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Abstract: This paper presents a current literature review (from the years 2017–2022) on issues related
to the application of power system stabilizers (PSSs) for damping electromechanical swings in power
systems (PSs). After the initial selection of papers found in the databases used, over 600 publications
were qualified for this review, of which 216 were subjected to detailed analysis. In the review, issues
related to the following problems are described: applications of classic PSSs, applications of new
stabilizer structures based on new algorithms (including artificial intelligence), development of new
methods for tuning PSSs, and operation of PSSs in PSs with high power generation by renewable
sources. Describing individual papers, the research methods used by the authors (simulations,
measurement methods, and a combination of both) are specified, attention is paid to the waveforms
presented in the papers, and reference is made to the types of PSs in which PSSs (large multimachine,
reflecting real systems, smaller standard multimachine New-England type, and simplest single-
machine) operate. The tables contain detailed comments on the selected papers. The final part
of the review presents general comments on the analyzed papers and guidelines for future PS
stability studies.
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1. Introduction

A power system (PS) is a complex system consisting of devices for the generation,
transmission, distribution, processing, and consumption of electric energy. The purpose of
PS operation is to ensure an uninterrupted supply of electricity of appropriate voltage and
frequency while minimizing the costs of its generation and transmission.

A power system is subject to constant changes resulting from many reasons. There
is a permanent transient state in PSs. The classification of PS transients can be performed
based on various criteria. One of them is the criterion resulting from the type of changing
physical quantities. Electromagnetic, electromechanical, and thermal transient states are
usually distinguished (Figure 1). This division is also related to the rates of change (i.e., the
time over which these changes take place) of given quantities.
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Figure 1. Classification of transient states.

Electromagnetic transient states are associated with fast changes in magnetic and
electrical quantities, including, among others, magnetic fluxes, currents, and voltages. They
occur in the shortest time, usually not longer than a few seconds, after the phenomenon
that cause them (e.g., short circuits).
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Electromechanical transient states refer to situations in which electrical quantities (cur-
rents and voltages) and mechanical quantities (mechanical powers and rotational speeds of
electrical machines) change simultaneously. The concept of electromechanical swings is
inextricably linked with electromechanical transient states in systems with synchronous
machines. This concept is defined as oscillating changes in the position of a rotor with
respect to the stator. In electromechanical transient states, changes also take place after
stabilization of the electromagnetic quantities. The duration of electromechanical transients
is from several to several dozen seconds.

Thermal transient states associated with changes in the temperature of the elements
included in a PS are the last group of transients. Thermal phenomena are usually the slowest.
Their duration ranges from tens of seconds to minutes or hours. Visible changes in values in
thermal transient states usually begin after the disappearance of electromechanical changes.

It should be emphasized that all the above-mentioned transient states are interrelated—one
occurring transient state entails the occurrence of another state being slower.

Regardless of the type of transient, a state threatening the security of energy supply,
i.e., a failure, may arise in a PS. Therefore, properly designed systems are used in PSs to
eliminate possible failures or to minimize their effects. Among the devices eliminating
threats in electromagnetic transient states, one should mention electric power protection
automatics. Devices operating during electromechanical transient states include devices
that stabilize PS operation. The elimination of unfavorable temperature changes in PSs
takes place thanks to appropriate heating or cooling devices and thermal protections.

This review concerns devices whose operation is aimed at stabilizing PS operation
in electromechanical transient states. It should be emphasized that the literature on the
analysis of electromechanical transient states and the related stability of PSs [1–4] is ex-
ceptionally wide. Research is conducted all the time. Recently, the interest in this topic
has been increasing as new elements, including renewable sources and energy storage
that influence these transients, have been installed in PSs. The expansion of a PS causes
a number of new stability problems that scientists try to solve in various ways, including
the use of appropriate devices and control systems, the most popular of which are power
system stabilizers (PSSs).

As part of the literature review, several databases (websites) containing scientific
publications were searched. Due to the very rich literature, the scope of the search was
limited to 2017–2022. For example, after entering the phrase “power system stabilizers”
in the Elsevier database (Science Direct), the search system gave 18.327 results (2023—25,
2022—3544, 2021—3780, 2020—3106, 2019—2831, 2018—2640, and 2017—2401 results).
After the preliminary selection of papers found in the databases, more than 600 publications
were qualified for this review, of which 216 papers were analyzed in more detail.

It should be borne in mind that the papers selected for discussion were usually
multithreaded. For example, they relate to the use of artificial intelligence methods and
distributed energy sources. Consequently, the division assumed in the paper should be
treated as a subjective choice of the authors. Nevertheless, the authors tried to divide them
into individual thematic groups in such a way that the papers classified to a given area
reflected the trends observed in the literature.

This review consists of an introduction, a conclusion, and six sections in which the
issues from various subject groups are discussed. The first group, described in Section 2, in-
cludes classic PSS solutions. In Section 3, stabilizing systems based on artificial intelligence
are discussed. Section 4 deals with the issues related to modern automation algorithms
and currently installed PS elements. Section 5 focuses on the discussion of papers on elec-
tromechanical transient states in PSs with renewable energy sources (RESs) installed. New
methods of tuning systems for the stabilization of PS operation are described in Section 6.
The discussion is contained in Section 7. It presents a critical look at the possibility of
practical and common use of advanced solutions for PSSs in power engineering. Reference
is also made to frequently overlooked but important areas of research, such as the place
of installation of power-stabilizing systems in PSs and the uncertainties of parameters
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and measurement tests that allow for final verification of the obtained results. As part of
the summary, the found review papers on the issues discussed are also presented. The
information contained in individual sections is supplemented with tables in Appendix A.

Moreover, in the sections, there is no division of swings into local and inter-area
because, in most cases, the investigations were based on simulations of test systems without
explicit reference to the practical application of the discussed case. With this approach,
the type of swing actually does not matter. In the case of papers for which it is relevant,
information about the type of swing is provided in the table (with detailed notes) or in the
text of the given section.

As part of the review research, an initial selection of papers available in the most
popular digital libraries of scientific publishing houses and organizations was carried
out. As a result, a representative group of publications was selected. The authors of this
review, for the purpose of qualitative analysis of the selected papers, developed a number
of criteria according to which these papers were evaluated. This assessment was used for
the discussion and critical analysis in Section 7. As a consequence, general conclusions
were drawn and guidelines for further research, in particular related to the possibility of
the practical use of solutions described in the literature, were adopted.

2. Classic Solutions for PSSs

Ensuring PS stability is one of the basic technical problems of power engineering. It
should take place at the design and construction (expansion) stage of a system. Control
systems such as power system stabilizers are only additional elements, i.e., means of
improving stability and mitigating transient states. Synchronous generators, as the primary
power sources in PSs, are equipped with damping circuits generating relatively high
electromagnetic damping torques. However, the operation of excitation systems, especially
fast static ones, can reduce the values of these torques, adversely affecting the waveforms
of electromechanical transient states. This unfavorable influence of voltage regulation
systems can be reduced, among others, by the use of additional, regulating elements called
PSSs— in this section, understood as classic systems [2].

It should be emphasized that the use of classic power system stabilizers in the modern
digital voltage regulators of synchronous generators does not require large financial outlays
(a PSS is implemented as an additional fragment of the voltage regulator program code)
compared to other solutions improving PS stability (e.g., FACTS systems). It is worth
noting that the improvement in the damping of electromechanical transient states of PSs
thanks to the use of PSSs installed in excitation systems deteriorates the quality of voltage
regulation [2,4–7]. Nevertheless, the effects of classic PSSs can be comparable to the effects
of other systems, provided that they are properly selected (in terms of structure and
parameters). Therefore, the use and scientific research of classic PSSs are still justified.

Currently, various types of stabilizers are used in practice, from the simplest single-
input to complex, broadband, multi-input ones. Single-input stabilizers (e.g., PSS1A-type)
are simple in construction and tuning but have their drawbacks (e.g., a PSS with one input
from rotational speed when the speed is measured only in one place of the generator shaft
can amplify the torsional vibrations of the generating unit). These disadvantages can be
eliminated by using multi-input PSSs. Then, various causes of electromechanical swings
can be eliminated. However, tuning PSSs then becomes more difficult. It is also worth
emphasizing that incorrectly selected PSS parameters may worsen, not improve, the course
of electromechanical transients (i.e., strengthen the swings)—papers on the correct tuning
of PSSs are discussed, among others, in Section 6.

The authors of this paper included 42 items in the group of papers discussing the scien-
tific issues of classic power system stabilizers. Among them, four subgroups differing in the
subject matter discussed can be distinguished. The first subgroup, consisting of five papers,
concerns research on general issues, such as changes in the structure of PSs, problems of PS
stabilization, principles of simplifying mathematical models (used in simulation investi-
gations), and practical tuning methods. This subgroup includes papers [8–12], while [12]
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(despite the fact that it was published outside the analyzed period of time) is a selection
from broader investigations by one of the co-authors of this review concerning the whole
issues of PSS application in PSs, including optimization of parameters and locations of PSS
installation. The second, most numerous subgroup is papers in which the technical aspects
of classic PSSs are discussed, including their tuning, interaction with other PS elements,
modifications of PSS structures, and the place of installation of PS-stabilizing systems.
This subgroup includes 26 papers [13–38]. The third subgroup consists of three papers
related to the interaction of PSs, renewable sources, and new PS elements [39–41]. These
are only sample papers, and a wider selection of research on this topic can be found in
Sections 4 and 5. The last, fourth subgroup consists of eight papers [42–49]. The investiga-
tions described in them concern an important but often omitted problem of mathematical
modeling, particularly the parameter estimation of mathematical models of PS elements.
According to the authors of one of the papers [43], simulation studies are necessary to
determine the best practices in the field of planning and operation of power systems. They
provide insight into how its elements behave in transients. Therefore, it is important that
the mathematical models representing the existing infrastructure, particularly of power
plants (generating units), are reliable, i.e., they reflect reality sufficiently. Reliable math-
ematical models are necessary for such activities as protection coordination, design and
tuning of power system stabilizers, accurate tuning of underexcitation and overexcitation
limiters, etc. Therefore, although indirectly, research on mathematical modeling (parameter
estimation of mathematical models of PS elements) is an integral part of issues related to
PS stability and, in particular, the technical issues related to the use of PSSs.

The papers included in the last subgroup are not taken into account in the further
part of this section—they are not included in the summaries or in Table 1, which contains
detailed comments on the selected papers.

Table 1. Detailed comments on selected papers analyzed in Section 2.

Detailed Comments Paper

A paper on general issues related to PS stability. PSs with different, complex
structures of power network were analyzed. Particular attention was paid to the
problems of PS management (its control) resulting from current changes in the
power network. Only 52 items were referred to in the literature list, but the paper
should be treated as a literature review in the analyzed topic. The authors, through
a critical analysis of the existing solutions, presented a possible transition path from
the current, hierarchical control system (PS) to a new structure that, according to the
authors, supports the decarbonization of electricity generation.

[8]

In this paper, the authors presented the problems occurring in PSs related to the
relatively high power generation by photovoltaic (PV) sources and proposed
solutions that could help reduce these problems.

[9]

This paper presents the current problem regarding the increase in the number of
electricity sources characterized by stochastic changes in the generated power,
which result in stochastic changes in frequency in PSs. The authors proposed new
methods of PS modeling, taking into account distributed generation with
stochastic properties.

[10]

This paper describes the problems related to PSSs installed in an Indian PS. The
authors presented many interesting technical problems. [11]

In this paper, the authors proposed the use of properly tuned (e.g., optimized by
simultaneous tuning of many stabilizers) classic PSSs to damp inter-area oscillations
as an alternative to expensive FACTS systems.

[13]
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Table 1. Cont.

Detailed Comments Paper

This paper, through a thorough analysis of the hydraulic-mechanical part of a
generator drive system, presents a justification for the need to take into account
turbine model in electromechanical tests of transients, as well as in the optimization
of PSS parameters and voltage regulators (AVRs). However, the authors in their
research unfortunately used a simplified generator and network model (SMIB),
which might lead to a lack of reliability of the obtained results.

[14]

The authors presented a solution to the problem of limiting the allowable gain in
a PSS main circuit resulting from the provisions of the “guide for setting test of
power system stabilizer” of China. By modifying the structure of a PSS,
improvement in the damping of inter-area oscillations was achieved.

[15]

In this paper, an interesting modification of the structure of a lead-lag single-entry
power system stabilizer improving its properties was presented. [16]

The paper concerns research related to the first nuclear power plant in Egypt
(El-Dabaa). The authors, apart from specifying the stabilizer for the actual
generating unit, presented the parameters of a mathematical model of this unit.

[17]

The authors presented research leading to the elimination of low-frequency swings
in PSs. The influence of several PSSs installed in Spanish power plants on the
damping of inter-area swings (0.15 Hz) occurring in the European system was
analyzed. The appendix to the paper provides the parameters of the mathematical
models used.

[24]

In this paper, an analysis of the event (disturbance) that took place in Canada on
22 May 2018 is presented. This event caused power oscillations in a PS. The PSS-E
program from Siemens was used for the simulation tests.

[25]

In this paper, research on the Iraqi Super Grid is presented. Unfortunately, despite
being a case study, only the results for a 14-machine test system (South-East
Australian) were included.

[26]

The authors of this paper used Power System Computer-Aided Design software
(PSCAD) to carry out simulation tests. The Tehri Hydropower Plant (HPP) and
Koteshwar HPP high-power hydropower plants in India, part of the Tehri Hydro
Power Complex with an installed capacity of 2400 MW, were investigated.

[27]

This paper concerns a technical problem that occurs in real control systems, i.e., the
influence of the PSS dead zone on the operation of a stabilizer and the principles of
design of this dead zone.

[28]

The authors, using research on transient states in PSs, presented an interesting
alternative to Matlab, i.e., the SCILAB program. [31]

The paper presents, among others, measurements made at the Power System
Stability Laboratory of TU Sofia. The authors presented a lot of results of simulation
tests obtained with the use of ready-made models from the Matlab toolbox.

[32]

The authors presented measurements and analyses of the operation of a power plant
in Inner Mongolia (China) under the load of two generators at 70% and 30% of the
rated power.

[34]

Using stability studies, the authors presented the possibilities of the Power World
Simulator program for the investigation of transients in PSs. [35]

In this paper, an analysis of the influence of excitation systems on electromechanical
transients is presented. Two types of excitation systems, DC1A and ST1A [50],
were tested.

[36]
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Table 1. Cont.

Detailed Comments Paper

This paper presents a two-input, “single-band” stabilizer of the PSS3B type rarely
described in the literature. According to the author, the paper aimed to fill the gap in
the PSS3B’s ability to provide good phase compensation for a wide frequency range.
Two PS models, three- and two- machine ones, were analyzed. The summary
presented conclusions and technical recommendations, e.g., regarding the
advantages and disadvantages of the PSS3B stabilizer, including the possibility of
damping torsional oscillations.

[37]

Using DigSILENT Power Factory software, the authors presented the risks
associated with increase in PS power generation by wind turbines. [39]

Using the ETAP program, the authors presented the problem of transients occurring
in a PS with connected generating units, including wind, photovoltaic, and
Diesel engine.

[40]

The authors present studies on the actual fragment of the large PS (Yunnan - China
Southern) containing HVDC links. The analyzed PS fragment contains as many as
7 HVDC links. The paper presents a solution to the described problems.

[41]

In the papers included in the group discussed in this section, the basic method of research
(as in most of the analyzed papers throughout this review) was computer simulation. As the only
test method, simulation was used by the authors of 29 papers [9,10,12–24,26–31,33,35–40,49].
Measurement methods (alone or in combination with simulation studies) were used by the
authors of only six papers [11,25,32,34,41,42]. The study detailed in [8] was excluded from the
list of methods due to the review nature of the research described in it.

When analyzing the types of power system models used in research, it should be stated
that authors use a large variety of test systems and often their own systems, including those
mapping real systems (this also applies to the simplest single machine infinity bus /SMIB/
system, which can be created for a specific, real case [34]).

Among the standard test systems, the most often used was the SMIB system, which
was applied by the authors of 10 papers [14,20,21,29–34,38]. The authors also used other
standard systems, including 20-machine Nordic (for example, in [9,42]), four-machine
two-area (hereinafter called 4M2A) [13,16,18,19,23,49], ten-machine New England [10], and
three-machine WSCC [36] systems.

There was also a great diversity in the tested types of power system stabilizers.
However, the most frequently described type of stabilizers was the single-input lead-
lag PSS (in various versions, including PSS1A), which was tested by the authors of
19 papers [13–16,18–22,25,26,28,31,33,35,36,40,44,49] (which should not come as a surprise,
as it is a stabilizer that is often used in practice due to its relatively simple tuning). Among
other types of PSSs tested in the publications described, it is worth mentioning the PSS2A
stabilizer and its variants tested, among others, by the authors of [21,24,29,34,41] and the
PSS3B stabilizer tested, e.g., by the authors of [27,30,37].

Taking into account the number and type of the analyzed waveforms, it can be
concluded that, in the papers included in first group (classic PSS solutions), the great-
est variety in analyzed waveforms occurred. One waveform only was shown in eight
papers [10–13,19,21,34,40,49], and most often, it was the angular speed of the rotor or
its change (deviation). The remaining papers presented two or more waveforms, but
some [18,20,25,26,29,31,32,36,38] did not present generator stator voltage waveforms (ter-
minal voltage). The waveform of this voltage, as a quantity not directly related to electrome-
chanical swings, usually has a different character than waveforms of electromechanical
quantities (angular speeds of rotors, power angles, and instantaneous power of generators).
Therefore, it is worth analyzing the above-mentioned waveforms when examining the
effectiveness of PSSs.

Table 1 presents detailed comments on the selected papers analyzed in this section.
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3. Artificial-Intelligence-Based PSSs

Techniques and methods based on artificial intelligence have been present in scientific
research for many years. They are also constantly being developed, both on the theoretical and
application level. In case of complex, nonlinear objects that behave unpredictably, artificial
intelligence methods are willingly used due to their high potential. A power system is such
an object. Therefore, it is not surprising that there are many scientific papers describing the
use of artificial intelligence methods in PS control. Nevertheless, the number of these papers
is much smaller than those related to PS stabilization in which the uses of techniques other
than artificial intelligence are presented (cf. tables in other sections of this review).

In the analyzed papers related to electromechanical transients, three techniques of
artificial intelligence are discussed, i.e., artificial neural networks, fuzzy logic, and their
combination, i.e., neural-fuzzy systems. Recently, however, there has been no greater
interest in expert systems used as an element of systems stabilizing PS operation.

A total of 33 papers that present research on the use of artificial intelligence to stabilize
PS operation in electromechanical transients were selected for the detailed discussion. In all
the cases, artificial intelligence methods are presented as an alternative to classic solutions
(i.e., those in which artificial intelligence methods are not used). Among the papers, one can
distinguish those in which the analyzed PSs contain more and more numerous renewable
sources (wind power plants and photovoltaic systems), as well as power electronic devices
controlling system operation (e.g., static reactive power compensators STATCOM) [51–54].
It is worth emphasizing that, in only one case out of all 33 papers, the authors referred to
a specific technical problem in a real PS. This paper was about the PSS for the Al Sarir West
Power Plant (SWPP) in Libya [55]. Unfortunately, also in this case, the paper had rather the
character of a theoretical analysis.

The authors of the discussed papers described various types of regulation systems
based on the artificial intelligence technique to stabilize PSs. Due to the variety of solutions,
it was very difficult to distinguish subgroups relating to specific regulation techniques. Nev-
ertheless, among the analyzed papers, one can distinguish papers on sliding control [56–58],
PID controllers [54,59–63], and adaptive systems [50,63–65].

All the papers discussed in this section (including a previously cited paper [55])
presented computer simulation as the primary research tool.

The authors of the analyzed papers mostly used only one test power system in their
research. There were 23 such papers. Among them, in fourteen papers, a system consisting
of one generator and an infinite bus SMIB was described [51,55,60,61,64–73]. This system
was sometimes extended with additional elements, such as, for example, reactive power
compensation systems. In seven papers, the research concerned a two-area system with
four machines [52,54,59,63,74–76]. In the remaining two papers [62,77] the uses of different
systems were presented. Transient waveforms occurring in two different systems were
investigated in nine cases. In these papers, most often (seven times) the simplest SMIB
system and the 4M2A system were analyzed [53,56,57,78–81]. However, in two papers,
two other systems were analyzed [58,82]. Only in one paper [83], were three test systems
analyzed, and on this basis, conclusions were drawn about the possibility of stabilizing
PS operation.

When analyzing the number of the waveforms presented in the papers, it was found
that, in almost half of the papers (i.e., 15), only one transient waveform of the examined
PS was presented. In ten of these papers, the waveforms of the angular speed, its changes
(deviations), or frequency were shown. The waveforms of the power angle or changes in
this angle were presented in the remaining five papers.

The authors of twelve publications present two waveforms. Three or more wave-
forms were shown in six papers. The generator terminal voltage waveforms (not being
an electromechanical quantity) were presented in seven cases.

Table 2 summarizes the discussion comments concerning the selected papers.
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Table 2. Detailed comments on selected papers analyzed in Section 3.

Detailed Comments Paper

The introduction to this paper contains a very extensive literature review containing
42 items. [54]

One of the goals of the tuning described in the paper was to minimize the overshoot
and maximize the undershoot of the angular speed deviation. In this context, it
seems that there was lack of in-depth analysis of the impact of such a criterion on
the generator terminal voltage waveforms.

[55]

When examining the transients in a SMIB system, the authors assumed, among
others, an unusual disturbance in the form of a load power change of 0.2 p.u. [64]

The authors emphasized the practical importance of classic PSSs (i.e., not based on
artificial intelligence) resulting from their simpler structure and ease of tuning. [78]

It is worth comparing these two selected papers due to the very similar, partially
repeated investigations. One paper [68] is from the conference taking place on
30 April–3 May 2017 (date added to IEEE Xplore: 15 June 2017), while the other
paper [67] is from the conference on 21–24 May 2017 (date added to IEEE Xplore:
7 August 2017).

[67,68]

In Section 2 of this paper, the concept of modeling uncertainty used in creating the
model was introduced. To identify the system, a test signal introduced as a reference
value to the generator excitation system was used. The signal was a square wave
with a relatively large amplitude of ±0.2 p.u.

[76]

The authors of this paper presented research in which PS electromechanical
transients caused, among others, by asymmetrical short circuits, i.e., single-phase
fault-to-ground, were analyzed. Nevertheless, the applied mathematical model did
not take into account asymmetric states and did not assume subtransient symmetry
(Xd” for all three machines was different than Xq”—a more extensive description of
the model used is presented in [47] from the reference list of this paper).

[77]

The paper provides a broad review of the literature on various ways of stabilizing PSs. [79]

In the introduction to this paper, the authors presented a list of selected failures
caused by power swings in PSs. [83]

4. Modern Control Systems in PSs

The constantly developing theory of automatic control causes new control systems to
be used to control the processes taking place in complex systems, including PSs. Attempts
to adapt new theories have been reflected in numerous scientific publications. A similar
effect is achieved by the constant development of power electronic converter systems,
thanks to which it becomes possible to control voltage, power flow, etc. in PSs.

Some authors of publications have tried to use new control systems as elements to
improve waveforms in the electromechanical transients in PSs. It should be emphasized
that some of these systems have been a permanent element of PSs for some time (e.g.,
reactive power compensation systems). Nevertheless, the development works on them are
still carried out on a large scale, and new possibilities of these systems are still considered.

In this review, the papers related to modern control systems include 50 items, with
the proviso that some of the investigations presented in the papers were difficult to divide
into two separate categories, i.e., modern control systems (described in this section) and
PSS-tuning methods (described in Section 6). This problem results from the fact that the de-
scription of new control systems is often combined with the description of a tuning method.

All the papers analyzed in this section are divided into three thematic blocks. The
first group includes papers in which the main scientific problem under consideration is
a stabilizer, a control system, or more precisely, a regulator used to damp the waveforms
of selected quantities (e.g., terminal voltage, instantaneous power, or angular speed of
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synchronous generators) during electromechanical transients. This group consists of
24 papers [7,84–106]. The second group contains papers also on control systems, but only
those that use a distributed measurement technique, including systems based on the phasor
measurement unit (PMU). A total of 10 papers in this group are analyzed [107–116]. The
last group consists of 15 papers on the use of power electronic power converters, including
FACTS devices, for PS stabilization [80,117–131]. It should be emphasized that the last
group also includes publications on battery energy storage systems (BESSs) equipped with
power electronics systems. The papers of [119,126] may be an example of such publications.

The second, natural, applied division criterion is the technology used in the control
systems. However, in the publications under consideration, it was difficult to separate
groups concerning various issues. This was due to a large number of publications in
which the authors’ solutions were described. It could only be considered that a part of the
publications contained reference to lead-lag stabilizers known from the literature or their
modifications [108,112,120,121,124,126,128–131]. Another type of system described in the
publications under consideration was fractional order systems [92,98,101,105,115]. Papers
containing solutions based on a PSS4B stabilizer or its variants [93,95,100,104,106] could
also be distinguished. The PSS4B stabilizer is a well-known solution but is relatively rarely
used due to the large number of its parameters.

Computer simulation was the basic tool for the analyses described in this section. It
was used by the authors of as many as 47 out of 50 selected papers as the only method.
Among all the papers, it is worth mentioning the three papers in which a specific technical
problem was solved using simulation techniques [87,95,99]. Only in three publications, in
order to solve the problem or confirm the obtained results apart from simulation, were
measurement methods used on real objects or in a laboratory [7,86,100].

Simulation investigations on modern control systems in PSs, similarly as in other groups of
problems, were most often performed using only test systems and only in exceptional cases with
the use of a mathematical model of a real PS or fragment, as was the case in one publication [88].
Among the papers based on the analysis of test systems, only one PS was tested in forty-one cases,
in particular: three-machine systems (including WSCC) [117,120,121,123,128], four-machine
4M2O [90,94,97,101,106,109,110,114,115,119,132] systems, and larger (e.g., New England 10-
machine system or extended version with 16 machines) [108,111–113,119]. In the other 16 cases,
only SMIB systems were analyzed [80,84,89,91–93,96,98,99,102,103,105,118,122,127,130]. Only in
nine papers were two different PSs used for testing [85,87,88,95,104,107,116,124,125].

The results of the simulation tests and measurements presented in the papers were
usually the waveforms of various quantities in the PSs. Only one selected waveform
was presented in seventeen papers: rotor angular speed, its increment (deviation) or fre-
quency [84,87,96,101,105,107,108,114,116,120–122,126,130], or instantaneous power [95,107,112].
Two different waveforms were analyzed in twelve papers, with three or more waveforms
in twenty-one publications.

Terminal voltage (as a quantity not directly related to electromechanical swings), along
with other waveforms, was presented in sixteen papers, which was almost half of the papers
with more than one analyzed waveform [83,85,86,88,91,92,97–100,109,110,117,119,127,128].
Only one of the analyzed papers did not present any waveforms [93]. The obtained results
referred only to the analysis of the eigenvalues of the system state matrix.

The detailed comments concerning the selected papers related to modern control
systems operating in PSs are given in Table 3.
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Table 3. Detailed comments on selected papers analyzed in Section 4.

Detailed Comments Paper

In the introduction to this paper, an extensive literature review was carried out in
which as many as 49 items were analyzed. In the research, a step change in the
reference voltage from 0.9 to 0.8 p.u was used as the cause of the transient. When
analyzing the recorded waveforms during laboratory tests, a typical phenomenon
could be noticed: improvement in the generator power waveform caused by the
operation of PSS deteriorated the voltage waveform (Figure 5, page 220).

[7]

This paper presents a PSS based on the use of artificial intelligence methods as
a stabilizer for a static synchronous series compensator (SSSC). This is a good
example illustrating the fact that the use of a PSS in a PS is no longer reserved only
for the excitation systems of synchronous generators. Such a situation has been
forced by changes in PS structure and, in particular, the connection of renewable
sources that adversely affect the stability of a system.

[80]

This paper presents comparative studies of the effectiveness of the operation of
many different types of PSSs working in SMIBs. [84]

In this paper, a stabilizer using Park real-time transformation was proposed. The
obtained results were experimentally verified using a synchronous generator with
an apparent power of 83 kVA.

[86]

In this paper, a specific problem observed in a real PS is presented. “In April 2016,
when an asynchronous connection test was performed to connect the Yunnan power
grid to China Southern Power Grid (main grid), a ultra-low-frequency oscillations
arose in the Yunnan power grid with an oscillation frequency of 0.05 Hz and
amplitude of 0.1 Hz.” (page 1) The authors modeled this case and proposed
a solution to the problem.

[87]

In simulation studies, the authors analyzed changes untypical for real systems
causing the transient state in a PS, namely a large step change of 30% in field voltage
and a step change in mechanical power of up to 10 p.u. for a duration of 10 ms
(page 5059).

[88]

This paper contains an extensive theoretical introduction. The authors referred to
only 20 items; however, the issues under consideration were described in detail. [91]

In the simulation studies presented in this paper, the authors used a 10% step
change in mechanical torque as the cause of a transient state in a PS. It is also worth
noting that, in the tested PS, in the steady state (before and after the disturbance),
the terminal voltage had a large value of 1.172 p.u. (Figure 4b, page 714). The
authors included only two sentences in the conclusion.

[92]

Using the example of this paper, it is worth asking the following question: why is
a “broadband” PSS (which is for damping electromechanical swings in a wide
frequency range) such as a PSS4B tested in a single-machine system (SMIB)? In real
PSs, power swings are usually associated with the simultaneous influence of many
generating units.

[93]

This paper presents research on two PSs. In the first part, the authors used a popular
4M2A system. The second part describes a large system—the North China
System—consisting of 547 generating units and 8647 lines. It is a pity that the
authors presented so few research results and did not show selected waveforms for
the large PS.

[95]

This paper presents research on a “multi-band” system stabilizer (MBPSS) with
a different structure than the PSS4B known from the literature. An MBPSS is for
simultaneously damping electromechanical swings of many frequencies. It is worth
paying attention to the extensive literature review, which included as many as
52 items.

[104]
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Table 3. Cont.

Detailed Comments Paper

In the PS analyzed by the authors, in the steady state (after introducing the
disturbance) there was a power imbalance, which was evidenced by a non-zero
deviation in the angular speed of the rotors of synchronous generators. It should be
emphasized that, in real systems, such an imbalance is corrected by appropriate
control systems.

[106]

In a 4M2A system, the influence of load characteristics on PS operation was
analyzed. Two equivalent induction motors constituting dynamic loads were used
as the load. It is worth emphasizing that, in a real PS, the loads are of different
character. The differences in the character of loads were considered later in the
paper, additionally treating loads as a source of uncertainty, which is a relatively rare
but deliberate approach in the investigation of PS stability.

[107]

In the introduction, a comparative analysis of various solutions with energy storage
improving the operation of PSs in transient states was made (Table 1, page 3).
A solution based on distributed measurements was proposed.

[119]

As one of the issues considered in this paper, the rarely discussed problem of
optimizing the location of PSS installation is presented. This problem was solved on
the basis of an analysis of participation factors of rotor speed. Based on the results, it
was observed (which is already known from the literature) that the appropriate
allocation of a PSS improved the damping of transient waveforms in a PS.

[131]

5. PSSs in Networks with Renewable Sources

Recently, there has been a significant increase in the use of renewable electricity sources.
Among them, the most popular in the context of research on power system stability are
wind and photovoltaic sources, especially because wind and photovoltaic sources do not
work continuously. They only produce electricity when wind and solar radiation energy is
available. Consequently, PSs have to continuously compensate for the changes in active
power to keep frequency constant. Additional problems may be caused by the presence of
converter systems installed in renewable sources. Power electronic systems allow for the
quick control of power (active and reactive) and voltage, which may adversely affect the
voltage and frequency values in a PS. Moreover, the presence of wind and photovoltaic
sources in PSs reduces the resultant PS inertia, which results in increased susceptibility of
PSs to electromechanical swings.

From all the papers analyzed, 16 items concerning improvement in PS stability were
selected for detailed discussion. The selected papers in this section are related to renewable
electricity sources and, at the same time, do not belong to any of the other topics discussed in
this review. On the other hand, in other sections of this review, one can find papers in which
the authors also describe issues of the operation of renewable energy sources in PSs. For
example, [29,32] concern classic stabilization methods used in PSs with renewable sources
and are discussed in Section 2. Similarly, [52,54] contain research on artificial intelligence
methods and are described in Section 3, while [91,131] are discussed in Section 4, as they
deal with new regulation techniques. The research in [133], which concerns a multicriteria
tuning technique of control systems in PSs with wind turbines, is also described in Section 4.

Publications on the problem of PS stabilization with installed renewable sources can
be divided by the type of the analyzed sources, namely papers discussing the operation of
PSs with photovoltaic installations [134–137], PSs with wind turbines [133,138–141], and
PSs with water plants [142,143]. These three issues were covered by 12 papers. The next
four items, i.e., [144–147], relate to the stability of hybrid networks, i.e., those in which
different types of sources are installed. The first [144] concerned a hybrid wind–water
system, and [147] dealt with a wind–photovoltaic system. The research in [146] discussed
the phenomena in a network where wind, water, and Diesel sources were installed. In [145]
(which was also considered to concern a hybrid system), the cooperation of a photovoltaic
installation and a battery energy storage system was analyzed. The research in [148], which



Energies 2023, 16, 1945 12 of 32

discussed transient problems in microgrids with Diesel sources installed, is also included
in this section. This paper was classified as such because the issues described in it could
also be related to problems in other networks, including networks with renewable sources.

As in other groups of issues, also in the case of the analysis of PSs with renewable
sources, computer simulation was the main research method. Only in one case [142] did
the authors supplement the simulation results with results obtained in a laboratory and in
an operating hydropower plant. Simulation was also the only research method described
in [143], which concerned a specific case, i.e., the improvement in dynamic properties of
control systems for water sources of the Aswan dam.

For the analysis of phenomena in PSs with renewable sources, the authors of the pub-
lications chose known test systems, such as 4M2A (used, e.g., in [133,138,140]) and WSCC
(used in [134,141,147]) systems. In [135,139,142], the analyses concerning the simplest case
of a system, i.e., connection of the source with an infinite bus SMIB, were described. In the
remaining papers, more complex PS models were used (e.g., a New England 16-machine PS
was used in [137]) or the phenomena were investigated in specially designed systems (as
in [145]). Standard PS models were most often supplemented with additional generating
units representing renewable sources (as in the cases of the PS 4M2A systems in [133,138]
or the WSCC systems in [134,141,147]). It is worth noting that, in some papers, more than
one PS was used for the analysis (e.g., combination of 4M2A and New England 10-machine
system, as in [133]).

Another division of the papers could be carried out by analyzing systems improving
the dynamic properties of PSs.

In [134,135,137–139,141,145], uses of single-input system stabilizers such as PSS1A [50]
or lead-lag stabilizers [137] to stabilize PSs were presented. The stabilizers usually had
two phase compensation elements [50]. In individual cases, the following stabilizers were
used for stabilization: PSS4C [147], PID [143], and a fractional-order stabilizer [146]. The
remaining analyzed papers describe the developed new stabilizer structures.

As confirmation of the obtained results presented in the papers belonging to the an-
alyzed research area, all the authors presented the waveforms of selected electrical and
mechanical quantities during electromechanical transients. Unfortunately, most of the
authors (eight analyzed papers) presented only one selected waveform. The waveform
of the angular speed of the rotor or its increase (deviation) was presented in three pa-
pers [133,134,137], while the waveform of the instantaneous power or its increase was
included in two papers [140,142]. Additionally, in two papers, the authors presented the
power angle waveforms (often called the rotor angle) [141,147] and, in one case [136],
the frequency waveforms of the analyzed PS. In six papers, two waveforms [135,138,148]
or three waveforms [143,145,146] were shown. Only in two cases were more than three
waveforms presented. As already indicated, the verification of the correct operation of
power-stabilizing systems requires checking of whether both the waveforms of instanta-
neous power and those of voltage in PSs are within the acceptable range of changes. Such
a verification was carried out in [139,143–146] by analyzing the voltage and instantaneous
power waveforms. At this point, it is worth mentioning that, in two of the analyzed pa-
pers [139,144], the reactive power waveforms were presented without giving any physical
interpretation of this power or a power theory that would define transient reactive power.
Despite this, the reactive power waveforms in [139] were in some sense justified because
they resulted from the extension (generalization) of the definition of the reactive power
of an induction machine in a steady state to transient states. In this paper, the active and
reactive power control systems in a wind turbine were analyzed.

Moving on to the discussion of the content of individual papers, it should be empha-
sized that, also in the case of the analysis of PSs with renewable sources, the power system
was only an example for general considerations that was more related to the theory of
regulation than to technical problems occurring in an actual system. This was the case
in [133–135,137,145,147]. The consequence of this is the fact that it was difficult to move
the research and, in particular, the conclusions presented in the papers to practice.
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Discussion remarks concerning individual papers are summarized in Table 4. As in
the previous sections, only those papers which, in the authors’ opinion, stood out from the
other analyzed items are discussed.

Table 4. Detailed comments on selected papers analyzed in Section 5.

Detailed Comments Paper

This paper contains a comparison of optimization algorithms, including the
collective decision optimization (CDO) algorithm, the grasshopper optimization
algorithm (GOA), and the salp swarm slgorithm (SSA), used for the optimization of
power system stabilizers in a network with installed photovoltaic sources.

[134]

In this paper, a one-input lead-lag stabilizer with only one phase compensation
element was analyzed. [135]

In this paper, it was proved that the regulation of renewable sources (in particular,
wind farms), despite a reduction in the power generated in the source, was beneficial
because the lack of such regulation had many more dangerous consequences,
including the possibility of a failure in a PS and the related financial consequences.

[138]

In this paper, the problem of the uncertainty of parameters of a PS mathematical
model was taken into account. The paper described the tests at a hydroelectric
power plant in Brazil (a power plant with 23 generating units with apparent power
of 350 MVA each). In the conclusion, the authors stated that the safe application of
adaptive control techniques in real, large power plants is a challenge, as opposed to
research based only on simplified computational models. The reason was that real
systems have many nonlinearities and uncertainties of parameters that may not be
taken into account in simplified calculation models. The authors of the publication
showed improvement in the waveforms in simulation tests by applying a new
regulation technique. However, the improvement in the waveforms for the real
object was not significant. It should be emphasized that such a situation is natural.

[142]

The authors analyzed an actual PS associated with the hydroelectric dam and power
plant in Aswan, Egypt. Unfortunately, in the paper, there was a lack of measurement
verification of the analyzed case.

[143]

The authors used ready-made mathematical models of PS elements available in
Matlab Toolbox. It should be emphasized that the authors analyzed symmetrical
and asymmetrical short circuits (single- and two-phase to ground) without
specifying in the content of the paper whether the mathematical model used
allowed for modeling the phenomena occurring in asymmetrical transient states.
The authors analyzed the reactive power waveforms during transient states, as well
as asymmetrical ones, i.e., with distorted waveforms (Figure 7, page 5040). However,
the paper did not refer to the applied power theory according to which the authors
determined the reactive power waveforms in the tested system.

[144]

The paper contains investigations of a PS with photovoltaic sources and energy
storage in steady and transient states. The conclusion to the paper consisted of only
62 words. They were very laconic and obvious.

[145]

The authors investigated transients in PSs with fractional-order control systems.
These studies concerned, among others, the system response to a step change in the
voltage reference value, including a surprisingly large change from 0 to 1 p.u.
(Figure 2b, page 4).

[146]

This paper contains practical postulates, e.g., concerning an assessment of critical
short-circuit times and stability margin in the study of power microgrids. In the
paper, an analysis method that allowed studying the stability and influence of PSSs
on microgrids was proposed.

[148]
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6. Use of New Optimization Methods for Tuning PSSs

The most numerous group of papers analyzed by the authors was descriptions of
research on new methods of tuning the systems stabilizing PS operation during electrome-
chanical transients. A total of 62 papers were included in this group.

It should be emphasized that a PS (even consisting of only one synchronous gener-
ator with a drive and a control system connected to an infinite bus) is a complex control
object. Consequently, a PS is an attractive example, among others, for testing methods
of selecting parameters for control systems, as evidenced by the number of the analyzed
papers. However, the examples described in many papers can be considered as contribu-
tions to optimization methodology rather than contributions to the development of PS
stabilization methods.

The authors of the papers used many different optimization algorithms (optimization
methods) to determine the desired (optimal) parameters of control systems, improving the
waveforms in electromechanical transients. They included the following, among others:

• Particle swarm optimization (PSO) and its variants, including hybrid algorithms (e.g.,
chaotic particle swarm optimization and binary particle swarm optimization (BPSO)),
which were applied 11 times in [149–159];

• The genetic algorithm (GA) and its variants (e.g., the multi-objective genetic algorithm
(MOGA) and the non-dominated sorting genetic algorithm (NSGA-II)), used in seven
cases [160–166];

• The farmland fertility algorithm (FFA), used in [167–169];
• The gray wolf optimization (GWO) algorithm, used in [153,170,171];
• The bat algorithm (BA), used in [172,173];
• The jaya algorithm (JA), used in [174,175].

Other algorithms, such as, e.g., the dragonfly algorithm (DA) [176] or gorilla troop
optimization (GTO) [177], were used only in single cases. It is worth adding that more than
one algorithm was used in some papers.

Computer simulation was the basic research method used by the authors of the papers
discussed in this section. Other methods were also used only in four of the analyzed
papers [178–181]. It is obvious that, in relation to control system tuning methods, computer
simulation was commonly used because the most frequently used tuning methods were
numerical optimization algorithms searching for the objective function extremum depend-
ing on the parameters to be set. It should be emphasized that a PS is a real system, and its
elements (e.g., generating units) can be modeled in a laboratory. Therefore, measurement
verification of the obtained results is desirable, although rarely used (such verification
can be performed in a laboratory [7,86,142] or on a real object [142,180]). The selection of
parameters for PS-stabilizing systems, including PSSs, was usually carried out with the use
of commonly used test systems. In fifteen papers, at least two different systems (e.g., the
simplest SMIB and the more complex 4M2O) were considered. The most commonly used
test systems included the following:

• A SMIB as either the only system considered [149,152,163,164,166,168,173,175,179,182–188]
or supplemented with another, more extended one [150,151,189–191];

• A WSCC as either the only PS [160,167,192–194] or supplemented in other
cases [151,158,161,191];

• A 4M2O as either the only system considered [151,155,170,171,177,195–198] or supple-
mented with another one [133,150,176,189,190,199–203];

• A 10-machine New England as the only system [157,162,169,174,178,204,205] or sup-
plemented with another one [133,158,161,176,199,201,202,206].

The stabilizers whose parameters were determined in the analyzed papers most often
were as follows:

• Lead-lag PSSs were used in 41 works, including, among others, in [133,150–152,155,
156,159–164,166–172,174,176,177,182,184,188,189,191–194,196–198,200–207];

• PID-PSSs [149,153,183];
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• Robust control systems (regardless of the version) [157,186,208];
• Fractional order systems [173,185];
• PSS2As [165,175].

Other elements of PSs, e.g., PSS4B [158] stabilizers or other systems stabilizing PS
operation (such as, e.g., a UPFC [178]), were tested only by the authors of single papers.

The simplest single-input PSS of the PSS1A type or its simplified version of lead-lag
was the most frequently studied by the authors of the publications. The authors’ experience
showed that it was also often used in various PSs due to difficulties in the practical tuning of
more complex stabilizers. Thus, a multitude of studies on PSS1A stabilizers could be helpful in
practice. Unfortunately, most of the papers concerned a hypothetical test system (including the
simplest SMIB system, e.g., in [151]) without explicit reference to practical problems occurring
in real systems, which are discussed in more detail in the summary of this paper.

Taking into account the transient waveforms analyzed in the papers, it can be concluded
that, in one-third of the publications (i.e., in twenty-two papers), only one waveform was
presented as an effect of tuning the PS-stabilizing system. Two waveforms were presented in
a similar number, i.e., in twenty papers. In four publications [178,179,191,208], no waveforms
were presented. On the other hand, in 14 publications, 3 or more waveforms were shown.

Most often, the authors presented the waveforms of the angular speed or its increase
(deviation), i.e., in 14 publications. In four papers, one could find the waveforms of the
power angle, and in three, waveforms of the instantaneous power. The terminal voltage
waveform was the only one presented in [151]. In 11 papers, the terminal voltage waveform
was presented in comparison with other waveforms, e.g., instantaneous power waveforms.

Detailed remarks regarding selected (most interesting) papers discussed in this section
are summarized in Table 5.

Table 5. Detailed comments on selected papers analyzed in Section 6.

Detailed Comments Paper

In this paper, three different optimization algorithms for PSS parameters were
compared. The results were compared with a “classic” PSS (as the authors
called it). Unfortunately, the conclusions concerned only the analyzed
algorithms and did not refer to technical problems in real systems.

[153]

In the introduction to this paper, the authors analyzed the content of as many
as 48 literature items. [152]

As a disturbance in the steady state, the authors used, among others, a step
change in the driving torque. [156,185,189]

The reference stabilizer in this research was the “classic” PSS. Unfortunately,
the system with the reference stabilizer was unstable. Therefore, it was difficult
to assess the solution presented in the paper.

[166]

In these papers, the authors provide a broad review of the literature. [170,183]

The literature review in the introduction to this paper contained 36 items. [171]

The paper is one of the few that analyzed the problem of determining the place
of PSS installation. The analysis was based on the study of eigenvalues of the
PS model state matrix.

[174]

In the introduction, the authors presented a review of 22 literature items.
A two-input stabilizer, one input signal of which was a hard-to-measure drive
torque signal, was investigated.

[175]

Only the eigenvalues of the state matrix of the investigated PS were analyzed
in this paper. Despite the lack of analysis of the waveforms in the test system
(without linearization), the following was stated in the conclusions: “The
results indicated that the system remained stable, with high damping margin,
even in different loading scenarios, demonstrating the robustness of the
parameterization obtained.” (page 772)

[178]
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Table 5. Cont.

Detailed Comments Paper

This review paper contained extensive descriptions of the analyzed problem. It
deserves attention despite the fact that it does not apply directly to PSS tuning
(except for one literature item regarding the coordinated design of a PSS and
an SVC to maximize damping). However, the paper is an example of reliable
literature research on optimization algorithms.

[181]

The authors presented a method of PSS parameter optimization based on the
analysis of the position of the system state matrix eigenvalues on a complex
plane. A slight improvement compared to the “classic” solution was obtained.
This fact should not come as a surprise, as the actual system was analyzed in
the paper. Unfortunately, the authors presented only the instantaneous power
waveforms, and in this case, the generator stator voltage waveforms would
also be extremely interesting. There was also a lack of research into the
effectiveness of the proposed solution with regard to a larger PS.

[187]

This paper presents an interesting, practical tool for PSS tuning. [190]

In the introduction, the authors reviewed only four literature items. [192]

This paper deals with the interesting issue of situational awareness, i.e., the
knowledge of the current and future PS state. [198]

This paper presents an analysis of rotor angular speed after a short circuit
lasting 80 ms, with the time of observation of the waveforms assumed to be as
high as 100 s, during which the speed oscillated.

[199]

This paper presents an interesting method of designing a PSS for complex PSs.
The method was based on the SMIB model. [201]

Wavelet transform was used in this research on PS stability. As part of the
introduction, the authors presented a description of the issues contained in
33 papers.

[203]

This paper includes a very extensive introduction with an analysis of various
tuning methods. The content of the paper presents an extended description of
selected algorithms. The authors presented a comparison of six different
tuning methods and performed a convergence analysis.

[209]

As part of the summary of this section, it should be emphasized that, from the point of
view of technical problems occurring in a real power system, the appropriate selection of
the parameters of control systems (including PSSs and AVRs) is of fundamental importance.
Therefore, investigations on the search for a method of their determination are very impor-
tant. These investigations, however, must be related to practice, i.e., to real systems. Only
in this case can their application in practice result in the expected success, i.e., improvement
(stabilization) in the waveforms during electromechanical transient states.

7. Discussion and Problems

At the beginning of our summary, it is worth presenting other review papers discussing
the current state of research on improvement in PS transient waveforms with the use of various
types of stabilizers. The following items [210–221] were taken as examples of such papers.

A significant part of the review papers dealt with the issues of the impact of, now more
and more common, renewable sources on transients and ways of reducing the adverse
effects of their presence on PSs. These publications included [210–214]. In the conclusion,
one can find the statement that RESs in a PS may cause greater oscillations and make the
system less stable, but whether the impact of sources on a PS is positive or negative may
depend on the topology of the system, as well as on the type and location of a disturbance
(short circuit). Particularly noteworthy is [213], which is not a typical review paper (it
contains only 28 items in the reference list); however, in its text, one can find a lot of general
information about the discussed problems. It is also worth emphasizing the importance
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of [214], which concerned a relatively narrow problem, i.e., the work of DFIG-based sources
in PSs. Despite the relatively narrow subject matter, the authors managed to analyze
125 different items of literature relating to the discussed problem.

The use of artificial intelligence methods in control systems designed to stabilize
power swings in PSs was an important problem discussed in the review papers. These
papers included, among others, [215] published in 2018 and discussing 187 items published
after 2010. The topic of the use of artificial intelligence was also present in more general
reviews, e.g., in [216].

On the other hand, the papers [170,216,217] on the use of various techniques to
improve PS stability were of general nature. The authors of these publications provided an
overview of a large number of literature items, from 131 in [216] to 181 in [218].

In [219], there were only 54 items in the reference list, and it was difficult to call this
paper strictly a review paper concerning the damping of oscillations in PSs. Nevertheless,
this paper presented comparative studies and referred to the important problem of the
influence of stabilization of electromechanical swings in PSs on node voltages.

Two items [220,221], which present the problem of transients in PSs in a fragmentary
way, should also be mentioned. In [220], an overview of the research to date on intelligent
techniques for stabilizing power systems was presented, and for this purpose, 40 items
of literature were analyzed. The authors of [221] presented a review of 56 literature items
concerning various methods of damping transient waveforms in PSs.

As mentioned above, some of the research results presented in the analyzed papers
were difficult to adapt to engineering practice. These problems may result from the fact that
the authors usually presented general research results, to a small extent taking into account
the actual technical problems, e.g., those related to situations when the data contained
errors or important information was missed. As a consequence, it did not allow the full use
of conclusions and sometimes forced repetition of the research in order to reliably verify
the hypotheses before the practical application of the proposed solutions. This made the
practical and common application of the presented solutions more difficult, despite the
often very promising results presented in publications.

Without dividing the analyzed papers into individual subgroups (according to the
titles of the sections), it can be stated that, in 62 out of 204 papers, only the simplest PS in
the form of a generator connected to an infinite bus (SMIB model) was used for simulation
studies. It is worth emphasizing that, in some cases, such a simplified mathematical PS
model was sufficient, e.g., to analyze the waveforms of a generator connected to a system
node with a short-circuit power much greater than the rated power of the source. However,
it is difficult to explain why the mathematical models of synchronous generators analyzed
in SMIB systems were sometimes so simplified. An example of such an approach can be
research based on the use of a synchronous generator model without damping circuits and
the selection of a PSS, which is for damping power swings, for this generator [112,151]. In
such a situation, it is obvious that the omitted generator damping circuits would partially
damp the power swings, and thus, the PSS would have to have different parameters or
would not be needed at all. In this context, it is worth noting that the justification for such
research in [151] (on page 2: “The machine was represented by its third-order linear model,
where only the effects of the armature and field windings are considered.”) was presented
referring to a very well-known paper [222]. However, this is a paper from 1969, while
the currently available techniques allow for the analysis of much more complex and, at
the same time, much more accurately reflecting reality mathematical models. A different
approach was used in [223], in which a SMIB system was also used for the analysis of
transients. In this paper, however, the authors used a complex mathematical model of
a generator and model parameters consistent with those of a real system.

It is worth noting that investigations—especially those performed in a simple
system—should be verified in a real system (e.g., using measurement methods). This is difficult
or often impossible due to work safety in PSs. Such validation, after confirming the assumed
hypotheses, gives grounds for conducting research in a real system, or at least encourages it.
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In this group of problems, it is also worth mentioning the use of models inconsistently
with their scope of applicability. The most striking example of this is the study of asym-
metric states using symmetric models. With regard to the discussed issues, it concerns the
investigations of transient states using symmetrical models for a disturbance in the form of
a short circuit, e.g., single-phase (unsymmetrical). Such action, presented, e.g., in [77,90],
has no methodological justification and leads to falsification of the results obtained, which
may result in a lack of reliability of these results and the conclusions drawn. It is worth em-
phasizing that it is also possible that the authors used the models in accordance with their
intended purpose, and only the limitation of paper volume forced by external conditions
(e.g., the publishing house) did not allow for a full presentation of the method used. Then,
however, it can be considered as a certain oversight of the authors—not a substantive error,
but a linguistic error consisting of the ambiguity of the description.

Another problem that could be noticed in the analyzed publications was the use of
example (standard) parameters of mathematical models (which do not represent the real
system [224]) for research, e.g., in [170]. This method is obviously correct and gives reliable
results. It also has the undoubted advantage of being able to compare results for different
cases. Nevertheless, it seems justified that broader research should be concluded with
analyses for real parameters and not only test (example) ones. This problem is related to
the problem discussed later of omitting the necessity of estimating reliable parameters of
PS elements and taking into account their possible uncertainties. In this context, one more
practice present in the published papers should be mentioned, namely the use of ready-
made models offered by simulation programs, particularly by Matlab [153,189]. Facilitating
modeling by using ready-made mathematical models of test system elements provided by
software is not reprehensible in itself. Nevertheless, one sometimes receives the impression
that research published in papers is a student assignment rather than serious science. In
addition, mathematical models provided in the form of ready-made simulation files are not
always properly described, and therefore, it is difficult to consider them as a representation
of a real system because they are created as a demonstration of software capabilities.

From a methodological point of view, reasoning on the basis of the obtained results is
a basic process. Properly formulated, detailed conclusions and their generalization included
in the summary are the results of the research. On this basis, subsequent researchers or
users (e.g., employees of companies servicing PSs) can evaluate the presented solution
and continue the research or use it in practice. Excessive simplification of conclusions or
reducing them only to a summary of the research significantly limits the development
and implementation potential of research. In addition, conclusions that boil down to the
statement that one of the tested solutions was better do not bring much to the field of science.
With laconic conclusions, it is difficult to determine the advantages and disadvantages of
various solutions, and thus, the potential user receives only selected data on the basis of
which it is difficult to make a responsible decision (e.g., regarding the selection of the type of
PSS) while minimizing the risk. An example may be the following publications: [71]—in the
substantive part of the conclusion, it was stated only that (page 6) “The simulation results
for three types of FFNN i.e., PNN, MLP and RBF are compared. The RBF based PSS shows
its robustness over all other types of FFNN based PSSs. Hence it is concluded that an RBFFN
based PSS has superior control on the negative damping effect of AVR. Such type of PSS can
improve transient as well as dynamic stability of power system.”; [147]—the conclusion
contained only one sentence; [196]—the conclusion contained only three sentences (sixty-on
words); and [197]—the conclusion consisted of only eighty-four words.

A similar effect to that laconic conclusions is achieved by presenting only selected
results. Such a special case is the presentation of speed or power waveforms without
showing the waveforms of voltage changes in PSs. It is then difficult to reliably and fully
assess the correctness of the results obtained. An example may be the comparative analysis
of two different PSSs. Their comparison with the use of angular speed deviation waveforms
(e.g., using an integral criterion [174]) indicates one of them. However, it may turn out
that the selected solution (better in terms of the assumed criterion) causes unacceptable
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voltage changes in a PS, the elimination of which is associated with such a change in the
solution considered better that it becomes comparable or even worse. It can be presented
graphically by marking both solutions in a two-dimensional space, as in Figure 2. For this
reason, multi-criteria analyses, as described, e.g., in [133,189], are so valuable because they
present solutions taking into account many, often contradictory, criteria [4,6].
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(A, B—original solutions; ∆X—vector of change in the properties of solution A transforming it into
a new solution A’).

Another important issue is the omission of technically important problems in scientific
research. It is difficult to require that, in one scientific paper, all issues related to a given
topic should be discussed. Nevertheless, some problems related to the discussed issue can
and should be signaled. For example, when discussing simulation methods, it is worth
referring to the reliability of the mathematical model (which has been mentioned in the
context of simplifying the mathematical model of an analyzed PS). In particular, there
are three problems: firstly, the adequacy of the model as such; secondly, the estimation
of parameters; and thirdly, uncertainty imminent in PSs [4,5,76,107,142]. With regard to
specific problems of PSSs often overlooked in the analyses, it is also worth mentioning the
problem of the appropriate location of PSSs in PSs [131,223].

In part of the analyzed papers, unusual shapes of the obtained waveforms could be
noticed that, without additional explanation, may be considered substantive errors. In this
rather general context, it is worth pointing out in particular the problem of the so-called “not
maintaining the initial condition”. In PS simulation investigations, various disturbances are
used to initiate the transient state, e.g., a short circuit in the line. The unwritten rule is that at
least the first disturbance (provided that many sequential disturbances are considered, e.g.,
an auto-reclose relay sequence of a short circuit, fault clearing by overcurrent protection, dead
time, and voltage reconnection) is introduced when the steady state occurs in the system. This
approach allows for a reliable assessment of the response of control systems to a disturbance.
If, however, a disturbance occurs in a transient state, the effect of the control system operation
is complex and results from the disturbance and the previous transient state. Deviating from
this principle (consciously or not) disturbs the reliable assessment of the presented solutions
and the reliability of the comparative analysis. Waveforms in which “not maintaining
the initial condition” occurred were present in many papers [20,96,126,127,129,153,155]. It
should be emphasized here that such “not maintaining the initial condition” can have many
causes. One of them is an incorrect power balance in the analyzed PS, which occurs in large
systems where the power distribution must be determined by iterative methods. The second
reason may be an incorrect algorithm for determining the initial conditions of the integrating
elements in mathematical models. Both of these reasons may result from the achievement of
limits in control systems that are not included in the power distribution. Another and, in the
context of developing new control systems, one of the smallest problems may be instability in
the system (the PS mathematical model). In all these cases, the results obtained (in a system
with “not maintaining the initial condition”) may be unreliable. Selected examples of “not
maintaining the initial condition” are shown in Figure 3.
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Taking into account the above-mentioned problems, it is worth emphasizing
once again the importance of papers describing the practical use of PSSs (in a real
system) [11,26,40,49,142,180,223,225] or at least the measurement verification of the ob-
tained results [7,33,86,90]. It is also worth adding that, in practice, the methods described
in papers published, among others, many years ago are still used [226–230].

8. Conclusions

The following doubts regarding the analyzed papers can be listed:

• Performing transient analyses only for the simplest systems and network systems
(e.g., for the SKIB system) without verifying the results in a more complex system;

• Basing only on standard parameters of mathematical models of PS elements without
referring to the problems of estimating reliable parameters of these models;

• Narrow conclusions only in the context of the research carried out without reference
to technical problems occurring in real systems;

• Presentation of only a narrow part of the obtained results;
• Omitting technically important problems in scientific research, including interactions

between different waveforms occurring in a real system;
• Presentation of unusual behaviors of a system that, without any additional explanation,

may be considered factual errors.

In view of the above, it is to be hoped that further progress in the research on transient
waveform improvement methods is based on real data and that the proposed solutions are
easier to use in the industry without the need to repeat investigations (including testing the
methods) so that their results can be considered reliable and applicable in a power plant.

Taking into account the extensiveness of the subject related to the stabilization of PS
operation (in which there are more and more new elements connected with, among others,
distributed generation and energy storage), despite the large number of publications, there
is a need for further work. This applies to both research related to the use of PSSs and
analysis of the available literature on this topic.

As a continuation of the work, the authors of this review plan to conduct an in-depth
analysis of the available literature, particularly an analysis of the mathematical models used
(adequacy and reliability of parameters), quantitative and qualitative analyses of waveforms,
e.g., instantaneous power and voltage of generators (determination of regulation times and
values of regulation quality factors), comparative studies of different types of stabilizers, and
determination of the limitations of practical applications of solutions discussed in the literature.
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Appendix A

Table A1. Test systems used.

Power System
(Test System)

Number of Papers
References

In General In Chapters

SMIB
(single-machine infinity bus) 79

Ch. 2 10 [14,20,21,29–34,38]

Ch. 3 21 [51,55–58,60,61,64–73,78,80,81,83]

Ch. 4 23 [7,80,84,86,88,89,91–93,96,98,99,102–106,118,122,125–127,129,130]

Ch. 5 3 [135,139,142]

Ch. 6 22 [133,150–152,156,163,164,166,168,173,175,179,182–191]

4M2A
(two-area four-machine)

power system
58

Ch. 2 6 [13,16,18,19,23,49]

Ch. 3 14 [52–54,56,57,59,63,74–76,78,80–82]

Ch. 4 16 [87,88,94,95,97,101,106,107,109,110,114–116,125,131,132]

Ch. 5 3 [133,138,139]

Ch. 6 19 [133,150,153,155,170,171,176,177,189,190,195–203]

New England 10
(10-machine,

39-bus power system)
26

Ch. 2 2 [10,40]

Ch. 3 2 [82,83]

Ch. 4 5 [85,107,108,113,116]

Ch. 5 1 [133]

Ch. 6 16 [133,157,158,161,162,169,174,176,178,199,201,202,204–206,209]

New England 16
(16-machine,

68-bus power system)
8

Ch. 3 1 [79]

Ch. 4 3 [111,112,124]

Ch. 5 1 [137]

Ch. 6 3 [159,172,203]

WSCC
(three-machine
power system)

23

Ch. 2 3 [17,35,36]

Ch. 3 2 [79,83]

Ch. 4 6 [85,117,120,121,123,128]

Ch. 5 3 [134,141,147]

Ch. 6 9 [151,158,160,161,167,191–194]

NORDIC
(20-machine multivoltage

power system)
2 Ch. 2 2 [9,42]

IEEE 14
(5-machine power system) 5

Ch. 2 3 [10,26,28]

Ch. 5 2 [141,147]

Other 32

Ch. 2 10 [12,13,15,24,25,27,37,40,41,49]

Ch. 3 4 [53,58,62,77]
Ch. 4 6 [87,90,95,104,119,124]

Ch. 5 5 [136,143–146]

Ch. 6 7 [154,165,200,206–209]
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Table A2. Types of stabilizers used (division according to [50]).

PSS
Number of Papers

References
In General In Chapters

PSS1A
(lead-lag PSS) 70

Ch. 2 19 [13–16,18–22,25,26,28,31,33,35,36,40,44,49]

Ch. 4 9 [108,120,121,124,126,128–131]

Ch. 6 42 [133,150–152,155,156,159–164,166–172,174,176,177,182,184,188–198,200–206]

PSS2A 8
Ch. 2 5 [21,24,29,34,41]

Ch. 6 3 [154,165,180]

PSS2B 3
Ch. 2 2 [26,43]

Ch. 6 1 [199]

PSS3B 5
Ch. 2 3 [27,30,37]

Ch. 6 2 [175,207]

PSS4B/PSS4C 12

Ch. 2 5 [19,23,26,40,49]

Ch. 4 5 [93,95,100,104,106]

Ch. 6 2 [158,209]

PID-PSS 11

Ch. 2 1 [20]

Ch. 3 6 [54,59–63]

Ch. 4 1 [84]

Ch. 6 3 [149,153,183]

Other 17

Ch. 2 3 [17,38,39]

Ch. 4 10 [86,92,97–99,101,103,105,115,125]

Ch. 6 4 [157,185,186,208]

Table A3. Tools used.

Tools
Number of Papers

References
In General In Chapters

Matlab 66

Ch. 2 9 [14–16,18,20,22,30,32,36]

Ch. 3 22 [51–53,55–57,59–61,63–66,68,69,71,74–76,78–80,83]

Ch. 4 13 [80,85,90,91,96,105,106,110,116,118,122,128,129]

Ch. 5 5 [133,138,139,144,148]

Ch. 6 17 [153,155–157,165,166,168,170,174,182,184,187–189,193,196,204]

DigSILENT
PowerFactory 1 Ch. 2 1 [39]

ETAP 2
Ch. 2 1 [40]

Ch. 5 1 [147]

PSCAD Ch. 2 1 [27]

Power World Simulator 1 Ch. 2 1 [35]

PSASP7 1 Ch. 2 1 [29]

PSS-E 4
Ch. 2 2 [25,46]

Ch. 6 2 [190,207]

Scilab 1 Ch. 2 1 [31]

NEPLAN 1 Ch. 3 1 [55]

MiPower 1 Ch. 5 1 [141]



Energies 2023, 16, 1945 23 of 32

References
1. Kundur, P.; Balu, N.J.; Lauby, M.G. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994; Volume 7.
2. Machowski, J.; Bialek, J.; Bumby, J. Power System Dynamics. Stability and Control; John Wiley & Sons: Chichester, NY, USA, 2008.
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