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Abstract: Non-Technical Losses (NTL) represent a serious concern for electric companies. These
losses are responsible for revenue losses, as well as reduced system reliability. Part of the revenue loss
is charged to legal consumers, thus, causing social imbalance. NTL methods have been developed in
order to reduce the impact in physical distribution systems and legal consumers. These methods can
be classified as hardware-based and non-hardware-based. Hardware-based methods need an entirely
new system infrastructure to be implemented, resulting in high investment and increased cost for
energy companies, thus hampering implementation in poorer nations. With this in mind, this paper
performs a review of non-hardware-based NTL detection methods. These methods use distribution
systems and consumers’ data to detect abnormal energy consumption. They can be classified as
network-based, which use network technical parameters to search for energy losses, data-based
methods, which use data science and machine learning, and hybrid methods, which combine both.
This paper focuses on reviewing non-hardware-based NTL detection methods, presenting a NTL
detection methods overview and a literature search and analysis.

Keywords: Non-Technical Losses; machine learning; non-hardware-based methods; distribution
systems; artificial intelligence

1. Introduction

Non-Technical Losses (NTL) can be defined as the energy consumption of clients that
have not been billed by the energy company [1]. At the grid level, NTL are responsible
for overloading transformers, causing a voltage unbalance, and providing uncertainty
regarding real consumption. Also, NTL can affect honest consumers, who suffer from high
energy prices and poor energy quality. A rise in the NTL rate will increase energy prices
and reduce system reliability.

Therefore, electric companies are increasingly investing to reduce NTL due to their
impact, both technical and economical. The most common way to detect NTL is through
on-field inspections, combined with analyzing customer consumption data [1,2]. The goal
is to identify customers with anomalous consumption data, indicating theft or fraud in
electricity meters. In the past, these inspections were defined by expert knowledge that
would analyze consumption data history from consumers and point out which should
be inspected.

With the development of smart meters and other smart grid technologies, energy
companies now have a greater level of observability in their systems [3]. This observability
provides a more detailed understanding of customers’ energy consumption due to more
data availability. With this, expert knowledge is not sufficient to analyze all data and
ascertain a desirable level of NTL detection. Therefore, energy companies invest even more
in a trending topic: artificial intelligence (AI). AI allows for analyzing consumer profiles,
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data, and irregular behavior. This makes it possible to direct inspections to consumers who
demonstrate abnormal electricity consumption patterns.

NTL detection methods can be sorted into hardware-based approaches and non-
hardware-based approaches. Hardware-based approaches require the installation of equip-
ment or new infrastructure in order to be able to detect NTL. The proposed methods focus
on the development of apparatus to identify energy theft and/or fraud [1,2]. There can
be different types of energy fraud that can be detected by hardware-based NTL detection
methods. Neutral and mainline bypass is one of these frauds that are tackled by authors [4].

This paper presents a comprehensive review of non-hardware-based NTL detection
methods. The aim is to develop a helpful document to fulfill needs that might arise when
researching NTL detection methods and to guide students and researchers who are looking
for a specific detection method. Several review papers address the issue of NTL detection
methods, providing important insights. This paper deepens the analysis of one of the
strategies, which does not need hardware and relies only on data.

This work is divided into seven sections: First, Section 1 is the introduction. Section 2
will explain how the research survey was conducted, the selection and exclusion criteria,
and the number of research papers considered in this review. Section 3 presents the analy-
sis of non-hardware-based NTL detection methods, which is divided into data-oriented
methods, network-oriented methods and hybrid methods. In Section 5, the future trends
for non-hardware-based NTL detection methods are surveyed, in order to point toward
the direction in which further researchers can address their efforts. Section 6 presents case
studies with real applications of some methods, showing their effectiveness. In Section 7,
the discussion is presented, as well as some recommendations for future research. Finally,
Section 8 presents the conclusions of the review.

2. Review Strategy and Implementation

In this section, the adopted review strategy will be presented. The search and screening
process will be detailed, as well as the criteria for including and excluding articles from
the review.

2.1. Review Search Terms

The keywords used in the search for relevant papers were Non-Technical Losses
detection methods, Non-Technical Losses, energy fraud, and electricity theft. Since “Non-
Technical Losses detection methods” is a very specific set of keywords, it did not return
any results. The other search terms returned a fair amount of research papers, which were
organized and evaluated.

2.2. Inclusion Criteria

Several inclusion criteria were considered, but in order to narrow down and direct the
review, the following inclusion criteria were applied:

• The study must apply a non-hardware-based NTL detection method;
• The research must include an overview of the main causes of NTL;
• The research must present a detailed novel NTL detection method, without the need

for modification of system infrastructure.

2.3. Exclusion Criteria

In order to filter and select suitable research papers for the review, these were the
criteria considered in order to disregard the papers:

• Only research published after 2005 and until March 2022 were considered for analysis;
• Research using similar methodologies were disregarded.
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2.4. Prisma

The database was assembled searching in IEEEXplore, Science Direct, and Google
Scholar. Afterwards, several duplicated results from different databases were identified,
reducing the number of related research papers in the analysis. Initially, each database
provided a total number of results, as shown in Table 1. Table 2 shows the selected papers
according to the journals. Table 3 is arranged according to the conferences where they
were published.

Table 1. Search results for each database.

Database Search Terms

Non-Technical Losses Energy Fraud Electricity Theft

IEEEXplore 97 194 437

Science Direct 2 37 501

Google Scholar 6 303 585

Table 2. Selected papers according to publication journals.

Journal Number of Refs. References

IEEE Trans. Power Delivery 4 [5–8]

IEEE Trans. Power Systems 5 [9–12]

Int. J. Electr. Power Energy Systems 4 [13–16]

IEEE Trans. On Smart Grids 2 [17,18]

Energies 2 [1,19]

IEEE Access 2 [20,21]

Electric Power System Research 1 [22]

IEEE Trans. On Industrial Informatics 2 [23,24]

Int. Journal of Artificial Intelligence & Applications 1 [2]

Computer & Electrical Engineering 1 [25]

International Journal of Computer Applications 1 [26]

Computer & Security 1 [27]

ACM Trans. On Information Systems Security 1 [28]

Indonesian J. of Electrical Engineering and Computing
Science 1 [29]

IET Generation, Transmission and Distribution 1 [30]

Measurement 1 [31]

Expert Systems with Applications 1 [32]

Science 1 [33]

Journal of Asian Architecture and Building Engineering 1 [34]

Int. J. on Selected Areas in Communications 1 [35]

IEEE Trans. On Knowledge and Data Engineering 1 [36]

Utiliy Policy 1 [37]

Electronics 1 [38]
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Table 3. Selected papers according to conferences.

Conference Number of Refs. References

5th International Conference on Advanced Computing &
Communication Systems (ICACCS 2019) 1 [4]

2nd International Power and Energy Conference 1 [39]

2011 IEEE Power and Energy Society General Meeting 1 [40]

7th International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC 2012) 1 [41]

14th IEEE International Conference on Machine Learning
and Applications (ICMLA 2015) 1 [42]

5th Australian Joint Conference on Artificial Intelligence 1 [43]

IEEE Power Engineering Society General Meeting 1 [44]

2017 IEEE International Conference on Environment and
Electrical Engineering and 2017 IEEE Industrial and
Commercial Power Systems Europe (EEEIC/I&CPS

Europe)

1 [45]

14th International Conference of Machine Learning and
Data Mining in Pattern Recognition 1 [46]

2003 IEEE PES Transmission and Distribution Conference
& Exposition 1 [47]

North American Power Symposium (NAPS 2015) 1 [48]

IEEE 22nd International Conference on Information Reuse
and Integration for Data Science (IRI) 1 [49]

4th Annual International Conference on Network and
Information Systems for Computers (ICNISC) 1 [50]

2019 IEEE Second International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE) 1 [51]

IEEE 4th International Conference on Computer and
Communication Systems, ICCCS 2019 1 [52]

2020 IEEE Congress on Evolutionary Computation (CEC) 1 [53]

After a careful screening process, 57 articles met the inclusion criteria and are evaluated
in this paper. Note that non-hardware-based NTL detection methods are a restricted niche,
where there are many possibilities to explore in this field.

3. Non-Hardware-Based Non-Technical Losses Detection Methods

The main goal of this review is to survey non-hardware-based NTL detection methods.
Non-hardware-based NTL detection methods do not require the installation of new infras-
tructure, significantly reducing the need for investment from energy companies. Therefore,
the literature on this topic is abundant, since non-hardware-based solutions are becoming
more effective in detecting NTL, especially with the advance of ML methods.

Non-hardware-based NTL detection methods can be divided into data-oriented,
network-oriented, or hybrid approaches. As seen in Figure 1, data-oriented methods
can be divided into supervised and unsupervised ML approaches. Network-oriented
methods are separated into state estimation approaches, load flow approaches, and sensor
network approaches. Hybrid approaches combine data-oriented and network-oriented
methods, often providing better efficiency and assertiveness. The following subsections
will explain each of these approaches in detail.
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3.1. Data-Oriented Methods

Data-oriented methods in the literature can also be divided into expert systems and
machine learning (ML) approaches. Expert systems are composed of handcrafted rules in
the decision-making process. ML methods are able to learn from examples without explicit
programming. ML has become the predominant direction in which data NTL detection
methods are converging.

Data science can be used to analyze data, and ML models can be employed to identify
NTL. Self-learning algorithms are commonly used as they are easy to tune and can be
adapted to process different types of data. Unlike network-oriented methods, data-oriented
methods do not use the topology of the grid to estimate NTL suspects. These approaches
use supervised and unsupervised machine learning methods.

3.1.1. Supervised Machine Learning Methods

These methods combine data from both consumers’ profiles: honest and fraudster [39].
This data is used to train classifiers [5], and allowing the model able to learn different
patterns of energy consumption in a given consumer database.

The supervised machine learning methods can be divided as shown in Figure 2:

• Support vector machine (SVM);
• Artificial neural network (ANN);
• Optimum path forest (OPF);
• Decision tree;
• Bayesian classifiers;
• Rule induction methods;
• Kth-nearest neighbor.



Energies 2023, 16, 2054 6 of 27Energies 2023, 16, x FOR PEER REVIEW 6 of 26 
 

 

Supervised machine 
learning methods

Support vector 
machines

Artificial neural 
networks

Optimum path forest

Decision trees

Rule induction 
methods

Kth-nearest neighbor
 

Figure 2. Supervised machine learning methods. 

Support Vector Machines (SVM) 
The SVM is an efficient machine learning method suitable for application in NTL 

detection due to its immunity to class imbalance. In [39], the authors developed a SVM-
based model to assist Tenaga Nasional Berhad (TNB), in Malaysia in reducing NTL due 
to electricity theft. This model preselects customers to be inspected based on abnormal 
consumption behavior. The authors use historical consumption data and customer load 
profile information to identify possible fraudsters. A hit rate of 50% was achieved. In 
further work [5], the authors were able to tweak the SVM to achieve a hit rate of 60%. This 
level of assertiveness was achieved due to the theoretical model developed by the authors. 

This SVM methodology is labeled One-Class SVM (OC-SVM), which is normally 
trained using data that belong to a single class. A different SVM approach is the Cost-
Sensitive SVM (CS-SVM), which allows different weights to be assigned to different 
classes, improving the method’s performance. 

Other classes of SVM include Linear Kernel SVM (LK-SVM) and Radial Basis 
Function (Gaussian, Laplace, ANOVA) Kernel SVM (RBFK-SVM). LK-SVM only needs 
the cost parameter to be tuned, while RBFK-SVM needs the cost and gamma parameters 
to be tuned. 

To improve SVM effectiveness, it can be combined with other classifiers. One 
example is the application of a fuzzy inference system (FIS) to include human knowledge 
and expertise to the SVM [5]. Another classifier that can be applied to improve SVM is the 
decision tree (DT), which allows the combination of categorical and non-categorical 
variables. In [6], a combination of SVM and ANN is used, since ANN is an efficient tool 
for pattern classification. Methods that do not combine SVM with other classifiers are slow 
to process and have difficulty tuning parameters [6]. 

In [39], SVM training is performed to obtain a quadratic programming problem. The 
solution for this problem is global and unique. For empirical data (𝑥 , 𝑦 ), … , (𝑥 , 𝑦 ) ∈𝑅 × {−1,1} that are mapped by 𝜑: 𝑅 → 𝐹 into a feature space, the linear hyperplanes 
that divide them into two labeled classes is mathematically represented by: 𝑤 × 𝜙(𝑥) + 𝑏 = 0   𝑤 ∈ 𝑅 , 𝑏 ∈ ℜ (1)

In order to construct an optimal hyperplane with maximum margin and bounded 
error in the training data, the following quadratic problem needs to be solved: 

𝑚𝑖𝑛 , 12 |𝑤| + 𝐶 𝜉  

𝑦 (𝑤 × 𝜙(𝑥) + 𝑏) ≥ 1 − 𝜉 . 𝑖 = 1, 2, … , 𝑚 

(2)

Figure 2. Supervised machine learning methods.

Support Vector Machines (SVM)

The SVM is an efficient machine learning method suitable for application in NTL
detection due to its immunity to class imbalance. In [39], the authors developed a SVM-
based model to assist Tenaga Nasional Berhad (TNB), in Malaysia in reducing NTL due
to electricity theft. This model preselects customers to be inspected based on abnormal
consumption behavior. The authors use historical consumption data and customer load
profile information to identify possible fraudsters. A hit rate of 50% was achieved. In
further work [5], the authors were able to tweak the SVM to achieve a hit rate of 60%. This
level of assertiveness was achieved due to the theoretical model developed by the authors.

This SVM methodology is labeled One-Class SVM (OC-SVM), which is normally
trained using data that belong to a single class. A different SVM approach is the Cost-
Sensitive SVM (CS-SVM), which allows different weights to be assigned to different classes,
improving the method’s performance.

Other classes of SVM include Linear Kernel SVM (LK-SVM) and Radial Basis Function
(Gaussian, Laplace, ANOVA) Kernel SVM (RBFK-SVM). LK-SVM only needs the cost
parameter to be tuned, while RBFK-SVM needs the cost and gamma parameters to be tuned.

To improve SVM effectiveness, it can be combined with other classifiers. One ex-
ample is the application of a fuzzy inference system (FIS) to include human knowledge
and expertise to the SVM [5]. Another classifier that can be applied to improve SVM is
the decision tree (DT), which allows the combination of categorical and non-categorical
variables. In [6], a combination of SVM and ANN is used, since ANN is an efficient tool for
pattern classification. Methods that do not combine SVM with other classifiers are slow to
process and have difficulty tuning parameters [6].

In [39], SVM training is performed to obtain a quadratic programming problem. The
solution for this problem is global and unique. For empirical data (x1, y1), . . . , (xn, yn) ∈
Rn × {−1, 1} that are mapped by ϕ : Rn → F into a feature space, the linear hyperplanes
that divide them into two labeled classes is mathematically represented by:

w× φ(x) + b = 0 w ∈ Rn, b ∈ < (1)

In order to construct an optimal hyperplane with maximum margin and bounded
error in the training data, the following quadratic problem needs to be solved:

minw,b
1
2 ||w||

2 + C
m
∑

i=1
ξi

yi(w× φ(x) + b) ≥ 1− ξi. i = 1, 2, . . . , m
(2)

The first term of Equation (2) makes the maximum margin of separation between
classes, and the second term provides an upper boundary for the error in training data. The
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constant C allows a tradeoff between the number of misclassified samples in the training
set and the separation of the remaining samples with the maximum margin. One way to
solve Equation (2) is to use the Lagrange function.

Considering a kernel K(xi, yi) = ϕ(xi).ϕ
(
xj
)
, the Lagrange function of Equation (2) is

simplified to:

max
α

m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjK(xi, yi) (3)

w =
m

∑
i=1

yiαiφ(xi),
m

∑
i=1

αiyαi = 0, 0 ≤ αi ≤ C, ∀i (4)

According to Equation (1), it is possible that a hyperplane in the feature space can be
written as the linear combination of training samples, with αi 6= 0. These are called support
vectors, and can build the decision function of the classifier based on the kernel function:

f (x) = sgn

(
m

∑
i=1

yiαik
(
xi, xj

)
+ b

)
(5)

In SVM, kernel functions are selected based on the data structure and boundary type
between classes.

This method was improved by the authors in [5], where a fuzzy inference system was
added to the SVM, aiming to include human expertise to the method.

Artificial Neural Networks (ANN)

ANN are a subset of ML, and they consist of three layers: input, hidden, and out-
put, making them very useful for pattern classification. The most commonly used ver-
sion of ANN is the multilayer perceptron, often with backpropagation in the training
step [2,9,24,40,41].

Neural networks can be used for forecasting [9,40] or binary classification [24]. Com-
monly, the first can be used for energy consumption forecasting, while the latter is used
to detect discrepancies between the measured energy consumption and the predicted
consumption in order to detect NTL. A cross-validation process is used to ensure a good
generalization of the ANN, resulting in good assertiveness [40]. In [40] the authors used
SVM to test possible irregularities in energy consumption data. Furthermore, a backpropa-
gation algorithm was used for training the required dataset, using the generalized delta
rule, shown in Equation (6).

∆wjk(i) = β.∆wjk(i− 1) + α.yj(i).δk(i) (6)

where β is the momentum term, ∆wjk(i− 1) is the weight correction in the ith iteration, α
is the learning rate parameter, yj(i) is the output of the jth neuron, and δk(i) is the error
gradient of the kth neuron added.

In [9] the authors combined two strategies to improve ANN performance. This work,
uses long–short time memory (LSTM) allied with a multi-layer perceptron (MLP) network.
The first analyzes the raw energy consumption history, the second integrates non-sequential
data, such as contracted power or geographical information. Considering that the energy
consumption is stored by the smart meters, and the stored period can be years, a simple
neural network would be very hard to train due to the vanishing and exploding gradient
problems. In this case, LSTM is applied. LSTM cell uses the sigmoid and hyperbolic tangent
as non-linear activations, presenting the following mathematical formulation:

it = σ(Wixt + Uiht−1 + bi) (7)

ft = σ
(

W f xt + U f ht−1 + b f

)
(8)
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ot = σ(Woxi + Uoht−1 + bo) (9)

Ct = ft � Ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (10)

ht = ot � tanh(Ct) (11)

where it, ft, ot, Ct, and ht represent the activations of the input gate, forget gate, out-
put gate, cell state, and hidden state at time step t. Wi, W f , Wo, and Wc represent the
weights of the input layer. Ui, U f , Uo, and Uc represent the recurrent weights of the
LSTM, and bi, b f , bo, bc are the biases of the network, while xt is the input feature vector
at time step t. ht−1 represents the hidden state activation at the previous time step.

The MLP module has N hidden layers, where N is chosen using the validation dataset.
Each hidden layer goes through an affine transformation:

zn = Wnhn−1 + bn (12)

where Wn represents the weights of layer n, hn−1 represents the hidden state of the previous
layer, and bn represent the bias of the nth layer.

To evaluate the performance of the model, a logarithmic loss function is used, consid-
ering that it is a binary classification task:

L =
1
M

M

∑
i=1
−
(

yilog
(

Pi
NTL

)
+ (1− yi)log

(
1− Pi

NTL

))
(13)

where M is the number of customer samples, yi is the ground-truth label, and Pi
NTL is

the probability of NTL computed by the hybrid neural network model for the customer
sample i.

An evolution can be seen in [24], where a wide and deep convolutional neural network
(CNN) is applied. This model consists of two components: The deep component, which
can accurately identify the non-periodicity of electricity theft and the periodicity of normal
electricity use based on two dimensional electricity consumption data. The wide component
is able to capture the global features of one-dimensional consumption data. In this work, the
authors use the interpolation method to recover missing values according to Equation (14).

f (xi) =


xi−1+xi+1

2 , xi ∈ NAN, xi−1 or xi+1 /∈ NaN
0, xi /∈ NAN, xi−1 or xi+1 ∈ NaN

xi, xi /∈ NaN
(14)

where xi is the value in energy consumption data over a period of time. If xi is a null or
non-numeric value, it is represented as NaN (NaN is a set).

After dealing with missing values and outliers, the energy consumption database is
normalized because the neural network is sensitive to diverse data. The method chosen for
this was the max-min scaling method.

f (xi) =
xi −min(x)

max(x)−min(x)
(15)

where min(x) is the minimum value in x and max(x) is the maximum value in x.
Every neuron in the fully-connected layers calculates its own score using the one

dimensional energy consumption data according to Equation (16).

yj :=
n

∑
i=1

wi,jxi + b1 (16)

where yj is the output of the full-connected layer in the j-th neuron, n is the length of
the one dimensional input data (x), wi,j is the neuron weight between i-th input value
and j-th neuron, and b1 is the bias. After this calculation, it will send this value to the
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connected units in the higher layer through an activation function to determine how much
it contributes to the next step prediction. The activation function is shown in Equation (17).

uj := f
(
yj
)
= max

(
0, yj

)
(17)

where uj is the output after activation calculation.
After this, the Deep CNN is used to process the energy consumption data in a two

dimensional manner. The authors transform the one-dimensional-energy consumption
data into two-dimensional data according to weeks. Finally, the prediction model is able to
improve traditional ANN performance.

Optimum Path Forest (OPF)

In order to address the challenges of using AI methods to detect NTL, which require a
high level of computational effort during the training phase [41], researchers have been
exploring the use of Optimum Path Forest (OPF) pattern recognition technique [10].

This classifier interprets the classification task as a combination of optimal path com-
putations based on prototypes for the remaining nodes. Each prototype serves as the root
for its optimum path tree, and each node is classified based on the strength of its connection
to the prototype, resulting in a discrete optimal partition of the feature space. Considering
that Z1, Z2, and Z3 are training, evaluation, and test sets, with |Z1|, |Z2|, and |Z3| being
samples of a dataset. The division of the dataset is necessary to validate the classifier and
evaluate its learning capacity from the errors. Z1 is used for classifier project. Z2 is used to
teach the classifier by randomly interchanging samples of Z1 with misclassified samples of
Z2. Z3 is used to measure Z1 accuracy. After learning, an improvement in the accuracy of
Z3 is expected. The OPF algorithm can be used with the smooth path–cost function which
can group samples with similar properties. Since the authors in [10] were interested in the
region between classes, which are generally overlapped regions, the authors address the
path–cost function of Equation (18).

fmax(〈s〉) =
{

0, i f s ∈ S
+∞, otherwise

fmax(π〈s, t〉) = max{ fmax(π), d(s, t)}
(18)

where fmax(π) computes the maximum distance between adjacent samples in π, when π is
not a trivial path.

The OPF algorithm assigns one optimum path P∗(s) from S to every sample s ∈ Z1,
forming an optimum path forest P which is a function with no cycles that assigns to each
s ∈ Z1\S is predecessor P(s) in P∗(s).

The classification is performed evaluating an optimal cost function:

Ct = min{max{C(s), d(s, t)}}, ∀ s ∈ Z1 (19)

OPF classifiers are parameter-free, do not assume any specific shape or separa-
bility of feature space, and are able to quickly execute the training phase. Given its
faster performance, the OPF classifier is well-suited for online training and NTL detec-
tion [7,10,17,22,25].

Decision Trees

The DT algorithm uses a flowchart model to assemble a set of rules to aid in the
classification of new samples. The DT handles non-linearity better than linear models,
being used to perform classification and regression problems. They are generated by
algorithms that split a dataset into several branches based on decision rules. These rules
are determined by identifying the relationship between input and output attributes.
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M5P DT algorithm was used in [42], which is a reconstruction from the M5 algorithm
from [43]. This M5P algorithm combines DT and linear regression at the leaves, so the
regression algorithm is employed to predict future values based on previously learned data.
This algorithm is applied to learn individual behavior per consumer to create an energy
consumption, then this learned consumption shape is used to predict future measurements.

Tree-based models are constructed by the divide-and-conquer method [26]. Consider-
ing a collection of training cases, T, this set is either associated with a leaf, or some test is
chosen that splits T into subsets corresponding to the test outcomes, and the same process
is applied to the subsets. This division often produces overly elaborate structures that must
be pruned back, by replacing a subtree with a leaf, for example [34].

The first step to build a model tree is to compute the standard deviation of the
target values of cases in set T. Unless T contains very few cases or their values vary only
slightly, T is split on the outcomes of a test. Every potential test is evaluated by determining
the subset of cases associated with each outcome.

Let Ti denote the subset of cases that have the ith outcome of the potential test. If
the standard deviation sd(Ti) of the target values of cases in Ti as a measure of error, the
expected reduction in error as a result of this test is:

∆error = sd(T)−∑
i

|Ti|
|T| × sd(Ti) (20)

After examining all possible tests, M5 chose one that maximizes this expected error
reduction.

Two other DT algorithms commonly used are ID3 and C4.5 [27]. These two algorithms
employ a variety of pruning techniques and information gain as heuristics. The original
ID3 algorithm uses a criteria called gain or attribute selection to select the attribute to be
tested. This procedure is based on the information theory concept of entropy. Consider S to
be a set consisting of s data samples. Suppose the class label attribute has m distinct values
defining m distinct classes Ci, for i = 1, . . . , m. The expected information needed to classify
a particular sample is given by:

I(s1, . . . , sm) = −
m

∑
i=1

pilog(pi) (21)

In Equation (21), pi is the probability that an arbitrary sample belongs to class Ci and
is estimated by si

s . The log function is used since the information is encoded in bits.
Considering attribute A can be used to partition S into v subsets, where Sj contains

those samples within S that have a value of aj o f A. The entropy, or expected information
based on the partitioning into subsets by A, is given by Equation (22).

E(A) = ∑
s1j + . . . + smj

s
I
(
s1j,...,smj

)
(22)

The encoding information that would be gained by branching on A is:

Gain(A) = I(s1, . . . , sm)− E(A) (23)

These analyses have been shown to result in high levels of accuracy and efficiency in
many real-world problem situations and serve as a standard for evaluating the performance
of new algorithms.

Different DT algorithms have been used, such as CART, C5.0, EBT, QUEST [26,34],
among others, which present an easy interpretation, making operatives’ work easier.
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Bayesian Classifiers

These classifiers require previous information of NTL probability that can be obtained
from the general statistics. These classifiers consider that, if the class of the sample is
known, it can be used to estimate the values of different features. This is done using the
non-intrusive load monitoring (NILM) procedure [27,28] to learn the pattern of every device
being used by the consumer. There methods need a huge amount of previous information,
which can affect the classifier’s output.

Bayesian networks in Bayesian classifiers use a set of variables that graphically shows
the class probability [44]. The main advantage of Bayesian networks is that they can be
easily understood by humans, providing a user-friendly interface. Given a labeled database
and the Bayesian network, the objective is to learn the conditional probabilities. The
class of a new sample can be inferred along with the probability of the sample belonging
to the predicted class. This allows for setting the number of meters to be inspected, as
the probability threshold can be set according to the detection system. These classifiers
were successfully applied in [13], where metrics such as loss factor and error term were
introduced to estimate NTL and register measurement noises, that can be applied also on
outlier detection.

In [54], the authors propose a Bayesian risk framework aiming to detect NTL to
maximize the effective economic return. In order to maximize the economic return, let m
denote the number of inspections to be performed and Xm ⊂ X an arbitrary subset of m
samples of X. P(yi = 1|xi) is the probability that a given sample xi is committing fraud, ai
represents the amount of money the ith customer could potentially be stealing, and ci the
cost of inspecting the ith customer. Given the previous definitions, the approach consists in
obtaining the optimal subset X̂m = {xi1, . . . , xim}, such that:

X̂m = argmaxX̂m

{
m

∑
k=1

aikP(yik = 1|xik)−
m

∑
k=1

cik

}
(24)

A cost sensitive classification loss can be expressed as:

L(x, q) = ∑
k

P(y = k|x)µqk (25)

where µqk represents the cost associated to predict as q a member of the class k.

3.2. Unsupervised Machine Learning Methods

Unsupervised NTL detection methods do not require labeled data in order to train
the classifiers [13]. These methods can operate without supervision and have the ability to
uncover hidden information from a given dataset. The most advanced unsupervised ML
methods are depicted in Figure 3, and are discussed in the following sections. The methods
surveyed are:

• Outlier detection methods;
• Expert systems;
• Regression models;
• Statistical methods;
• Clustering algorithms.
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Outlier Detection Methods

Outlier detection methods involve the analysis of inconsistent and unusual values in a
database that typically follows a behavioral pattern.

In [13], the authors employed linear programming in an anomaly detection frame-
work to detect NTL, which has the capability to identify fraud and locate meter defects.
It filters areas with high probability of theft based on discrepancies between meter read-
ings at the distribution transformer and estimates stolen energy at a smart meter as an
anomaly coefficient.

Authors in [20] addressed the issues of lack of context and time awareness, as well as
the false positive rate that is affected by the change in consumer habits. They developed an
outlier detection method that can handle concept drift, such as changes in family structure,
or a house becoming second residence. To achieve this, they used a long short time memory
(LSTM) network to profile and predict consumer behavior based on their recent past
consumption. This method was able to detect outliers almost in real time.

Other authors [8] develop frameworks that monitor energy consumption data, rate
of chance of the energy consumption data, its date stamp, and time signatures. The
framework is based on universal anomaly detection (UAD) and uses the Lempel-Ziv
universal compression algorithm to achieve real time detection.

Expert Systems

Expert systems utilize professional expertise to detect NTL in distribution systems.
These expert systems can also be used in supervised ML methods, as professional experi-
ence can be applied to various methods. One method [6] combined a fuzzy expert system
for post-processing the output of a SVM and achieved a hit rate of 72%. Another method [8]
analyzed the energy consumption of the past six months, along with maximum consump-
tion, average consumption, standard deviation, and number of inspections. These values
were used on a fuzzy c-means clustering algorithm to group customers into classes. Then,
customers were classified as fraudsters or not fraudsters using the Euclidean distance
measure, resulting in a hit rate of 74.5%. This method’s classifier is evaluated by both
assertiveness and sensitivity in Equations (26) and (27).

ass =
TP

TP + FP
(26)

sens =
TP
P

(27)

where TP are true positives, FP are false positives, and P are the existing positives on
the database.
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C-means is a popular algorithm for clustering data, where a record in any data
base belongs to only one cluster. A record belongs to more than one cluster with a
certain degree (membership degree) in the fuzzy C-means. Considering three matrices
X(n× p), C(c× p), and U f (n× p) which are the data matrix, center matrix, and fuzzy
membership degree matrix, respectively. The fuzzy C-means tries to minimize:

J f

(
X, U f , C

)
=

n

∑
i=1

c

∑
j=1

µm
ij d2

ij (28)

where n is the number of elements, f is the number of attributes for each element, c is the
number of clusters, m is the fuzzification factor, µij is the membership degree of the ith
element into de j cluster, and dij is the distance between the ith element and the center
of the j cluster. The minimization is performed in a two-step process. First, the center of
clusters is constant, and the algorithm tries to find the optimal value of the membership
degrees. Afterwards, the center of the cluster is minimized, keeping the membership degree
constant. The optimal values are calculated using the following differential equations:

cjk =
∑n

i=1 µm
ij xik

∑n
i=1 µm

ij
(29)

µij =
d
− 2

m−1
ij

∑c
l=1 d

− 2
m−1

il

(30)

Regression Models

Regression models are used to estimate time series models. When trained with
energy consumption data, regression model methods rely on the difference between the
expected and calculated energy consumption. If this difference is high, it is considered
an indicator of potential fraud. Authors in [14] and [45] proposed two linear regression-
based algorithms to detect dishonest customers and locate defective equipment. The first
algorithm exhibited some instability, which was resolved by incorporating categorical
variables into the linear regression. Methods such as auto-regressive moving average
(ARMA) [45] and auto-regressive integrated moving average (ARIMA) [14] were used to
forecast NTL. These methods compare measured and estimated values, with the forecasting
model trained with honest energy consumers. The larger the difference between the
measured and forecasted values, the higher the probability of electricity theft. In [30], the
authors used a previously designed scheme entitled Linear Regression-Based Scheme for
Detection of Energy Theft and Defective Smart Meters (LR-ETDM). Considering a service
area that consists in N consumers. Smart meters’ readings are recorded at time stamp
T = t1, t2, . . . , t48. The parameters in the proposed model are: pti,n is the near real-time
energy consumption recorded by consumer n at time interval ti ∈ T; an the anomaly
coefficient for each consumer n; yti is the discrepancy in meter reading at time interval
ti ∈ T.

The sum of energy consumption reported by all consumers must agree with the total
load consumption measure by the collector at time interval ti. If there is any under/over
reporting by smart meters, Equation (31) can be formulated as follows:

a1 pti,1 + a2 pti,2 + . . . + aN pti,N = yti , ∀ ti ∈ T (31)

The objective is to find all an, n = 1, 2, . . . , N from Equation (31) to evaluate the relia-
bility of smart meter endowed in each household or abnormal behavior of each consumer.

LR-ETDM may not detect all fraudsters when consumers only steal energy during a
particular period in a day. So, the authors proposed the Categorical Variable-Enhanced
Linear-Regression-Based Scheme for Detection of Energy Theft and Defective Smart Meters
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(CVLR-ETDM). This algorithm introduces categorical variables in linear regression using
dummy coding to resolve the varying energy stealing problem. Considering a service area
consisting of N consumers and each of them commits energy theft independently. The
parameters are defined as: βn: Detection coefficient of consumer n during on-peak hours;
xn: categorical variable of consumer n, where:

xn =

{
0, o f f − peak hours
1, on− peak hours

(32)

The period of energy theft or metering defect can be identified solving Equation (33)
for an and βn.

a1 pti,1 + . . . + aN pti,N + β1 pti,1 x1 + . . . + βN pti,?N xN = yti , ∀ ti ∈ T (33)

In Equation (33), an represents the anomaly coefficient of consumer n during off-peak
period, whereas (an + βn) denotes the anomaly coefficient of consumer during on-peak
hours. Investigating the estimated an and βn, it is possible to notice whether abnormal
behavior occurs only during a particular period in a day or it is constant.

Statistical Methods

Control charts are utilized for time-series data, monitoring individual consumption
and identifying regions where the time-series may be considered anomalous.

A moving range control chart detects variations in a time-series that may be caused
by electricity theft by defining control limits [30]. This control chart monitors actual
consumption and the moving range. Then, rules are established to indicate which violations
are frauds and need inspection.

In [30], Bollinger Bands are proposed. It is a statistical data analysis tool, commonly
used in stock market analysis. In this tool, the upper and lower bands are calculated based
on the N-period standard deviation, and an N-period moving average of the time series
is monitored. If energy consumption at a specific time exceeds the limit for that time slot,
it is suspected as a fraud. However, since their main goal is to detect change, if a fraud
is happening before the monitoring period, it is possible that a fraudster receives a false
negative status for NTL.

Another approach can be analyzed in [55], as the authors use Markov Chains to
estimate the subareas vulnerable to NTL in the future. The outputs are the probabilities of
occurrence of each one of the discrete states as discrete-time functions. It is an empirical
method that focuses on the relationship between its variables, assuming the relationships
of the past will remain in the near future, as in Equation (34).

Π(t+1) = P.Π(t) (34)

where Π(t) is the system state at time t, Π(t+1) is the system state after interval (t+1), and P
is the transition matrix between states. The transition matrix represents the probability of a
state i to remain the same or change to a state j during the time interval t. The conditional
probabilities P{X(tk+1)} = xk+1|x(tk) = xk , termed transition probabilities, represent the
state probability X(tk+1) to be xk+1 at time tk+1 if the state X(tk) is xk at time tk. The
transition probabilities are obtained from samples at a time interval.

The probability is usually defined as Equation (35). The probability P(E) of an event
E is the relative frequency at which this event occurs in a series of attempts under con-
stant conditions.

P(E) =
NE
n

(35)

where NE is the number of times that event E occurs in n trials. The occurrence of an event
E in a particular observation is entirely uncertain. However, the relative frequency with
which it occurs in repeated observations has stable properties. NE represents the number
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of consumer units (CU) with NTLs found in a total of n CUs inspected by teams in a city
subarea. For a fixed time interval, the loss probability is obtained from Equation (36) after
adjusting Equation (35). Given that P̂y

A is the annual estimated loss probability related to
the subarea A in the year y.

P̂y
A =

(N o f CUs with NTL)
(N o f CUs inspected)

(36)

Having determined the current loss state of each city subarea, the transition matrices
are used to estimate the future loss state.

4. Network-Oriented Methods

Network-oriented methods operate with data from distribution system sensors, which
are located on transformers and smart meters. These methods utilize the grid’s topology,
transformer loading, voltage profiles, current flow, and other information. The load flow
approach is widely used by researchers to identify NTL by monitoring the energy balance
with an observer meter. Additionally, the state estimation approach has proven to be
more accurate, but it may not always be applicable. Lastly, the sensor approach employs
dedicated sensors and examines the use and optimal placement of sensors to ensure
NTL detection.

4.1. Load Flow Approach

The load flow method for detecting NTL in electric power systems uses the energy
balance of the electric grid. It involves installing a meter to monitor the low voltage side
of the transformer meter and using an ecosystem of smart meters to compare their sum
with the transformer meter. The difference between the sum of smart meters’ readings and
the transformer meter, plus a percentage of technical losses, is calculated. The larger this
difference, the higher the probability of NTL [28,37]. For cases where technical losses or
grid topology are unknown, [27,38] propose a method to identify the grid parameters and
then calculate technical losses, which leads to better assertiveness detecting NTL.

Another approach is the probabilistic power flow method [38], which uses one or
more observer meters to detect NTL in specific meters. The energy balance is used in a
probabilistic approach and the probability distributions for total and technical losses are
calculated, and then subtracted by convolution to provide the probability of NTL in a
specific grid.

Another approach proposed by authors in [6] is a smart substation method, which
checks the energy balance between smart meters and observer meters, and if a significant
difference is detected, the NTL detection method tries to locate the fraud at consumer level.
The NTL detection method uses the measured currents from smart meters to calculate
voltages that are comparable to measured voltages.

The method proposed in [55] models loads as QV buses, where reactive power and
voltage magnitude values are specified. The buses with a difference between the measured
and calculated active powers indicates possible NTL locations. The basic idea is to solve
a load flow problem by modeling the load buses as QV buses. The application of the
load flow method results in calculated values of active power (Pcalc) for each QV bus.
Then, Pcalc values are compared with the respective active power measurement (Pmeas)
obtained from smart meters. The customers with active power deviations higher than
threshold values are identified as NTL candidates. So, the minimum detectable power
(MDP) is calculated using the submatrices from the Jacobian matrix:[

∆P
∆Q

]
=

[
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

][
∆θ
∆V

]
=

[
JPθ JPV
JQθ JQV

][
∆θ
∆V

]
(37)
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The deviation in the active power caused by the maximum voltage measurement
errors ∆Vmeas

max , which corresponds to the MDP index, can be estimated from applying
Kron reduction:

MDP =
(

JPV − JPθ .J−1
Qθ .JQV

)
.∆Vmeas

max = JRPV .∆Vmeas
max (38)

Equation (38) estimates the impact of voltage measurement errors in the calculated
active power.

The Energy deviation index can be obtained by:

∆Whi = ∑
j∈λ

∆Pi,j.∆tj (39)

where ∆Pi,j is the difference between calculated and measured active power at bus I for a
time interval j, ∆tj. λ is the period over which the measurement set is available. This index
is important for the identification of NTL caused by illegal loads that are not permanently
connected to the system.

4.2. State Estimation Approach

These approaches use smart meters to observe the grid. Usually applied in medium
voltage (MV), state estimation has been shown to be effective in detecting NTL. One method,
proposed by [32], uses the Kalman filter state estimator to calculate line currents and biases,
and consumers with biases greater than a threshold are assumed to be committing fraud.
This method guarantees privacy as operators do not need to access power and voltage
measurements of consumers. However, it is limited in its application to microgrids with
small feeder lengths.

Another method, proposed in [46,47], uses a weighted-least square (WLS) state estima-
tor. These estimators work with transformer loadings from three-phase voltages, current,
active, and reactive power measurements. If the difference between measured and esti-
mated values is significant, NTL can be assumed. In [47], for a specific period of time, it is
possible to affirm that the energy registered by the central observer meter and the energy
registered by each of the N meters along the feeder should satisfy Equation (40).

Etotal = k1E1 + k2E2 + . . . + kN EN (40)

where Etotal is the energy registered by the central observer meter; k1 is a constant relative
to the accuracy class of the meter of the ith consumer, and Ei is the energy registered by the
meter of the ith consumer.

Since Equation (40) is valid for any period of time, if consider N values of energy, from
each of the N meters, during N periods of time, the following equations must be satisfied:

Etotal1 = k1E11 + k2E21 + . . . + kN EN1 (41)

Etotal2 = k1E12 + k2E22 + . . . + kN EN2 (42)

Etotal1 = k1E1N + k2E2N + . . . + kN ENN (43)

So, admitting that the constants ki are unknown quantities, it is necessary a set of
N equations with N unknown quantities. If the N equations are linearly independent, a
unique solution will be found for each constant ki. The value calculated for each ki indicates
whether the corresponding meter is inside or outside its accuracy class m, that is, ki should
belong to the range (1−m) ≤ ki ≤ (1 + m), otherwise either the meter is tampered or
there is a malfunction.

For solving a system of N equations from Equations (41)–(43), several methods are in
order, such as matrix inversion, least squares (recursive statistical methods), among others.
Authors in [47] have proven that for this particular problem, least squares is more efficient.



Energies 2023, 16, 2054 17 of 27

4.3. Sensor Network Approach

The installation of dedicated sensors throughout the grid is considered in some re-
search. This optimization problem involves determining the optimal number and placement
of sensors to increase the probability of detecting NTL and to minimize cost. The sensor
network approach is closely linked with state estimation, as the sensors themselves cannot
determine if NTL has been detected. Reference [48] surveys the placement of redundant
smart meters, which includes an inspector meter installed before consumer smart meters.
The inspector meter exchanges data with consumer meters, compares energy consumption
measurements, and any difference between these two measurements is configured as NTL.
Authors in [55] presented the use of a non-intrusive load monitor (NILM) using sensors.
The NILM uses a database of appliances signatures to identify appliance usage in the home
over time. The power consumption time series is analyzed, and the edges corresponding to
on/off events are identified and recorded. Each edge magnitude represents one or more
appliance events. The NILM works by solving the binary integer programming problem to
determine which devices contributes to a given edge:

min BTx
s.t. Qx ≤ eti + δ
−Qx ≤ −eti + δ

(44)

where B = [1, 1, . . . , 1]2.|A|×1; Q = [QP;−QP], in which QP is an |A|-dimensional vector
of power appliance consumption profiles.

4.4. Hybrid Methods

Hybrid methods combine both data-oriented and network-oriented methods in order
to increase the accuracy of NTL detection methods [11,18,23]. There have been several
strategies for combining data and network methods, such as [11], which uses remote
technical units (RTU) to identify sections presenting NTL using the measurement data from
smart meters and RTU. If the difference between RTU and smart meters’ measurements
exceeds a threshold, NTL is assumed. To identify fraudsters, SVM and fuzzy c-means are
applied for decision making purposes.

In [18], the authors use SVMs with the aid of central observer meters and consider
network active power measurements. SVM calculates the difference between the active
power measurements and technical losses, classifying the consumer as honest or fraudulent.
The authors formulated the revenue of a distribution utility as:

R(e, D) = ∑
i

T
(

qi − qi
u

)
+ ∑

i
ρ
(

e, qi
u, D

)
F
(

qi
u

)
(45)

where qi is the total consumption of user i, qi
u is the unbilled part of the usage, T is the price

of electricity, ρ is the probability of detecting an electricity theft, e is the effort invested in
anti-fraud technologies, D is the anomaly detection test, and F represents the recovered
fines from detected theft.

In [23], the authors approach similarly, but instead they use a combination of DT
and SVMs.

In [15], control charts with asymmetric limit-based controls are used to identify regions
with NTL. The authors use upper and lower limits to improve the balance between total
energy consumption, total measured energy, and total losses. Considering the registered
energy of the kth suspicious consumer in the year of losses observation, at the end of the
observed series, is denoted as Ws,k. The sum of registered energy belonging to all customers
who are suspected in the given region, at the year of losses observation, during the time
series period given by:

Ws =
Ns

∑
r=1

Ws,k (46)
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Considering the energy of the rth customer who is not suspicious in the year of losses
observation, at the last year of observed series, is denoted by Wns,r. The sum of registered
energy belonging to all customers who are not suspected in the given region, at the year of
losses observation, during the time series period is given by:

Wneg =
N−Ns

∑
r=1

Wns,r (47)

In [12], the authors use data from several sources (RTU, smart meters, network param-
eters) applied on a combination of state estimation and ANOVA. They use smart meters’
consumption data on a distribution state computation to detect the exact location of NTL
on the low voltage side of transformer. ANOVA is then used to compare the output with
previous verified measurements. The ANOVA output is then fed back to the state estimator
for improved estimates. In this paper, the distribution state estimation is formulated by:

minx JX =
m

∑
i=1

[zi − hi(x)]2

σ2
ii

(48)

where σ2
ii is the variance for the ith measurement. This problem is solved by the authors by

applying the gradient method and solving Equation (48) iteratively.

4.5. Comparing Non-Hardware-Based NTL Detection Methods

After carefully surveying the literature, it is clear that NTL detection methods have
advanced significantly. Data science is a powerful tool for researchers, providing efficient
strategies for filtering, processing, and fine-tuning non-hardware-based NTL detection
methods. The three different classes (data-oriented, network-oriented, and hybrid) make
use of different sources of data, and authors apply several methods to identify NTL in each
database. Since distribution systems databases contain a significant amount of data, pre-
processing this data improves the method’s performance, making it possible to effectively
use a wide range of data.

Table 4 shows a comparison between the different non-hardware-based NTL detec-
tion methods.

Table 4. Comparison between non-hardware-based NTL detection methods.

Criteria Data Oriented Network-Oriented Hybrid

Inputs A large amount of data is required to
ensure the accuracy of the models

High-quality data is required.
Different types of data from

various equipment installed on
the system is also necessary.

Need both high quality data
and large amount of data.

Assertiveness

Depending on the training of the
model, they can easily identify NTL.

Most methods do not handle changes
in consumption patterns well and
may produce false positive results.

The methods only present
acceptable results when

counting with specific devices,
such as observer meters, smart

meter and RTUs.

Require careful balance
between datasets and network
data. If well-tuned, datasets

are able to drastically enhance
NTL detection that uses

network data.

4.6. Features of Non-Hardware-Based NTL Detection Methods

Following the Table 5, the most common feature for non-hardware-based NTL detec-
tion methods is consumption, for data oriented methods consumption is employed for
supervised or unsupervised approaches. With consumptions patterns the methods are able
to identify NTL units, especially using previous fraudsters patterns. For network-oriented
methods, consumption is also the most used feature; essentially, it is possible to identify
fraudster by the difference between smart meters and distribution system sensors, also
adequate methods of simulation are applied.
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Table 5. Features of non-hardware-based NTL detection methods.

Work Data or Network
Method Features

[2] Data Meter readings, locations, voltage, mean consumption,
business class, activity type

[4] Network IEEE 30 BUS and IEEE 57 BUS system, voltage, current
sensors

[5,6,39] Data Electricity customer consumption

[40] Data Electricity consumption, geographical location, season of year
and type of the customer

[9] Data
Energy consumption, season latitude longitude, contracted

power and voltage, economic activity, smart meter
parameters.

[24] Data Electricity consumption

[41] Data Consumption data

[10] Data Demand contracted, demand measured or maximum
demand, load factor, installed power

[25,27] Data
Demand billed, demand contracted, demand measured or

maximum demand, reactive energy, power transformer,
power factor, installed power, load factor

[42] Data Energy consumption

[44] Data Consumption, types of customers

[13] Hybrid Consumption data

[20] Data Energy consumption

[6] Data Consumption data

[8] Data Power consumption

[14] Hybrid Consumers consumption data, total energy supplied by utility
provider

[30] Data Load profiles

[38] Data Consumer energy usage

[32] Data Contracted power, economic sector, geographic location,
consumption information

[47] Network Energy measurements, consumer served central observer
meter measurements

[48] Hybrid Energy Record

[16] Data Consumed energy, reactive/active energy, energy billed

[36] Data Consumed energy

[50] Hybrid Power consumption, line loss, alarm information

[18] Hybrid Energy data, measure the total electricity provided to the
customers

[11] Network Power consumption, total power consumption of the
subsystem

[23] Hybrid
Number of persons, number of appliances, temperature, time

of day, season, actual electricity consumption, predicted
electricity

[15] Data Energy consumption

[12] Network Customer metering data, distribution feeder data
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One tendency for NTL detection is the employment of Big Data, and not only data from
inside (endogenous) of energy companies, for more accurate detection. Detection fraud
and theft are common in other fields like credit card fraud detection and commercial fields.
Then, data that is not common in energy companies (exogenous data) can be especially
used to enrichment the database and efficiency increase in NTL identification [56].

More features can be employed in several NTL detection systems, like weather inputs,
socioeconomic, web scraping, and social network [57]. Evidently the consumption data is
the main feature, although other inputs can bring extensive information and improve the
capacity of the NTL identification system to generate more accurate targets and reduce the
NTL indices of electricity companies.

5. Future Trends on Non-Technical Losses Detection Methods

Normally, outliers in consumer energy consumption presented in a given database
need to be filtered. To accomplish this, large discrepancies must be present, given the
non-regularity of consumer energy consumption. These discrepancies may cause anoma-
lies if the data analysis models trained with this database without the removal of such
discrepancies. The biggest difficulty on training a manipulated database is to identify an
outlier with NTL, and not a random change in consumption pattern from the consumer.
That can be cause for a large number of reasons, like travels, uninhabited property, or
the season. In the literature, the main techniques for outlier detecting are the standard
deviation method [21,36], interquartile range (IQR) [16,19,21,36,49,50], Grubbs test [33,49],
and generalized extreme studentized deviate (GESD) [50,52].

5.1. Standard Deviation Method

Standard deviation is used as a method to measure dataset dispersion. When the
standard deviation is low, that means the data considered is homogeneous. In case the
standard deviation is high, the data on a set are sparse [21,53]. Also, according to the
probability theorem, the larger the sample, the closer to the sampling distribution of its
mean is to a normal distribution.

5.2. Interquartile Range

The IQR can be used as a measure of how spread out the values are. Statistics assume
that the values are clustered around a central value. The IQR informs how spread out
the values are in relation to the center values. It can also be used to signal when other values
are far from central values, these far values are then called outliers. The approaches for
detecting outliers using IQR is the most commonly used method, and it has been shown to
be reliable. Its calculation is simple, which allows the pre-treatment of large volumes of
data with low computational cost [16]. IQR methods do not have filter calibration, which
means they are statistical methods with a static behavior [19].

5.3. Grubbs Test

Grubbs test is used to detect a single outlier on a univariate dataset. The dataset follows
an approximately normal distribution, and the Grubbs test is defined as one hypothesis.
The Grubbs test detects one outlier at a time. This outlier is removed from a dataset,
and the test is iterated until there are no outliers detected. Multiple iterations change the
probabilities of detection, and the test should not be used for small sample sizes, since it
frequently tags most points as outliers. The test always checks the value which shows the
largest absolute deviation from the mean. If the outlier has been identified and removed,
the test must not be repeated without adapting the critical value [33].

5.4. Generalized Extreme Studentized Deviate

The GESD is a statistical approach used to detect one or more outliers in a univariate
dataset that follows a distribution approximately normal. The statistical approaches assume
that regular data follow a statistical model, and the data that do not the model are discrepant.
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GESD overcomes the primary limitation of the Grubbs test and the Tietjen-Moore test [21]
where the suspected number of outliers (k) must be exactly specified. If k is not correctly
specified, it can compromise the test’s conclusions. GESD requires only that an upper
limit for the suspect number of discrepant values be specified. Given this upper limit (r),
GESD test execute r separate tests: one test for the atypical value, another test for two
atypical values, and so forth until r atypical values.

In addition to these methods, the authors are beginning to invest on the combination of
ML methods. In [58], the authors use a Ridge classifier aiming to reduce models’ overfitting.
Another trend is the improvement of neural networks used to classify fraudsters [59]. In [60]
the authors advance on this subject, presenting new artificial neural network architectures to
improve NTL detection. Advancing on neural networks trends, the work in [61] combines
multi-layer perceptron and gated recurrent unit, combined with the SMOTE methods for
balancing data.

6. Case Studies

In [62], authors applied their methodology to the main electric company of Spain,
ENDESA. Their method is focused on null consumption consumers, and their framework
was able to increase NTL detection from 5% to 14.75%. This means that null consumption
not always means NTL, and additional data mining techniques and data science are needed
to improve NTL detection assertiveness.

The focus in [63] was ENDESA industrial and commercial consumers. The model
was trained with 57,000 inspection results. The extreme gradient-boosted trees presented
an accuracy of 21% for new inspections generated by the classification list of probable
fraudsters. An improvement was achieved by the authors in [9] where a 47% hit rate
was achieved using smart meters and a database where 80% was for training the neural
network, 10% for validation, and 10% for testing.

The theoretical precision of the model proposed in [64] achieved an accuracy of 70%.
However, previous experiences indicate that this theoretical effectiveness index is not
verified in real inspections. Commonly, the real accuracy rate is substantially lower than
the theoretical. This paper evidences the 0.8 threshold and the 50% balance between normal
and irregular for the training stage.

The work in [54] is focused on the financial return. The work involves a reduced list
of inspections and simulations, focusing on recall and precision, using 70% of the database
for training and 30% for testing. Although the method shows improvement when using
ML techniques, it was not applied on real inspections.

The complete solution proposed in [65] shows the importance of exogenous variables
associated to endogenous data. Field inspections show an accuracy of 30%, surpassing
several applied methods.

Another theoretical study case was presented in [54]. In this work, authors applied
different strategies to detect anomalies, being able to achieve 64.54% hit rate when using
their optimum-path forest design. However, this level of accuracy was not validated by
field inspections.

7. Discussion

Between all screened non-hardware-based NTL detection methods, the importance of
data quality was evident. Data oriented, network oriented, and hybrid approaches show
that the size of the dataset considered in the method impacts on their efficiency, that shows
the importance of pre-processing the data without losing data quality.

Most of the surveyed data-oriented NTL detection methods use supervised learning.
These methods require labeled data from both honest consumers and fraudsters. When
these labeled data exist, it is probable that the method will face class imbalance problems.
In fact, since the grid has more regular consumers than irregulars, the class imbalance can
lead models into miss-classification. Unsupervised methods do not require labels. These
methods are used in case a large number of honest samples are available, whereas fraudster
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samples are few or non-existing. Another advantage of unsupervised methods is their
adaptability to zero-day attacks, which are becoming common when using smart meters.

In essence, supervised methods are trained to detect specific types of NTL. If a new
energy consumption behavior happens, supervised methods are more likely to fail their
detection, since this behavior is not present on the training set. For this problem, it is more
admissible use unsupervised methods that are independent from the positive class labeling.

Network-based NTL detection methods use measurements of smart meters allied with
the parameters’ estimation of electrical systems in order to detect NTL. They can be divided
into load flow approaches, state estimation, and sensor networks. Although most network-
based NTL detection methods require specific infrastructure to be applied, such as smart
meters, observer meters, and specific sensors, they can be considered non-hardware-based,
since the methods manipulate the data measured by these devices. These methods are
deeply dependent on reliability of smart meters and observer meters. They rely mainly on
the comparison of measurements from the meters. Load flow and energy balance are the
most common strategies to detect NTL due to the simplicity and ease of implementation.
State estimation methods are more complex. They require a large level of observability in
the grid, as well as detailed grid topology.

Lastly, hybrid methods have been developed in most of the recent researches. These
methods combine data-oriented and network-based NTL detection methods, using con-
sumer and network data to improve the method’s assertiveness. By inserting energy
balance to data-based methods, the performance is dramatically enhanced, which shows
that hybrid methods represent an interesting path to follow regarding NTL detection.
Table 6 shows the summary of the pros and cons of each approach.

Table 6. Non-Hardware-Based NTL detection methods pros and cons summary.

Pros. Cons.

Data-oriented
methods

• Supervised methods present superior
performance compared to unsupervised methods

• Unsupervised methods do not require labelled
data

• Unsupervised methods are resilient to zero-day
attacks

• Unsupervised methods are independent from the
positive class training set

• Require large datasets
• The methods need large amount of data
• Supervised classifier training requires labeled

data from illegal and legal consumers
• Susceptible to class imbalance problems
• Supervised methods that are trained to detect

specific types of NTL, presenting a poor
performance in new NTL cases

Network-oriented
methods

• Immune to class imbalance problem
• Use physical data from the grid, presenting

higher assertiveness
• Do not need large datasets
• Possibility of using power flow tools to

determine the size of NTL
• Observer meters can be used to check energy

balance
• Possibility to use state estimation and bad data

detection

• Demands the availability of network
measurement devices

• Network oriented methods are not always
possible to implement

• The correct placement of sensors greatly
impacts the method’s performance

• Require reliable and high-resolution data,
and detailed network topology

Hybrid methods

• Possibility to combine data-oriented and
network-oriented methods

• Present better assertiveness than data-oriented
and network-oriented methods

• Require large and diverse datasets
• Present sensibility to class imbalance
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Recommendations

According to the extensive review, a clear direction towards hybrid methods is
observed. Data-based methods require large datasets, which are not always available.
Network-based methods require high quality data, meaning that these methods need high
quality equipment to gather this data.

Hybrid methods combine the pros from both data-based and network-based methods.
Reviewed hybrid methods showed that they are not restricted by the dimension of con-
sumer’s energy consumption data [13], proving the flexibility of such methods. Moreover,
hybrid methods are capable of identifying fraudsters as well as detecting faulty equip-
ment [14], drastically improving NTL detection. Another example of the hybrid methods’
superiority is the improvement of a data-based method’s performance by adding energy
balance data provided by network meters [18].

The development of metrics and graphical analysis is very important. Since the data
of fraudsters and regular consumers is unbalanced, mostly composed of regular consumers,
assertiveness alone is not enough to determine the occurrence of NTL. In [66], it is possible
to notice that, if the goal of energy companies is the return of investment, metrics such as
precision, recall, accuracy, and F1-score are no longer the most suitable.

Moreover, the problem of data imbalance is of most concern for NTL detection meth-
ods. Researchers have been investigating this matter, and they notice an improvement
when using deep learning algorithms to work with unbalanced databases [67]. The impor-
tance of this approach is clear in [68], where the authors take advantage of the advanced
metering infrastructure (AMI) to acquire data, using clustering algorithms to produce an
anomaly score to discriminate fraudsters and normal users.

Also, NTL detection methods must be able to determine when the fraud starts and
when the fraud ends. The authors in [9] already use a temporal approach, where they are
able to create consumers’ samples using results of previous field inspections.

Another emerging concept is the use of exogenous data, which is information external
to the environment under analysis. These exogenous data combined with endogenous
data from energy companies are responsible to improve the performance of NTL detec-
tion methods. Authors in [65] used exogenous data for a complete NTL identification,
where supervised learning and hyperparameters optimization was applied. In this work,
several metrics were used, proving the importance of considering the correct metrics for
each situation.

8. Conclusions

This article presents a thorough review regarding non-hardware-based Non-Technical
Losses detection methods. This paper aims to provide a view on these methods, in order to
help researchers to direct their efforts to promising methods. The research examined the
following databases: IEEE Explore, ScienceDirect, and Google Scholar, and the research
only considered papers published before 2005. A total of 1523 papers were included
on the first part of the review. Applying the considered inclusion criteria, this number
was reduced to 57 research papers. The review showed a clear trend, of which hybrid
methods provide the best results. It was also possible to notice author’s struggling with
class imbalance on data-based methods. Network-based NTL detection methods are very
dependent on the meter infrastructure, since most surveyed methods use energy balance
approaches in order to detect NTL. When allying data-oriented and network-oriented
methods, a clear improvement on NTL detection assertiveness is observable. Since the
amount of data available grows with the development of new measurement strategies, a
future research trend is revealed. The filtration of outliers in consumer energy consumption
avoids anomalies when a model is trained with a database where discrepancies are detected.
The main difficulty is to efficiently discriminate an outlier with NTL from a consumption
pattern change from the consumer.

Moreover, data imbalance presents a challenge for NTL detection methods, and the
authors have been investing in methods to mitigate this problem. With a balanced dataset,
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the use of exogenous data on the NTL detection methods is improving the assertiveness of
several methods, resulting in a promising path for future research.
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