in a Simulink environment,
which fails to consider the influence of the three-step commutation process of the DMC.
Further, the training process of the agent might be improved, and the neural network can
be optimized, which is beyond the scope of this paper. Although a deteriorated output
current waveform is generated by the DQN method, the enumerating process in the MPC
method is excluded for the reason that the agent is trained before its application. In
this sense, the calculation time in each sampling period is significantly reduced, which
means that the output performance of the proposed method can be improved by a higher
sampling frequency.
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Figure 6. Experimental results of the load current with the MPC and proposed method.

5. Conclusions

In this paper, a novel DQN-based current control methodology for DMC systems
was presented. By incorporating the DQN algorithm with the conventional current con-
trol method, we considered a fundamentally different solution to long-standing research
problems with the use of an RL method. In addition, performance evaluations were pro-
vided to demonstrate the effectiveness and feasibility of the proposed methodology for
DMCs. In the simulation, we showed that the proposed methodology can reduce the com-
putational burden in comparison to the MPC method while maintaining feasible control
performance. First, the time-consuming traversal process is replaced by an offline trained
agent, making the proposed method available for a higher sampling frequency. Second,
the agent is trained to ensure a zero error in the steady state, which achieves a smaller
value of MAE and MSE in comparison to the MPC method. Third, the policy learned by
the proposed method selects the optimal switching states in a similar manner to the MPC
method. Therefore, the proposed DQN method achieves a similar output performance as
the MPC method. However, in experiments, the proposed method fails to achieve a lower
THD for the following reasons. First, the agent is trained in the Simulink environment,
which neglects the commutation process and parasitic effects of the DMC. Second, the
neural network can be improved by adding more hidden layers and neurons so as to fit
the nonlinearity mapping from the high-dimensional input to the output. Finally, possible
interesting directions for future research could be controlling multiple objectives such as
common-mode voltage reduction and efficiency improvement and training an agent online.
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