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Abstract: A multilayer soil structure model is fundamental to design grounding systems. A new
method is presented to invert the structure parameters of horizontal multilayer soil. The structure
parameters of soil are determined by analyzing the kernel function of the integral equation of the
apparent resistivity. The essence of the proposed method avoids the difficulties encountered in
general optimization methods; namely, the calculation of the apparent resistivity and its derivative.
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1. Introduction

When installing an underground system, knowledge of the local underground structure
is essential. Parameters of the stratum structure are indispensable data for field or circuit level
simulations of the underground system. This is because a poorly designed grounding system
cannot guarantee the safety of human lives as well as expensive equipment [1,2].

An analysis of the underground structure is mainly based on an N-layer structure, in
which the strata are formed horizontally. This is because in the process of formation of
strata, in most strata, new sediments are often formed as new sediments are horizontally
stacked on top of existing strata. Therefore, the problem of estimating the parameters of a
land structure composed of N layers results in an unconstrained nonlinear minimization
problem of estimating 2N − 1 parameters. It is only necessary to determine N resistivities
and N − 1 layer thicknesses [3,4].

This study can be classified into two categories. The first one is using deterministic
optimization algorithms, the advantage of which is high efficiency, but it normally requires
accurate derivatives of the objective function to accelerate the convergence procedure. The
other type is the non-deterministic optimization algorithms, such as the artificial neural
networks (ANN) and genetic algorithms (GA). Over the past few decades, new methods
based on artificial intelligence have been applied in various fields. Recently, deep learning
systems based on artificial intelligence have been put in the limelight; they are popular in
all fields. ANNs are basically models that learn from data, similar to biological systems in
the brain [4]. Recently, with the help of massive amounts of data and ultra-fast processors
that can process them, ANNs have been rapidly developing. In addition, artificial neural
networks of various structures are being used in the fields of parameter estimation and
ground structure prediction. For the deterministic optimization algorithm methods, various
optimization algorithms have been used to solve this problem, but the most used method
is to set an objective function and minimize the objective function while adjusting the
parameters. The objective function uses the apparent soil resistivity, which is found by the
error between the measured value and the theoretical value. The measurement of apparent
soil resistivity mainly uses Wenner’s four-electrode method.

One of the most important parts of the deterministic optimization technique is the
calculation of the apparent resistivity, which is a derivative of different combinations of soil
parameters. Each update of the parameters requires calculating the theoretical apparent
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resistivity and its derivative, but it is difficult to perform infinite integrations including the
Bessel function. Nondeterministic optimization algorithms avoid the difficulties mentioned
by deterministic optimization techniques but have difficulties in determining the ANN
type and its hyperparameters. The type of ANN and the hyperparameters of these methods
produce completely different results and there are no rules determining them [3–5]. Many
published papers have aimed to address these issues. Bo Zhang used Prony’s method to
improve the computational number of theoretical values [3]. J. Zou especially proposed a
two-stage algorithm to avoid calculating the apparent soil resistivity each time a parameter
is updated [6–10].

The method proposed in this paper uses the kernel function of the apparent resistance
integration. The kernel function is included in the formula for calculating the apparent
earth resistivity. Additionally, the kernel function consists of soil composition parameters.
That is, in the general optimization method, in the process of minimizing the error function,
the assumed variable approaches the actual value and the kernel function becomes accurate.
J. Zou has proposed a method for estimating the kernel function directly from the measured
data. In this way, he avoided calculating the apparent soil resistivity every time the
parameters were updated, reducing the amount of calculations [6–10]. In this paper, we
propose a method for calculating soil parameters analytically using a kernel function rather
than a general optimization method. In other words, after estimating the kernel function
with the method proposed by J. Zou, we propose a method to obtain the site parameters by
analyzing the characteristics of the kernel function. The method proposed in this paper is
also a two-step algorithm. In the first step, the kernel function of the apparent resistivity
integral equation was solved based on J. Zou’s method. A method of linearizing the
nonlinear equation thus derived was proposed, and the underdetermined system was
solved using the QR decomposition method. In the second step, we propose a new method
to determine soil parameters using the properties of the kernel function of the apparent
resistivity integral.

In this paper, a new method is presented to invert the parameter of horizontal multi-
layer soil. The key point is to bypass the forementioned difficulties in general optimization
techniques. The contributions of this paper can be summarized as follows. First, it avoids
repetitive calculation of the apparent resistivity with different parameters to fit the mea-
sured data, saving considerable computational demand. Second, there is no need for
derivatives of optimized expressions that are difficult to obtain. To the knowledge of the
authors, there are no articles reporting approaches for inverting soil parameters as an
analytical method.

The composition of this paper is as follows: Section 2 presents the calculation and
measurement method of the apparent soil resistivity, and Section 3 shows how to invert
the kernel function and presents a method of linearizing the nonlinear system that occurs
during inversion. Section 4 proposes a method for analytically inverting soil parameters
using the properties of the kernel function. Section 5 presents numerical examples of two-
and four-story structures to check their applicability in the case of various soil structures.
Finally, a conclusion is presented.

2. Apparent Soil Resistivity
2.1. Measurement of Apparent Soil Resistivity Using the Wenner Method

The general soil resistivity measurement technique is a modified technique of the
equal-spaced four-electrode method first proposed by Frank Wenner. In this method, to
interpret the problem easily, it is assumed that each layer of the earth is horizontal and that
each layer is formed with the same resistivity [1–4].

Figure 1 shows the arrangement of the electrodes in Wenner’s four-electrode method,
where the potential electrodes C and D are placed inside on the straight line of the mea-
surement line and the current electrodes A and B are installed outside. Additionally, the
distance, a, between the measuring electrodes of A-C, C-D and D-B is equally spaced. The
earth resistance, R, is calculated by injecting a current, I, into the external current electrode
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and measuring the potential difference between the internal potential electrodes. The
earth resistance, R, is proportional to the apparent soil resistivity, and when the electrode
spacing is a, the apparent soil resistivity, ρm(Ωm), can be expressed as (1) in the case of the
Wenner method [3].

ρm = 2πaR. (1)
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Figure 1. Wenner configuration method and the multilayer soil structure.

The apparent resistivity is the name given to the resistivity measured on the surface of
the earth, and the superscript ‘m’ of ρ in (1) indicates the value obtained by measuring. In
Figure 1, hi(i = 1, 2, . . . N − 1) and ρi(i = 1, 2, . . . , N) represent the depth and resistivity of
each soil layer, respectively.

2.2. Theoretical Apparent Soil Resistivity Calculation

If the depth, hi(i = 1, 2, . . . , N − 1), and the soil resistivity, ρi(i = 1, 2, . . . , N), of each
layer are known in the soil structure, the theoretical formula for calculating the apparent
soil resistivity is as follows [7,11–13]:

ρa = ρ1

{
1 + 2a

∫ ∞

0
f (λ)[J0(λa)− J0(2λa)]dλ

}
, (2)

where a is the electrode spacing, J0(λa) is the first kind of zero-order Bessel function, and
the kernel function f (λ) is defined as:

f (λ) = α1(λ)− 1 (3)

α1(λ) = 1 +
2k1(λ)e−2λh1

1− k1(λ)e−2λh1
, k1(λ) =

ρ2α2(λ)− ρ1
ρ2α2(λ) + ρ1

α2(λ) = 1 +
2k2(λ)e−2λh2

1− k2(λ)e−2λh2
, k2(λ) =

ρ3α3(λ)− ρ2
ρ3α3(λ) + ρ2

αN−2(λ) = 1 +
2kN−2(λ)e−2λhN−2

1− kN−2(λ)e−2λhN−2
, kN−2(λ) =

ρN−1αN−1(λ)− ρN−2
ρN−1αN−1(λ) + ρ2

αN−1(λ) = 1 +
2kN−1(λ)e−2λhN−1

1− kN−1(λ)e−2λhN−1
, kN−1(λ) =

ρN − ρN−1
ρN + ρN−1
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3. Inversion of the Kernel Function
3.1. Inversion of the Kernel Function Using Apparent Soil Resistivity

It is known that the kernel function decreases exponentially as expected from (3) and
can be approximated as follows [14]:

f (λ) '∑N
k=1 bke−ckλ, (4)

where bk and ck are constants.
Using Lipschitz’s integral,∫ ∞

0
e−λ|c| J0(λl)dλ =

1√
c2 + l2

, (5)

ρa in (2) can be approximated as follows.

ρa ' ρ1

1 + 2a ∑N
k=1 bk

 1√
c2

k + a2
− 1√

c2
k + 4a2

 (6)

By rearranging (6) to obtain bk, using the measured apparent soil resistivity, it can be
expressed as follows:

∑N
k=1 bk

 1√
c2

k + a2
i

− 1√
c2

k + 4a2
i

 =
1

2ai

(
ρai

ρ1
− 1
)

, i = 1, 2, . . . , M (7)

However, if the soil resistivity (ρ1) of the surface layer is known in (7), the right side of
(7) is determined, resulting in a nonlinear system. ai in (7) represents the electrode spacing
at the ith Wenner measurement. As can be seen from (2), the smaller the value of a, the
closer the apparent soil resistivity, ρa, is to ρ1. If this property is used, the apparent soil
resistivity measured with a very small distance (a) from Wenner’s measurement can be
used as ρ1, and can be expressed as follows:

∑N
k=1 bk

 1√
c2

k + a2
i

− 1√
c2

k + 4a2
i

 ' 1
2ai

(
ρai

ρa1

− 1
)

, i = 1, 2, . . . , M (8)

where ρa1
is the apparent soil resistivity measured at the smallest distance among the four

Wenner electrode distances (a1). In the experience of the author, the apparent soil resistivity
measured at about 0.1 m showed a value very close to ρ1. In this way, bk can be obtained by
solving the nonlinear system (8). Solutions of nonlinear systems are obtained using various
iterative methods, including the Newton–Raphson method [15–17].

3.2. Linearization

In this section, we propose a method for linearizing the nonlinear system derived
in the first step. Additionally, a considerable number of bk values are required in (9) to
estimate an accurate kernel function according to the author’s experience. Therefore,
the final equation is the underdetermined system. This part was solved by the QR
decomposition method.

To determine the kernel function, f (λ), bk, and ck must be obtained from (8). Note that
(8) is a non-linear system, and simulation experience has shown that a large number of bk
and ck values are required to obtain an accurate f (λ). Therefore, it is not easy to find bk
and ck with a general iterative method. If f (λ) in (4) is made up of numerous exponential
functions in which the exponents of the exponential function increase at regular intervals,
it can be expressed as follows:
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s f (λ) '∑N
k=1 bke−d×k×λ (9)

Since the value in the parenthesis of the left side of (8) is determined, it becomes
a linear system. Here, d is a very small constant value, and according to the author’s
experience, a value of about 0.1 is suitable. Then, it can be expressed as a linear system as:


A11 A12 · · · A1N
A21 A22 · · · A2N

...
... · · ·

...
AM1 AM2 · · · AMN




b1
b2
...

bN

 =



1
2a1

(
ρa1
ρa1
− 1
)

1
2a2

(
ρa2
ρa1
− 1
)

...
1

2aM

(
ρaM
ρa1
− 1
)

 (10)

We set d = 0.1 here, where Aik is expressed as:

Aik =
1√

0.01k2 + a2
i

− 1√
0.01k2 + 4a2

i

Since ai is a constant (which is the electrode spacing at the ith Wenner measurement),
Aij is a constant.

Usually, the apparent soil resistivity measurements used to estimate parameters are
in the range of 10 to 20. Thus, the number of measurements (M) is also about 10 to 20.
However, the authors discovered that a considerable number of bk values are required in
(9) to estimate an accurate kernel function through trial and error. Therefore, we know that
N must be a fairly large number. In other words, it was found that the kernel function,
f (λ), was accurately obtained only when N � M.

In (10), since the number of variables (N) and the number of equations (M) do not
match, that is, M 6= N, a unique solution cannot be obtained. If the number of equations is
smaller than the number of variables, that is, if M < N, an underdetermined system has
many kinds of solutions. According to the authors’ experience, it was found that the value
of d2N2 (the last value of d2k2) should be four to five times greater than the value of aM
(the longest distance between electrodes). Therefore, (10) is generally an underdetermined
linear system. There are various methods for solving underdetermined linear systems, but
a widely used method is the QR factorization method. In this paper, the QR decomposition
method was used [16–20].

4. Inversion of Soil Parameters Using Kernel Function Characteristics

In this paper, we analyze the characteristics of the kernel function and introduce a
method for inverting the soil resistivity (ρi) and depth (hi) of each layer very simply using
this characteristics. By analyzing the characteristics of ki and αi in the kernel function of
(3), the parameters of the soil structure, that is, the soil resistivity and depth of each layer,
can be obtained.

In general, the kernel function is a function used to theoretically calculate the apparent
soil resistivity, as shown in (3). Additionally, from the parameters of the given land
structure, the parameters of the deep layer are used in order, that is, kn−1(λ), αn−1(λ),
· · · k1(λ), α1(λ). When the parameters of the assumed soil structure approach the correct
answer, the calculated value and the measured value of the apparent soil resistivity become
closer. In other words, as the parameter of the soil structure approaches the correct answer,
the kernel function also approaches the correct answer. However, the method proposed
in this paper is a two-step method. In the first step, the kernel function is first obtained
from the apparent soil resistivity. In the next step, we analyze the characteristics of the
pre-acquired kernel functions to find α1(λ), k1(λ), · · · , αn−1(λ),kn−1(λ). Then, using the
characteristics of αi(λ) and ki(λ), hi and ρi+1 are subsequently obtained. Additionally, it is
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assumed that the soil resistivity of the surface layer can be known through a measurement
of ρ1.

(1) Characteristics of k(λ): If ki(λ) is known, ρi+1 can be obtained if the soil resistivity,
ρi, is known.

In (3), as λ approaches infinity, then αi+1(λ) converges to 1 as follows:

lim
λ→∞

αi+1(λ) = lim
λ→∞

(
1 +

2Kie−2λhi

1− Kie−2λhi

)
= 1 (11)

Additionally, ki(λ) converges to a constant as follows:

lim
λ→∞

ki(λ) = lim
λ→∞

ρi+1αi+1 − ρi
ρi+1αi+1 + ρi

=
ρi+1 − ρi
ρi+1 + ρi

= kc
i (12)

Therefore, ρi+1 can be obtained as follows from (12):

ρi+1 '
1 + kc

i
1− kc

i
ρi (13)

For explanation, a four-layer soil structure was selected as shown in Table 1, and the
parameters were also arbitrarily set.

Table 1. Soil parameters of a four-layer structure.

ith Layer ρi (Ωm) hi (m)

1 235.32 1.2
2 3518.28 18.3
3 205.53 21.06
4 1504.71 ∞

Figure 2 shows the αi(λ) and ki(λ) corresponding to the soil parameters of the four-
layer structure in Table 1. As mentioned in (11), Figure 2 shows that all αi(λ) converge to 1
and ki(λ) also converges.
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As seen in (12), ki(λ) converges to a constant which is the ratio of the soil resistivity
of the adjacent layer. Therefore, if the convergence value of ki(λ) is known, ρi+1 can be
obtained using the known soil resistivity, ρi. As seen in Figure 3, if all the convergence
values of ki(λ) are known, all the soil resistivity, ρi, in Table 1 can be obtained.
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(2) Characteristics of α(λ):
(i) Using the characteristics of αi(λ), an approximate value of the depth, hi, of each

soil layer can be obtained.
In αi(λ) in (3), ki(λ) can be rearranged and expressed as follows:

ki(λ) =
αi(λ)− 1
αi(λ) + 1

e2λhi = βi(λ)e
2λhi , (14)

where

βi(λ) =
αi(λ)− 1
αi(λ) + 1

(15)

Since ki(λ) tends towards a constant, ρi+1−ρi
ρi+1+ρi

, as λ gets larger, βi(λ) also tends towards:

βi(λ) ' Cie−2λhi (16)

If we know the two coordinates in the graph of βi(λ), that is, βi(λ1), and βi(λ2) at λ1
and λ2, we can obtain the approximate value of hi using the following equation:

βi(λ2)

βi(λ1)
=

Cie−2λ2hi

Cie−2λ1hi
= e−2hi(λ2−λ1) (17)

If (17) is rearranged for hi, it follows:

hi = −
1

2(λ2 − λ1)
ln

βi(λ2)

βi(λ1)
(18)



Energies 2023, 16, 2078 8 of 17

If β1(λ1) = 0.34019 and β1(λ2) = 0.116488 at λ1 = 0.39 and λ2 = 0.84 in Figure 4, the
approximate value of h1 can be obtained as follows:

h1 = − 1
2(0.84− 0.39)

ln
0.11649
0.34019

= 1.19 (19)
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(ii) Using the approximate value of hi, a more precise hi and ki(λ) can be estimated.
In (14), a simple program can obtain a more accurate hi than the approximate hi that

tries to converge ki(λ) to a constant. At the same time, ki(λ) becomes more accurate the
more accurate hi is.

As shown in Figure 5, k1(λ) converges closer to a constant at h1 = 1.2 m than at
h1 = 1.19 m. Therefore, determining the final h1 to be 1.2 m is considered the correct
decision. At the same time, the following k1(λ) can be determined using (14).

k1(λ) =
α1(λ)− 1
α1(λ) + 1

e2.4λ (20)

(3) The recursive properties of kernel functions:
All αi(λ) and ki(λ) can be obtained sequentially from the kernel function f (λ).
(i) Calculate α1(λ) using f (λ).
α1(λ) is obtained as follows using (3):

α1(λ) = f (λ) + 1 (21)

(ii) Obtain an approximation of hi using the characteristics of αi(λ).
(iii) A more precise hi is obtained using the characteristics of converging to the constant

ki(λ). At the same time, ki(λ) is determined.
(iv) αi+1(λ) can be obtained using ki(λ) as follows.
Reordering ki(λ) in (3) with respect to αi+1(λ) gives:

αi+1(λ) = −
ρi

ρi+1

ki(λ) + 1
ki(λ)− 1

(22)
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A flow chart for inverting the parameters of an N-layer soil structure is illustrated in
Figure 6, where f (λ) is the estimated kernel function in the first step.
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5. Numerical Examples

The case study is split into two. The first part shows the process of estimating the
kernel function from the apparent soil resistivity using linearization. The second part
shows the process of inversing the parameters by analyzing the characteristics of the
kernel function.

5.1. Kernel Function Estimation Using Apparent Soil Resistivity

If the structure parameters of the soil are known, one can generate the apparent
resistivity data for different electrode distances, a, using (2). Then, these generated data
can be used to check the proposed analysis method. To verify that the linearization method
is generally applicable to kernel function inversion, two different soil structures (two-layer
and four-layer structures) are used.
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5.1.1. Two-Layer Soil Structure

As shown in Table 2, a simple two-layer structure was arbitrarily selected. The
12 apparent soil resistivities in Table 3 were generated using (2) based on these parameters.

Table 2. Parameters of the two-layer structure.

ith Layer ρi (Ωm) hi (m)

1 132.9 5.1
2 20.4 ∞

Table 3. Apparent soil resistivity.

ai () ρm
a (Ωm) ai (m) ρm

a (Ωm)

0.1 132.9 15 32.6
0.5 132.8 20 25.3
1 132.4 30 21.8
3 122.8 40 21.0
7 79.3 50 20.8
10 53.6 60 20.7

Therefore, the number of equations, (M), is 12. As can be seen in Figure 7a, the kernel
function was well estimated by the proposed method. Additionally, it can be seen that
the number of unknown b is the major factor. Through trial and error, it was confirmed
that the kernel function, f (λ), can be accurately obtained only when N � M. Figure 7b
shows the estimated kernel function according to the number of N. The kernel function
is estimated properly when the number of N is higher than a certain number. Figure 7a
shows an estimate graph with N = 300, which is in close agreement with the exact value.
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5.1.2. Four-Layer Soil Structure

In Table 4, a four-layer structure was arbitrarily selected as an example of a complicated
case. Based on the data in Table 4, 14 apparent soil resistivities in Table 5 were generated
using (2). Hence, M = 14 and N = 300. Again, the equation is the underdetermined
system, and the unknown b was obtained by the QR decomposition method. Additionally,
the approximation obtained in the same way closely matched the exact kernel function.
Figure 8 shows the result.
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Table 4. Parameters of the four-layer soil structure.

ith Layer ρi (Ωm) hi (m)

1 68 1.08
2 627.9 1.64
3 7.3 3.98
4 125.4 ∞

Table 5. Apparent resistivity data.

ai () ρm
a (Ωm) ai (m) ρm

a (Ωm)

0.1 68.0 6 292.4
0.5 71.9 10 350.1
0.7 77.3 12 359.7
1.4 109.7 14 359.3
2.3 157.6 17 348.3
3.0 191.0 20 329.6
4 232.0 30 258.1
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5.2. Inversion of Soil Parameter Using Kernel Function Characteristics

The four-layer soil structure in Table 4 was selected and the proposed method was
verified using the kernel function estimated from the selected structure. The four-layer
soil structure is represented by seven parameters: ρ1, ρ2, ρ3, ρ4, h1, h2, and h3. Here, ρ1
is assumed to be measurable. This is considered equal to the ground resistance of the
earth’s surface. Therefore, we will demonstrate the procedure for finding six parameters
as follows.

(1) Obtain α1(λ).
Using the estimated kernel function, f (λ), as defined in (3), α1(λ) is obtained as follows:

α1(λ) = f (λ) + 1 (23)

(2) Calculate β1(λ) and find an approximation for h1.
As defined in (15), β1(λ) is calculated as follows:

β1(λ) =
α1(λ)− 1
α1(λ) + 1

(24)
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The approximation of h1 can be obtained using (18) as follows:

h1 =
−1

2(λ1 − λ2)
ln

β1(λ1)

β1(λ2)
(25)

Substituting the two coordinates (1.11, 0.0723) and (2.11, 0.0084) in Figure 9 into (25),
an approximation of h1 can be obtained as follows:

h1 '
−1

2(1.11− 2.11)
ln

0.0723
0.0084

= 1.074 (26)
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(3) Determine h1 and k1(λ).
As shown in Figure 10, k1(λ) converges closer to a constant at h1 = 1.08 m than at

h1 = 1.074 m. Therefore, determining the final h1 to be 1.08 m is considered to be the correct
decision. At the same time, the following k1(λ) can be determined using (14).

k1(λ) =
α1(λ)− 1
α1(λ) + 1

e2.16λ (27)

(4) Obtain ρ2.
The second layer’s soil resistivity, ρ2, can be obtained using the characteristic that

k1(λ) converges to a constant as follows:

lim
λ→∞

k1(λ) = kc
1 =

ρ2 − ρ1
ρ2 + ρ1

(28)

Rearranging (28) with respect to ρ2, ρ2 can be obtained as follows:

ρ2 =
1 + kc

1
1− kc

1
ρ1 (29)



Energies 2023, 16, 2078 13 of 17

Energies 2023, 16, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 9. β�(λ) according to Equation (24). 

(3) Determine ℎ� and ��(λ) 

As shown in Figure 10, ��(λ) converges closer to a constant at ℎ� = 1.08 m than at 

ℎ� = 1.074 m. Therefore, determining the final ℎ� to be 1.08 m is considered to be the 

correct decision. At the same time, the following ��(λ) can be determined using (14). 

��(λ) =
α�(λ) − 1

α�(λ) + 1
��.��� (27)

 

Figure 10. ��(λ) according to the different ℎ� 

(4) Obtain ρ� 

The second layer’s soil resistivity, ρ�, can be obtained using the characteristic that 

��(λ) converges to a constant as follows: 

lim
λ→∞

�1(λ) = �1
� =

ρ
2

− ρ
1

ρ
2

+ ρ
1

 (28)

Rearranging (28) with respect to ρ�, ρ� can be obtained as follows: 

Figure 10. k1(λ) according to the different h1.

In Table 5, using the apparent soil resistivity at the electrode span a = 0.1 m, ρ2 is
calculated as follows:

ρ2 =
1 + kc1

1− kc1
ρ1 '

1 + 0.804567
1− 0.804567

× 68 = 627.89 (30)

(5) Obtain α2(λ).
Using (22) and ρ1, ρ2, and k1(λ) which are obtained above, α2(λ) can be obtained

as follows:

α2(λ) = −
ρ1
ρ2

k1(λ) + 1
k1(λ)− 1

(31)

(6) Calculate β2(λ) and find an approximation of h2.
As defined in (15), β2(λ) is calculated as follows:

β2(λ) =
α2(λ)− 1
α2(λ) + 1

(32)

The approximation of h2 can be obtained using (18) as follows:

h2 =
−1

2(λ1 − λ2)
ln

β2(λ1)

β2(λ2)
(33)

Substituting the two coordinates (0.41, −0.25418) and (1.18, −0.02037) in Figure 11
into (33), an approximation of h2 can be obtained as follows:

h2 '
−1

2(0.41− 1.18)
ln
−0.25418
−0.02037

= 1.6389 (34)

(7) Determine h2 and k2(λ).
As shown in Figure 12, k2(λ) converges closer to a constant at h2 = 1.64 m than at

h2 = 1.6389 m. Therefore, determining the final h2 to be 1.64 m is considered the correct
decision. At the same time, the following k2(λ) can be determined using (14).

k2(λ) =
α2(λ)− 1
α2(λ) + 1

e3.28λ (35)
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(8) Obtain ρ3.
The soil resistivity, ρ3, of the third layer can be obtained as follows using the character-

istic that k2(λ) converges to a constant. That is, in the same way as for finding ρ2.

ρ3 =
1 + kc

2
1− kc

2
ρ2 (36)

In Figure 12, it was found that k2(λ) converged to −0.977015. Additionally, substitut-
ing the pre-obtained ρ2 = 627.89 Ωm into the following equation, ρ3 can be calculated as:

ρ3 =
1 + kc2

1− kc2
ρ2 '

1− 0977015
1 + 0.977015

× 627.89 = 7.299 (37)

(9) Obtain α3(λ).
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Using (22) and ρ2, ρ3, and k2(λ) obtained above, α3(λ) can be obtained as follows:

α3(λ) = −
ρ2
ρ3

k2(λ) + 1
k2(λ)− 1

(38)

(10) Calculate β3(λ) and find an approximation for h3.
As defined in (15), β3(λ) is calculated as follows:

β3(λ) =
α3(λ)− 1
α3(λ) + 1

(39)

The approximation of h3 can be obtained using (18) as follows:

h3 =
−1

2(λ1 − λ2)
ln

β3(λ1)

β3(λ2)
(40)

Substituting the two coordinates (0.18, 0.212384) and (0.43, 0.029032) in Figure 13 into
(40), an approximation of h3 can be obtained as follows:

h3 '
−1

2(0.43− 0.18)
ln

0.212384
0.029032

= 3.978 (41)
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(11) Determine h3 and k3(λ).
As shown in Figure 14, k3(λ) converges closer to a constant when h3 = 3.98 m than

with any other value of h3. Therefore, determining the final h3 to be 3.98 m is considered
the correct decision. At the same time, the following k3(λ) can be determined using (14).

k3(λ) =
α3(λ)− 1
α3(λ) + 1

e7.96λ (42)
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(12) Obtain ρ4.
The last layer’s soil resistivity, ρ4, can be obtained using the characteristic that k3(λ)

converges to a constant as follows:

ρ4 =
1 + kc

3
1− kc

3
ρ3 (43)

Here, kc
3 denotes the converged value of k3(λ) with increasing λ.

In Figure 14, it was found that k3(λ) converged to 0.889978. Additionally, substituting
the pre-obtained ρ3 = 7.299 Ωm into the following equation, ρ4 can be obtained as follows:

ρ4 =
1 + k3

1− k3
ρ3 '

1 + 0.8895
1− 0.8895

× 7.299 = 124.8 (44)

The estimated value is very close to the exact value.

6. Conclusions

In this paper, we propose a new method to efficiently invert the parameters of hori-
zontal multilayer soil. Soil parameters can be inverted by analyzing the characteristics of
the kernel function of the apparent resistivity integral equation. That is, all parameters are
inverted sequentially in a single procedure in an analytical manner. The essence of the pro-
posed method avoids the difficulties encountered in general optimization methods; namely,
the calculation of the apparent resistivity and its derivative. A typical optimization method
requires iteratively calculating the apparent resistivity and its derivative each time the
parameters are updated to reduce the error function, which is computationally demanding.
The numerical results show the feasibility and the key features of the proposed approach.
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