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Abstract: The sorting problem in the Multi-criteria Decision Analysis (MCDA) has been used to
address issues whose solutions involve the allocation of alternatives in classes. Traditional multi-
criteria methods are commonly used for this task, such as ELECTRE TRI, AHP-Sort, UTADIS,
PROMETHEE, GAYA, etc. While using these approaches to perform the sorting procedure, the
decision-makers define profiles (thresholds) for classes to compare the alternatives within these
profiles. However, most such applications are based on subjective tasks, i.e., decision-makers’ ex-
pertise, which sometimes might be imprecise. To fill that gap, in this paper, a comparative analysis
using the multi-criteria method ELECTRE TRI and clustering algorithms is performed to obtain
an auxiliary procedure to define initial thresholds for the ELECTRE TRI method. In this proposed
methodology, K-Means, K-Medoids, Fuzzy C-Means algorithms, and Bio-Inspired metaheuristics
such as PSO, Differential Evolution, and Genetic algorithm for clustering are tested considering
a dataset from a fundamental problem of sorting in Water Distribution Networks. The compu-
tational performances indicate that Fuzzy C-Means was more suitable for achieving the desired
response. The practical contributions show a relevant procedure to provide an initial view of
boundaries in multi-criteria sorting methods based on the datasets from specific applications. Theo-
retically, it is a new development to pre-define the initial limits of classes for the sorting problem in
multi-criteria approach.

Keywords: multi-criteria sorting procedure; clustering algorithms; multi-criteria sorting methods;
class bounds and variations

1. Introduction

The motivation of this work is based on the fact that in multi-criteria approaches,
decision-makers are often faced with subjective analysis. Several methods have been
developed to support these subjective tasks on Multi-criteria Decision Analysis (MCDA)
problems. These problems present alternatives that can be evaluated under a multiple-
criteria view, and the selection of experts for the definition of limits for preferences is crucial
in each application [1,2]. In addition, each context demands assertiveness in decision-
making, which depends on input information quality, decision-maker experience, and the
efficiency of the applied methods. However, input information quality and decision-makers’
know-how are not easy to measure numerically.
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The MCDM (Multi-criteria Decision Making) methods have been widely applied to real
problems and can guide decision-making to achieve the intended objectives, considering
preferences. Nevertheless, sometimes the decision-maker must provide inputs to the
method, like weights for criteria and bounds for classes, which depend on the user’s
knowledge and assertiveness [3].

Unfortunately, in some cases, the lack of knowledge or experience may harm the
efficiency of the method and the entire process. So, the selection of methods sometimes
needs to be correctly conducted. A potential alternative to overcome this problem is using
methods that do not require a priori subjective information, like clustering approaches.
Thus, a quantitative dataset might be an alternative to guarantee the quality of the inputs
and after the adjusting of the personal information to attend to the preferences [4,5]. The
advance of technology leads to an increase in the information available. Some examples can
explain this statement, such as the development of social networks and search websites, the
creation of the internet of things, and Industry 4.0. In these scenarios, using Data Mining
techniques, it is necessary to create mechanisms to group these datasets [6,7].

In this sense, clustering algorithms are the core of Data Mining. They can divide some
databases into groups according to their similarities, usually through an unsupervised ap-
proach [8]. This task can be modeled as an NP-hard problem and solved using optimization
tools [9].

The clustering methods can be classified into four groups: 1. partitioned, 2. over-
lapping; 3. hierarchical; and 4. graph-based [10,11]. The first approach divides the data
into groups according to their similarities using the Euclidean Distance in most cases. The
overlapping methods consider that some samples may belong to different groups according
to a membership grid. The hierarchical approaches create a dendrogram (a structured
tree representing the clustering levels). The last one, graph-based, creates a weighted
graph where the connections are the edges [7,12]. This paper addresses the partitional
and overlapping approaches integrated into a comparative analysis with a multi-criteria
outranking method to allocate alternatives in classes.

Undoubtedly, the most known partitional clustering algorithm is the K-Means, pro-
posed by [13]. Its fame comes from its simplicity and computational efficiency [6]. The
application of the K-Means involves the creation of centroids, artificial samples represent-
ing each center of the group. However, this presents drawbacks, such as convergence to
a local minimum. once it strongly depends on the initialization of the centroids. In this
direction, the K-Medoids were created to overcome the initialization dependency. The main
difference between them is using samples’ positions as initial centers in the last case [7].

Many authors proposed the use of bio-inspired meta-heuristics for partitional clus-
tering [14]. In these cases, clusters are again determined by the position of the centroids,
as well as modeled as an optimization task, which must be minimized. In this paper, we
apply Particle Swarm Optimization (PSO) for clustering [7,15], Genetic Algorithm [16,17],
and Differential Evolution [12]. These methods are well known, can be easily implemented,
and can escape local optima [18].

The last method investigated is the Fuzzy C-Means, which is an overlapping procedure.
It can overcome the problems with the K-Means since the complexity of the relations
considering the samples can be challenging to identify. Therefore, this method does not
define a sharp partition but a membership matrix once a selection may belong to different
groups [4,6,19].

In this context, the objective of this work is to present a methodology to use clustering
approaches to support a pre-definition of boundaries for classes in sorting problems for
multi-criteria methods and to solve real problems related to this definition.

We compared the clustering results with the ELECTRE TRI outranking method with a
dataset extracted from a real application performed in the work published by [20].

This paper is organized as follows: Section 2 presents a Multi-Criteria problem; Sec-
tion 3 shows the Theoretical basis of the ELECTRE-TRI; Section 4 discusses the methodology
used and highlights the application of clustering approaches; Section 5 brings the empir-
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ical results and develops a critical analysis. The conclusions and future directions are
in Section 6.

2. Problem Statement

Several methodologies have been developed in multi-criteria decision analysis to
support decision-makers in expressing their preferences in ordinal, intervallic, or cardinal
scales related to real problems. Despite the experience and acquired expertise, sometimes
decision-makers feel uncomfortable defining the parameters in a subjective way [21].

The important multi-criteria question in this work is, “how does it assist decision-
makers in classifying alternatives in classes?” [22]. In the multi-criteria sorting problem,
they need to define weights for criteria, number of classes, boundaries for categories, and
thresholds for indifference and preference, which might be, in some cases, a challenging
task. For the criteria weight definitions, there are several appropriate methods in which
the decision-maker is conducted to reflect on these parameters. Most of them present
reliable results in their reports. Among such techniques, some might be quoted: Trade-off
analysis [23]; the FITradeoff method [24]; the Swing weights [25]; the Macbeth method [26],
and the procedure available in the AHP method [27] that also allows defining weights
for criteria.

Regarding the definition of the boundaries, especially for the ELECTRE TRI method [28],
it depends totally on the expertise of the decision-makers or specialists. In the AHPsort [29],
another sorting procedure is adopted. The decision-maker is invited to compare alternatives
in a pairwise combination in order to define the most appropriate class boundaries. It
represents a significant effort related to understanding, application, and necessary time to
do this; i.e., the decision-makers must be confident in order to define coherent profile limits
and indifference and preference thresholds because the alternatives commonly present
variations among classes when the multiple criteria are considered. Figure 1 illustrates
how the ELECTRE TRI method compares the alternatives with profiles of classes and the
indifference and preference thresholds.
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Figure 1. Sorting illustration of the ELECTRE TRI.

The literature researched did not show this problem of class limits exactly like a gap.
This gap is commonly ignored in studies that involve limit definitions because it is just
performed based on the experts’ experience. Thus, the problems are just perceived in real
cases, in which the procedures must be re-performed until more coherent results are found,
causing delays and occasionally unreliable results.

Additionally, the literature presents several methods, such as clustering techniques
and neural networks, applied to drive the same problems using mathematical modeling [10].
On the other side, only the numerical solutions cannot cover the multi-criteria aspect related
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to decision-makers’ preferences. Consequently, it does not present a solution compromised
with the choices and objectives. To fill this gap, it is necessary to promote the integration of
these aspects since the numeric methods can aid this procedure with an initial pre-definition
of boundaries, and the fine adjustments could be made in the sequence by the traditional
subjective ways.

3. Theoretical Foundations and Related Works

The ELECTRE TRI is a multi-criteria classification method that places the existing al-
ternatives into predefined categories (classes) according to their upper and lower limits [30].
The technique presents several uses for decision support in real problems, such as the
selection of suppliers explored in the works of [31,32]. Additionally, there are new energy
sources and criteria to improve its use in [33] and the research of [34], with applications for
assessing the energy performance of school buildings.

In maintenance management, Certa et al. [35] proposed a classification of equipment
failure models and [36] developed a procedure to prioritize alternatives for maintenance
on water distribution networks. In health, decisions with multiple criteria approaches
are assisted by triage models applied to assisted reproduction. In the financial area, the
decision-making is helped to select clients who will receive a joint research loan, described
in the work of [37]. In addition, using the ELECTRE TRI method in real problems is related
to solving issues jointly with other ways to generate more precise decisions.

The fuzzy methodology is used in conjunction with ELECTRE TRI in the work of [32].
However, other vocations also join the fuzzy logic and DEA (data envelopment analy-
sis) with the ELECTRE III method in a ranking problem in [38–41]. Another method
in conjunction with ELECTRE TRI is the Delphi method in [10] to classify intelligent
grid policies.

The AHP was another method found to collaborate with ELECTRE III/IV methods in
the work of [42,43], with the objective being to rank urban transport projects. The study
in [44] proposed a new decision support system for product classification problems that
integrate multi-criteria decision-making and feeling analysis to classify products.

The research group from Rivero Gutiérrez, De Vicente Oliva, and Romero-Ania devel-
oped studies on Urban Public Transport Systems, with the necessity of a limits definition
for classes and weights. Some pieces of the investigation have been developed considering
multi-criteria methods, such as AHP, Delphi, ELECTRE TRI, and ELECTRE III, to manage
sustainable decisions and the economic efficiency of the operation [2,5,40,41]. Similarly,
the VIKOR method was applied to evaluate the degree of satisfaction in Turkish cities [3].
Pala [3] developed a new hybrid decision-making model combining different MCDM
methods, considering a mixed-integer linear programming model to prioritize them. It
is perceived that all of these studies used some correlated subjective procedure to define
limits, weights, or thresholds for preference or indifference.

Thus, in order to solve quantitative aspects in this context, clustering research is
geared toward numerous applications. Among these, we highlight classic problems such
as maintenance costs in [45]. As presented in the paper from [46], research uses clustering
with a genetic algorithm to perform the sequencing of an aircraft manufacturing industry
with a flow shop environment with multiple operations. Other applications that use the
clustering techniques are water and energy distributions according to consumer demand.
Some works like [47] present this subject through the K-Means method, and [48] uses Fuzzy
C-means clustering.

The study of [49] proposed a decision support system using the t-SNE algorithm and
K-Means clustering to improve security using multiple matching analyses. Applications in
health are also presented, as the research of [50] used clustering and the genetic algorithm
to group characteristics of individuals with cancer. As noted, clustering can solve several
problems to find common elements and form an auxiliary grouping in decision-making.
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3.1. Clustering Approach on MCDA Methods

Over many years, the literature has published several clustering approaches to differ-
ent MCDA methods attempting to improve results. Zhou et al. [43] and Berbel et al. [51]
developed a technique based on clustering and goal programming to analyze the decision-
making process in irrigated farms.

Goodwin et al. [52] combined Clustering analysis and Multi-Attribute Utility Theory
(MAUT) to verify the impact of water pricing on farms. In the study from Azadnia et al. [53],
the Fuzzy C-means and ELECTRE II were applied to supplier selection problems in the
automotive industry. The K-Means were combined with MULTIMOORA to improve the
MCDA analyses [54,55].

3.2. MCDA Methods and Subjectivity

Most MCDA problems rely on decision-maker expertise to identify the best choice.
Unfortunately, defining weights and parameters for a multi-criteria problem is difficult,
especially in complex situations. The decision-makers’ judgments may directly affect the
common choice [20,56]. Thus, it is essential to have a more systematic way to decide,
avoiding the negative impacts and personal influences.

As the assignment of criteria consequences is critical to MCDA methods, several
ways to define weights were proposed, from subjective to completely objective, besides
combining both [57]. Many works show this concern. Ma et al. [58] proposed a two-
objective programming model to consider both decision-makers’ emotional and analytical
objective weights [46,59].

Entropy Modified Digital Logic (MDL), Criteria Importance through Inter-criteria
Correlation (CRITIC), and two new methods were used to define the TOPSIS input weights.
A hybrid fuzzy goal programming and Monte Carlo simulation were used to find Pareto-
optimal solutions without depending on decision-maker subjective weights [60]. The
simulation allows the fuzzy goal programming to find different solutions. Multi-attribute
group decision-making that integrates objective and subjective weighting employs sta-
tistical variance, TOPSIS, Simple Additive Weighting (SAW), and Delphi-AHP [23,43,61].
The method incorporated weights of the attributes and decision-makers aiming for more
accurate results.

Table 1 summarizes the main theoretical foundations related to this work. These works
were selected by their relevance to this theme, the number of citations, and their connection
to the developed approach.

Table 1. Summarized theoretical foundations.

Reference Year Approach

Multi-criteria concepts and methods

[35] 2017 Classification of equipment failure models

[36] 2012 Procedure to prioritize alternatives for maintenance on water
distribution networks

[37] 2015 Selection of clients who will receive a joint research loan

[32] 2018 Fuzzy methodology is used in conjunction with ELECTRE TRI

[38] 2016 Decisions based on interval-valued intuitionistic fuzzy information

[39] 2016 Power station site selection under intuitionistic fuzzy environment

[42] 2015 Evaluation of urban transportation projects.

[43] 2010 Evidential reasoning-based nonlinear programming model
for MCDA

[44] 2019 A new decision support system for product classification problems
that integrate multi-criteria decision-making

[56] 2020 Supply chain management with AHP, DEMATEL, and TOPSIS
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Table 1. Cont.

Reference Year Approach

[57] 2016 Subjective, objective, and combinative weighting in multiple
criteria decision making

[58] 1999 Determination of attribute weights

[59] 2009 Fuzzy TOPSIS based on subjective and objective weights

[60] 2015 Supplier selection and order allocation in reverse logistics systems

[61] 2014 TOPSIS to multiple criteria decision making with Pythagorean
fuzzy sets

[2] 2021 Managing Sustainable Urban Public Transport Systems: an AHP
Multicriteria Decision Model

[5] 2021 Multiple Criteria Decision Analysis of Sustainable Urban Public
Transport Systems

[40] 2022
Economic, Ecological, and Social Analysis Based on DEA and

MCDA for the Management of the Madrid Urban Public
Transportation System

[41] 2022 Economic Evaluation of the Urban Road Public Transport System
Efficiency Based on Data Envelopment Analysis

[3] 2022 A mixed-integer linear programming model for aggregating
multi–criteria decision-making methods

[62] 2021 Evaluating the satisfaction level of citizens in municipality services
by using picture fuzzy VIKOR method: 2014 2019 period analysis

Clustering

[10] 2019 Swarm intelligence for clustering

[45] 2018 An investigation that used genetic algorithms and Fuzzy C-means
for evaluations of maintenance costs

[46] 2014
Clustering with a genetic algorithm to perform the sequencing of
an aircraft manufacturing industry with a flow shop environment

with multiple operations

[47] 2018 K-Means method for energy recovery in water
distribution networks

[48] 2017 Fuzzy C-Means clustering for evaluation of household monthly
electricity consumption

[49] 2014 Decision support system using the t-SNE algorithm and K-Means
clustering to improve security using multiple matching analyses

[50] 2019 Clustering and genetic algorithm to group characteristics of
individuals with cancer

Clustering and MCDA combined

[51] 1998 Developed a technique based on clustering and goal programming
to analyze the decision-making process in irrigated farms

[52] 2004 Combined Clustering analysis and Multi-Attribute Utility Theory
(MAUT) to verify the impact of water pricing on farms

[53] 2011 Fuzzy C-Means and ELECTRE II were combined to supplier
selection problems in the automotive industry

[54,55] 2019 K-Means was combined with MULTIMOORA to improve the
MCDA analyses

However, we did not find efforts using clustering approaches in conjunction with ELEC-
TRE TRI to define class boundaries. Therefore, in this paper, we propose using the clustering
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methods to help the ELECTRE TRI boundaries definition procedure support the decision
process and reduce the doubtful subjectivity inherent to the decision-making process.

4. Methodology

This section describes the methods applied in this work to compare clustering tech-
niques and the ELECTRE TRI method. Firstly, the results of an application involving water
distribution networks are evaluated. A sorting experiment is conducted, prioritizing areas
in categorized classes. The numerical application is detailed in Section 5. The primary
information about the utilized methods is presented in Sections 4.1 and 4.2. Figure 2
illustrates the methodological context giving an overview of the involved parameters for
the sorting approach.

Energies 2023, 16, x FOR PEER REVIEW 7 of 25 
 

 

However, we did not find efforts using clustering approaches in conjunction with 
ELECTRE TRI to define class boundaries. Therefore, in this paper, we propose using the 
clustering methods to help the ELECTRE TRI boundaries definition procedure support 
the decision process and reduce the doubtful subjectivity inherent to the decision-making 
process. 

4. Methodology 
This section describes the methods applied in this work to compare clustering 

techniques and the ELECTRE TRI method. Firstly, the results of an application involving 
water distribution networks are evaluated. A sorting experiment is conducted, 
prioritizing areas in categorized classes. The numerical application is detailed in Section 
5. The primary information about the utilized methods is presented in Sections 4.1 and 
4.2. Figure 2 illustrates the methodological context giving an overview of the involved 
parameters for the sorting approach. 

 
Figure 2. Methodological Context. 

4.1. Multi-Criteria Outranking Sorting Method ELECTRE TRI 
The ELECTRE TRI method is a multi-criteria outranking technique developed that 

allocates alternatives in predefined categories, called the sorting procedure. The allocation 
occurs when an option “x” is compared with defined profiles of the limits from the 
categories or boundaries bh. In this work, the multi-criteria outranking method ELECTRE 
TRI is applied as a base of comparison among clustering algorithms to search for an initial 
definition of boundaries for category profiles [28,63]. It uses the concordance and 
discordance indexes to evaluate the statement xSbh (“x outranks bh”). The partial 
concordance cj (x, b), concordance c (x, b), and partial discordance dj (x, b) are calculated by 
the expressions (1), (2), and (3) below: 














−
−+

≤−
≥−

=

otherwise,
)()(

)()()(
)()()(
)()()(

1
0

),(

hjhj

hjjhj

hjjhj

hjjhj

hj

bqbp
bgxgbp

bqxgbg
bpxgbg

if
if

bxc

 
(1) 

Figure 2. Methodological Context.

4.1. Multi-Criteria Outranking Sorting Method ELECTRE TRI

The ELECTRE TRI method is a multi-criteria outranking technique developed that
allocates alternatives in predefined categories, called the sorting procedure. The allocation
occurs when an option “x” is compared with defined profiles of the limits from the cate-
gories or boundaries bh. In this work, the multi-criteria outranking method ELECTRE TRI
is applied as a base of comparison among clustering algorithms to search for an initial defi-
nition of boundaries for category profiles [28,63]. It uses the concordance and discordance
indexes to evaluate the statement xSbh (“x outranks bh”). The partial concordance cj (x, b),
concordance c (x, b), and partial discordance dj (x, b) are calculated by the expressions (1),
(2), and (3) below:

cj(x, bh) =


0 i f gj(bh)− gj(x) ≥ pj(bh)
1 i f gj(bh)− gj(x) ≤ qj(bh)

pj(bh)+gj(x)−gj(bh)

pj(bh)−qj(bh)
, otherwise

(1)
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where

c(x, b) =
∑

j∈F
kjcj(x,bh)

∑
j∈F

kj
(2)

where

dj(x, bh) =


0
1
∈

i f
i f

[0, 1]

gj(x) ≤ gj(bh) + pj(bh)
gj(x) > gj(bh) + vj(bh)

, otherwise
(3)

Still, an index σ is calculated, being σ(x, bh) ∈ [0, 1] σ(bh, x), respectively, which
represents a credibility degree of the assertion in which xSbh, x ∈ A, h ∈ B, as shown
in Equation (4).

σ(x, bh) = c(x, bh).∏
j∈F

1− dj(x, bh)

1− c(x, bh)
(4)

where:
__
F =

{
j ∈ F : dj(x, bh) > cj(x, bh)

}
Mousseau et al. [64] presented two assignment procedures: one pessimistic, which

compares x with bi, to i = p, p − 1, . . . , 0, bh, starting with the first profile in which xSbh is
the category CLh+1(x→ CLh+1); and the optimist one, which compares x with bi, to i = 1, 2,
. . . , p, bh, starting with the first profile, such that “bh is preferable to x” states that CLh for
category (x→ CLh).

4.2. Clustering Techniques

Section 1 mentions that the literature divides the central clustering approaches into
partitional, overlapping, hierarchical, and graph-based [7,9–11]. The partitional process is
the most used, and it is also the focus of the investigation conducted in this paper, together
with the Fuzzy C-Means, as an overlapping method [9,58].

The partitional approach creates groups according to their similarities. It performs
the clustering by inserting artificial points named centroids or centers, presenting the
exact dimensions of the samples (features). Each centroid is the representative point of a
respective group so that the samples belonging to the same group are represented by the
nearest centroid [13,15]. Then, the task to be solved by a partitional algorithm is determined
by using an iterative process to find the best location of the centroids, as shown in Figure 3.
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Figure 3. Partitional Clustering Procedure Illustration.
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Mathematically, let xi = [xi,1, xi,2, . . . , xi,D] the i-th object (samples), i = 1, . . . , N, each
presenting D features. The clustering algorithms aim to allocate these N samples into K
< N clusters, represented by the ck = [ck,1, ck,2, . . . , ck,D] centroids, k = 1, . . . , K. The most
used metric to determine the distance (dist) of an object i to a centroid k is the Euclidean
Distance, defined in Equation (5) [9]:

dist(xi − ck) = ‖xi − ck‖2 =

√√√√ D

∑
d=1

(xi,d − ck,d)
2 (5)

The following subsections present in detail the algorithms addressed in this investigation.

4.3. K-Means and K-Medoids

The K-Means is the most usual method for partitional clustering due to its simplicity
and fast convergence [6,11,13,15]. The samples are separated into a predefined number of
groups according to the final positions of the centroids.

The initialization randomly generates the centroids. Then, distances between them
and objects are calculated by Equation (5). Each point is allocated to the cluster with the
smallest space. After, the positions of the centroids are recalculated using Equation (6) [6]:

ck =
1
nk

nk

∑
i=1

xk
i (6)

where the number of patterns within a cluster k is nk.
This process is repeated until the stop criterion is reached as the number of epochs

or a slight change in centroid position. The K-Means minimizes the Sum of Squared Error
(SSW) given by Equation (7) [65]:

SSW =
K

∑
k=1

nk

∑
i=1

dist2(xi − ck) (7)

Remarkably, the method is highly dependent on the initialization. As this process is
random, it can lead to poor performance. Additionally, the K-Means need to work better
with overlapping databases [9].

A way to minimize this disadvantage is to address the K-Medoids algorithm, similar
to the K-Means. The difference between them is just the initialization: K-Means randomly
chooses K patterns (samples) of the data set as the initial positions of the centers. It can
contribute to a better initialization of the algorithm.

4.4. Bio-Inspired Metaheuristics

Bio-Inspired Metaheuristics have gained prominence in optimization in the last two
decades due to their search capability [66]. As the name indicates, these methods were
inspired by some aspects of the natural world, like Darwin’s Evolution Theory or the
collective behavior of groups of animals [16,67].

Clustering optimization is the process in which the algorithms reduce the distance
between the centroids and the data inside the cluster. These algorithms are populational
since solutions are simultaneously maintained during the iterative search. In this case, each
key is called an agent. Therefore, the approaches above are effective candidates to deal
with this task [68,69].

In the most used codification scheme, an agent yp is a centroids vector. Therefore, it is
a vector with K × D elements, which concatenates the spatial positions of the K centroids,
as seen in Expression (8) [10,14]:

yp = Cp = (c1,1, c1,2, . . . , c1,D, . . . , cK,1, cK,2, . . . , cK,D) (8)
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This work addresses two leading evolutionary algorithms, Genetic Algorithm and
Differential Evolution, and the essential swarm-based proposal, Particle Swarm
Optimization (PSO).

4.5. PSO for Clustering

Kennedy and Eberhart developed Particle Swarm Optimization (PSO) in 1995 [70].
It is the first proposal and the most prominent swarm-inspired algorithm, with many
applications in various fields, such as optimization and clustering [7,10].

The biological inspiration came from the social interactions of animals, like flocks of
birds and schools of fish. Each candidate solution is named a particle, which moves in the
search space according to its self-experience, pbestt

p, and the collective experience gbestt.
Indeed, the first is the best position achieved by particle p during the iterative process,

and the second is the best position of the entire swarm until iteration t. The candidate
solutions present a performance index named fitness. These collective interactions create a
complex behavior that allows the algorithm to optimize a cost function [15].

Assume a swarm a population of p = 1, 2, . . . , P particles. The agents move in the D
dimensional space (cost function) according to Equation (9):

yt+1
p = xt

p + vt+1
p (9)

in which t denotes the current iteration, yp = [yp,1, yi,2, . . . , yp,D] is the position of an
agent in the search space and vp = [vp,1, vp,2, . . . , vp,D] is the velocity, updated using
Equation (10) [65]:

vt+1
p = ωvt

p + c1r1

(
pbestt

p − xt
p

)
+c2r2

(
gbestt − xt

p

)
(10)

being ω the inertia weight, r1 and r2 are random vector values generated according to
a uniform probability in the interval [0,1], and c1 and c2 are the cognitive and social
coefficients, respectively.

Initialization of the swarm is performed by spreading the agents over the space
according to a uniform random generation. The velocity is initiated with zero. Note
that ω is below 1, and the speed is limited in the interval [−Vmax;+Vmin]. Finally, in
clustering tasks, the fitness assignment is given by Equation (6): the closer the data are to
the respective centroid, the better the fitness, or the smaller the SSW.

4.6. Genetic Algorithm for Clustering

The Genetic Algorithm (GA) is the primary evolutionary algorithm for optimization
tasks. Darwin’s Theory of Evolution by natural selection is the inspiration for the method,
which influences the agents (individuals or chromosomes) and the entire population [16].

The GA is a probabilistic and populational algorithm like the PSO. The initial individ-
uals, candidate solutions, are randomly generated subjects to the search space constraints.
In this case, each agent is represented according to Equation (8), and the vector elements
are called genes. The genes compose the genotype of the individual [9,67].

As usual, a fitness value is assigned to them. However, unlike the PSO, the search
is performed by creating new generations, which substitute the old ones. In this sense,
the agents with higher fitness tend to survive and belong to the next generation or main-
tain their genetic load in the population via the offspring. The next step is selecting the
individuals to pass through the genetic operators. This paper uses the roulette wheel
scheme [16,65,67], and better fitness tends to be chosen.

Once individuals are chosen, the final steps apply the genetic operators: crossover,
which performs a local search (exploitation), and mutation for global tracking (exploration).
In this work, we perform the classic one-point crossover [65]. The first two individuals
randomly selected by the roulette wheel (parents) change their genes, creating two new
ones according to a probability PC. These will be in the next generation. This process is
repeated until the number of individuals in the next generation equals the original. Note
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that some agents may be selected more than once. Finally, the mutation is applied to Pm
genes of the population. We add a small value drawn using a normal distribution to the
selected genes.

Again, in clustering problems, the agents are represented according to Equation (8),
and the fitness is calculated by Equation (7) [65].

4.7. Differential Evolution for Clustering

Differential Evolution (DE) is an optimization method that follows similar principles
of the Genetic Algorithm, inspiration, and genetic operators. The agents proposed by
Storn and Prince in 1995 have named vectors generated similarly to the last two presented
approaches [12]. Again, it is used in a population method that maintains a set of possible
solutions at each iteration. However, the crossover and mutation are different from the GA:
here, the vector difference is used to perform the search [12,65].

At the initialization process, some population agent is randomly selected and named
target vector vi. Next, the first operation is the mutation generating a new vector yi

new. This
process follows Equation (11) [28]:

ynew
i = yr1

i + F
(

yr2
i − yr3

i

)
(11)

where r1, r2, r3 ∈ 1, 2, . . . , NP are the index of the other three agents randomly chosen, and
F is a real number drawn in the interval [0, 2]. Note that Equation (11) performs a vector
subtraction [65].

The next step is the crossover between the target vector and yi
new. A new agent called

trial vector ui is created according to Equation (12) [8]:

uid =

{
ynew

id i f rd ≤ CR ∨ i = Ii
vid i f rd > CR ∨ i 6= Ii

(12)

where d = 1, . . . , D is the current dimension (gene); rd is sorted using a uniform distribution
in the interval [0, 1]; CR is defined by the user; and Ii ∈ 1, . . . , D is a randomly chosen
index, which guarantees that the new vector will receive at least one gene from vid. Finally,
the vector that remains in the population is selected by a greedy criterion (best fitness)
between vi and ui.

4.8. Fuzzy C-Means

Fuzzy C-Means (FCM) is an overlapping clustering method, fast to converge and
simple to implement [4,6,71]. The FCM is an excellent alternative to clustering tasks since it
overcomes the disadvantages of K-Means and some partitioned methods.

Some good aspects of the method are that it works better with overlapping data and
is less sensitive to initialization and noise. Therefore, it has been successfully applied in
many tasks.

The main difference between the methods previously described is that the FCM
does not generate a hard boundary for the clusters. Instead, the algorithm creates a
membership matrix =

{
µij
}N,K

i,j . In this case, the inputs of this matrix are µij of each object

i for the cluster j. Note that µij ∈ [0, 1], ∑K
j=1 µij = 1, and 0 < ∑K

j=1 µij < N are given by
Equation (13):

µm
ij =

1

∑C
k=1
‖xi−cj‖

2
m−1

‖xi−ck‖

(13)
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where ‖.‖ is the norm, often the Euclidean distance from Equation (4), and m is the fuzziness
parameter. Then, the cluster centers are updated according to Equation (14):

cj =
∑N

i=1 µm
ij

∑N
i=1 µm

ij
(14)

The FCM firstly updates the grade of membership µij for each object and center and
then calculates the centers employing Equation (9) in each iteration. At the end of the
process, the goal is to optimize the cost function given by Equation (15) [6]:

Jm =
N

∑
i=1

K

∑
j=1

µm
ij
∥∥xi − cj

∥∥2 (15)

4.9. Numerical Application

An application was performed to present an empirical analysis using data collected
from a Brazilian city (Ponta Grossa—Parana state) located in the south of Brazil with 120
thousand water connections and approximately 320 thousand inhabitants. The data were
based on the study published by [20], in which the ELECTRE TRI method was used in a real
case to classify maintenance priorities in water distribution networks. This case study was
chosen because it was conducted using threshold definitions from experts’ perceptions and
datasets from an automated system with quantitative characteristics necessary to provide
the integration and comparisons with clustering techniques. The study [20] was applied in
the sanitation company of the cited city and provided real results, mainly because of the
support from the automated system, without only subjective evaluations.

Urban growth and the emergence of new housing are conditions in urban water
distribution systems and lead to mobilizing investment in infrastructure, necessary to
accommodate it. Therefore, the level of investment allocated to each sectorial area will
depend on the characteristics and priorities for these areas [72–74]. This infrastructure
includes water pipes; fittings; reservoirs (placed strategically to ensure supply at critical
moments); and measuring devices, such as control valves, flow meters, and pressure
gauges. It needs an organized structure to be configured. One technique that can be
used to manage development areas is ‘sectorization’. This is a categorization of flow
measurements from macro systems into smaller domains and presents an alternative to the
modeling problem. As some sanitation companies use automation systems in their water
distribution systems, this contributes directly to water loss reduction and area measurement
information that can be digitally collected to make new models for solving problems in
this sector [20,75,76]. Trojan et al. [36] show strategies or means that could be adopted to
achieve goals individually, and some alternatives should be considered that can achieve
the expected results for the goals.

4.10. Sorting Areas into Three Categories

The first step to be considered is defining criteria close to the problem. Table 2 presents
the adopted standards from the original application [20].

Table 2. Criteria.

Criteria

g1 Number of connections (CN)
g2 Measured Volume (MV)
g3 Water Losses (WL)
g4 Meters per connection (MC)
g5 Population (POP)
g6 Public Economies (PE)
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In multi-criteria applications, the definitions from decision-makers (experts) are typi-
cally performed for criteria, weightings, indifference and preference thresholds, and the
definition of regional class boundaries. In this work, these parameters were adopted
from [20] to compare the results with the clustering techniques used in experiments to
define started values of boundaries for class profiles.

This was based on the dataset consolidated by the application, as shown in Table 3.
Initially, Indifference and Preference thresholds equal to ‘zero’ were considered to compare
the clustering results. After these proposed start values, the decision-makers could be
invited to promote adjustments on these thresholds [77], as preconized in multi-criteria
analysis.

Table 3. Parameters for the boundaries between classes (original application with criteria 3 and 4
changed to benefit).

Categories
/Classes Maintenance Borders

Criteria

(CN)
g1

(MV)
g2

(WL)
g3

(MC)
g4

(POP)
g5

(PE)
g6

CL1 Proactive
b1 3500 37,000 93.00 27.00 12,000 15

CL2 Preventive
b2 1900 18,500 86.00 25.00 8000 5CL3 Corrective

Weights 23% 10% 20% 15% 12% 20%
Direction of Preferences ↑ up ↑up ↑up ↑up ↑up ↑up

Ln → Classes; gn → Criteria; bn → Class Border.

Table 4 presents the original dataset extracted from [20] with the six criteria, four of
which are defined as ‘benefit target’ and two as ‘cost target’. The two criteria of cost target
were normalized and transformed to benefit the cluster application and to provide equal
scales for comparisons with ELECTRE TRI results.

Then, three procedures were proposed to perform the cluster experiments, and all had
the benefit target defined for every criterion [78,79].

The first one, shown in Table 5, considered a Normalized Weighted Dataset (Procedure
1). The original data were normalized on a scale of (0 to 100) and multiplied by their
respective weights. Thus, the better value for the alternative is the exact value of the
criterion weight, and the worst is equal to zero [80]. The procedure for normalizing criteria
1, 2, 4, 5, and 6 was the Linear Max–Min normalization method presented in Equations (16)
and (17) [72].

nij =
rij − rmin

j

rmax
j − rmin

j
for benefit (16)

nij =
rmax

j − r
ij

rmax
j − rmin

j
for cost (17)

where nij is the normalized value; rij the alternatives i criteria j values; and rj
max and rj

min

are the maximum and minimum criteria values, respectively. For criterion 3 [Water Losses
(index %)], the normalization for the percentage was adopted as (100—rij).
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Table 4. Original dataset.

Benefit Benefit Cost Cost Benefit Benefit

Weights 23% 10% 20% 15% 12% 20%

Areas
(flow

sectors)
an

Number of
Connections

(index)

Measured
Volume
(index)

Water
Losses
(index)

Meters of
Network

Per Connections
(index)

Population
(index)

Public
Economies
(index)

a1 883 12,404 41.50 14.49 3033 10
a2 3255 57,729 39.18 15.81 14,960 5
a3 1850 19,130 29.69 10.19 6470 5
a4 1310 16,810 53.55 13.31 4267 2
a5 1192 11,425 37.24 8.91 4059 2
a6 2783 30,220 36.94 11.98 10,220 5
a7 14,375 180,585 55.25 12.62 48,444 20
a8 3397 32,938 51.11 10.01 11,574 6
a9 2622 33,182 65.26 13.05 8837 5
a10 2779 35,797 51.77 11.34 10,160 5
a11 3286 45,784 39.63 11.70 11,750 7
a12 2208 20,382 44.10 9.93 7647 3
a13 3333 35,474 41.50 10.52 11,521 20
a14 2685 26,499 38.90 10.17 9259 20
a15 23,474 302,947 34.13 12.34 83,563 10
a16 1830 22,472 66.49 12.24 6226 3
a17 8667 92,686 46.94 10.76 29,887 10
a18 5124 53,416 32.72 10.76 17,268 6
a19 1705 19,250 61.68 11.29 5881 5
a20 865 10,864 46.32 11.53 3077 5
a21 974 9158 64.80 9.99 3289 5
a22 727 7483 66.76 10.35 2520 3
a23 1844 20,141 54.08 11.09 6362 5
a24 2961 34,724 65.70 11.81 10,604 3
a25 4586 51,197 39.39 10.44 15,729 4
a26 2156 36,343 27.52 16.74 9074 4
a27 4527 50,234 74.81 11.45 15,545 5
a28 1876 23,153 37.07 12.04 6623 4
a29 4651 56,296 52.43 11.98 16,290 9
a30 2774 33,143 59.60 11.94 9668 8

Table 5. Normalized weighted dataset—Procedure 1.

Benefit Benefit Benefit Benefit Benefit Benefit

Weights 23% 10% 20% 15% 12% 20%

Areas
(flow

sectors)
an

Number of
Connections

(index)

Measured
Volume
(index)

Water
Losses
(index)

Meters of
Network

Per Connections
(index)

Population
(index)

Public
Economies
(index)

a1 0.16 0.17 11.70 4.31 0.08 8.89
a2 2.56 1.70 12.16 1.78 1.84 3.33
a3 1.14 0.39 14.06 12.55 0.58 3.33
a4 0.59 0.32 9.29 6.57 0.26 0.00
a5 0.47 0.13 12.55 15.00 0.23 0.00
a6 2.08 0.77 12.61 9.12 1.14 3.33
a7 13.80 5.86 8.95 7.89 6.80 20.00
a8 2.70 0.86 9.78 12.89 1.34 4.44
a9 1.92 0.87 6.95 7.07 0.94 3.33
a10 2.07 0.96 9.65 10.34 1.13 3.33
a11 2.59 1.30 12.07 9.66 1.37 5.56
a12 1.50 0.44 11.18 13.05 0.76 1.11
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Table 5. Cont.

Benefit Benefit Benefit Benefit Benefit Benefit

Weights 23% 10% 20% 15% 12% 20%

Areas
(flow

sectors)
an

Number of
Connections

(index)

Measured
Volume
(index)

Water
Losses
(index)

Meters of
Network

Per Connections
(index)

Population
(index)

Public
Economies
(index)

a13 2.63 0.95 11.70 11.92 1.33 20.00
a14 1.98 0.64 12.22 12.59 1.00 20.00
a15 23.00 10.00 13.17 8.43 12.00 8.89
a16 1.12 0.51 6.70 8.62 0.55 1.11
a17 8.03 2.88 10.61 11.46 4.05 8.89
a18 4.45 1.55 13.46 11.46 2.18 4.44
a19 0.99 0.40 7.66 10.44 0.50 3.33
a20 0.14 0.11 10.74 9.98 0.08 3.33
a21 0.25 0.06 7.04 12.93 0.11 3.33
a22 0.00 0.00 6.65 12.24 0.00 1.11
a23 1.13 0.43 9.18 10.82 0.57 3.33
a24 2.26 0.92 6.86 9.44 1.20 1.11
a25 3.90 1.48 12.12 12.07 1.96 2.22
a26 1.44 0.98 14.50 0.00 0.97 2.22
a27 3.84 1.45 5.04 10.13 1.93 3.33
a28 1.16 0.53 12.59 9.00 0.61 2.22
a29 3.97 1.65 9.51 9.12 2.04 7.78
a30 2.07 0.87 8.08 9.20 1.06 6.67

The second procedure shown in Table 6 has adopted a Non-Normalized Weighted
dataset (Procedure 2), in which the original data was multiplied by the weight in percentage.
The cost targets were also normalized considering the formula nij =

1
rij

for numerical data
and (100—rij) for loss index percentages.

Table 6. Non-Normalized weighted dataset—Procedure 2.

Benefit Benefit Benefit Benefit Benefit Benefit

Weights 23% 10% 20% 15% 12% 20%

Areas
(flow

sectors)
an

Number of
Connections

Measured
Volume

(m3/month)

Water
Losses

(%)

Meters of
Network

Per Connections
(Index)

Population
(Inhabitants)

Public
Economies
(Number)

a1 203 1240.4 58.5 0.069 363.9 2.0
a2 748 5772.9 60.8 0.063 1795.2 1.0
a3 425 1913.0 70.3 0.098 776.4 1.0
a4 301 1681.0 46.4 0.075 512.0 0.4
a5 274 1142.5 62.7 0.112 487.0 0.4
a6 640 3022.0 63.0 0.083 1226.4 1.0
a7 3306 18,058.5 44.7 0.079 5813.2 4.0
a8 781 3293.8 48.8 0.100 1388.8 1.2
a9 603 3318.2 34.7 0.077 1060.4 1.0
a10 639 3579.7 48.2 0.088 1219.2 1.0
a11 755 4578.4 60.3 0.085 1410.0 1.4
a12 507 2038.2 55.9 0.101 917.6 0.6
a13 766 3547.4 58.5 0.095 1382.5 4.0
a14 617 2649.9 61.1 0.098 1111.0 4.0
a15 5399 30,294.7 65.8 0.081 10,027.5 2.0
a16 420 2247.2 33.5 0.082 747.1 0.6
a17 1993 9268.6 53.0 0.093 3586.4 2.0
a18 1178 5341.6 67.2 0.093 2072.1 1.2
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Table 6. Cont.

Benefit Benefit Benefit Benefit Benefit Benefit

Weights 23% 10% 20% 15% 12% 20%

Areas
(flow

sectors)
an

Number of
Connections

Measured
Volume

(m3/month)

Water
Losses

(%)

Meters of
Network

Per Connections
(Index)

Population
(Inhabitants)

Public
Economies
(Number)

a19 392 1925.0 38.3 0.089 705.7 1.0
a20 198 1086.4 53.6 0.087 369.2 1.0
a21 224 915.8 35.2 0.100 394.6 1.0
a22 167 748.3 33.2 0.097 302.4 0.6
a23 424 2014.1 45.9 0.090 763.4 1.0
a24 681 3472.4 34.3 0.085 1272.4 0.6
a25 1054 5119.7 60.6 0.096 1887.4 0.8
a26 495 3634.3 72.4 0.060 1088.8 0.8
a27 1041 5023.4 25.1 0.087 1865.4 1.0
a28 431 2315.3 62.9 0.083 794.7 0.8
a29 1069 5629.6 47.5 0.083 1954.8 1.8
a30 638 3314.3 40.4 0.084 1160.1 1.6

Table 7 presented the Original dataset Cost Normalized (Procedure 3), in which just
the cost target for criteria 3 and 4 were normalized. The other data were considered equal
to the original dataset.

Table 7. Original dataset Cost Normalized—Procedure 3.

Benefit Benefit Benefit Benefit Benefit Benefit

Weights 23% 10% 20% 15% 12% 20%

Areas
(flow

sectors)
an

Number of
Connections

Measured
Volume

(m3/month)

Water
Losses

(%)

Meters of
Network

Per Connections
(Index)

Population

(Inhabitants)

Public
Economies
(Number)

a1 883 12,404 58.50 18.99 3033 10
a2 3255 57,729 60.82 17.67 14,960 5
a3 1850 19,130 70.31 23.29 6470 5
a4 1310 16,810 46.45 20.17 4267 2
a5 1192 11,425 62.76 24.57 4059 2
a6 2783 30,220 63.06 21.50 10,220 5
a7 14,375 180,585 44.75 20.86 48,444 20
a8 3397 32,938 48.89 23.47 11,574 6
a9 2622 33,182 34.74 20.43 8837 5
a10 2779 35,797 48.23 22.14 10,160 5
a11 3286 45,784 60.37 21.78 11,750 7
a12 2208 20,382 55.90 23.55 7647 3
a13 3333 35,474 58.50 22.96 11,521 20
a14 2685 26,499 61.10 23.31 9259 20
a15 23,474 302,947 65.87 21.14 83,563 10
a16 1830 22,472 33.51 21.24 6226 3
a17 8667 92,686 53.06 22.72 29,887 10
a18 5124 53,416 67.28 22.72 17,268 6
a19 1705 19,250 38.32 22.19 5881 5
a20 865 10,864 53.68 21.95 3077 5
a21 974 9158 35.20 23.49 3289 5
a22 727 7483 33.24 23.13 2520 3
a23 1844 20,141 45.92 22.39 6362 5
a24 2961 34,724 34.30 21.67 10,604 3
a25 4586 51,197 60.61 23.04 15,729 4
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Table 7. Cont.

Benefit Benefit Benefit Benefit Benefit Benefit

Weights 23% 10% 20% 15% 12% 20%

Areas
(flow

sectors)
an

Number of
Connections

Measured
Volume

(m3/month)

Water
Losses

(%)

Meters of
Network

Per Connections
(Index)

Population

(Inhabitants)

Public
Economies
(Number)

a26 2156 36,343 72.48 16.74 9074 4
a27 4527 50,234 25.19 22.03 15,545 5
a28 1876 23,153 62.93 21.44 6623 4
a29 4651 56,296 47.57 21.50 16,290 9
a30 2774 33,143 40.40 21.54 9668 8

5. Results and Discussion

In the ELECTRE TRI method, it is possible to utilize original data for just normalizing
cost targets. So, Procedure 3 was used to make an experiment with a similar application
of the ELECTRE TRI and compare it with clustering results. The other procedures were
utilized for investigating the behavior between clustering techniques and original ELECTRE
TRI border definitions. These procedures were adopted because they can change the
experiments if considering the data direction, mainly in the clustering application.

First, the analyses and comparisons were performed based on the results presented in
Figure 4, illustrating each technique with its respective procedure (1, 2, and 3). To do so,
the following set of parameters was used:

• K-Means and K-Medoids: 100 independent runs;
• PSO: population of 20 agents, 50 iterations, c1 = c2 = 2.05, ω with linear decay,

30 independent runs;
• GA: population of 20 agents, 50 iterations, 80% of crossover probability, 30% of muta-

tion probability, 30 independent runs;
• DE: population of 20 agents, 50 iterations, 80% of crossover probability, F = 0.8,

30 independent runs;
• FCM: 100 independent runs.

The algorithms were run several times until the smallest SSW was achieved since the
final responses depend on the initialization.

Figure 5 illustrated the final results with original sorting from ELECTRE TRI, the FCM
experiment, and the new results of the ELECTRE TRI application using the limits suggested
by the results of FCM. It demonstrates that the FCM (Procedure 1) was able to capture the
agreements of the data for the proposed categorizations.

In Table 8, the limit definition was calculated based on a middle value between classes
in some criteria or based on a maximum value for other criteria, according to the target of
the criteria. The calculations are detailed in the blue cells of Table 8.
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Table 8. Definition of limits after sorting by Clustering method—FCM—Procedure 1.
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According to the sorting experiments, the FCM—Procedure was considered to find
each classes’ high and low limits. It was the most similar result found compared to
the original application of the ELECTRE TRI method. An adjustment was necessary to
delimitate a mean point between classes’ high and low limits. Thus, a medium point
between these limits was considered to define the “a priori” boundaries. This adjustment
was made based on the targets of each criterion. For example, criteria 3 and 4 were initially
normalized as benefits, so the maximum reduction for losses and meters per connection is
required. Table 8 presents the categorization (sorting) realized through the Fuzzy C-Means
technique and the formulation for the adjustments to calculate each value for the limits of
classes.

Table 9 presents the values of comparison between the original application from
ELECTRE TRI, and the boundaries found with Fuzzy C-Means highlighted as (bn*)
in Table 9.
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Table 9. Final Boundaries adopted defined by FCM Procedure 1.

Categories
/Classes Maintenance Borders

Criteria

(CN)
g1

(MV)
g2

(WL)
g3

(MC)
g4

(POP)
g5

(PE)
g6

CL1 Proactive b1
b1*

3500
5676

37,000
59,592

93.00
72.48

27.00
29.85

12,000
19,573

15
20CL2 Preventive b2

b2*
1900
2705

18,500
31,319

86.00
62.76

25.00
24.57

8000
9289

5
6CL3 Corrective

In this application, the Fuzzy C-Means (FCM) results provided pre-defined boundaries
to a new application of ELECTRE TRI with the limits defined with this technique based
on the dataset. It is possible to state that the results after clustering applications were
very similar to the original application with ELECTRE TRI. It is essential to highlight
that the delimitation limits in the original application were performed by an elicitation
(inference) process, which demands time and effort to understand the data behavior. It was
performed by an intuitive process [20]. So, it is coherent to state that the results found in
this application with cluster algorithms were satisfactory regarding promoting a start view
for decision-makers about the class limits and thresholds.

An extra analysis with performance indicators for the utilized cluster algorithms was
also realized. In Table 10, it is possible to learn a verification of these indicators. Even
though FCM does not figure out the best performance, it has a Fuzzy procedure embedded
in its concepts, which is closed with these basic application features.

Table 10. Final Boundaries defined by FCM Procedure 1.

Method Average SSW Average SSB Average Silhouette

K-Means 940.42 106.43 0.65
K-Medoids 945.20 140.81 0.80

FCM 630.53 80.01 0.53
PSO 145.76 89.18 0.41
GA 142.60 102.16 0.58
DE 145.07 108.62 0.64

Still, it is crucial to determine whether decision-makers can rearrange these definitions
according to their preferences. The main objective of these experiments is to provide a good
understanding and an initial starting point to follow with a more robust and time-reducing
multiple-criteria sorting analysis.

6. Conclusions

The methodology and experiments developed in this work aimed to create a new
methodology that helps in the pre-definition of boundaries (limits between classes) in
multiple-criteria sorting problems using clustering techniques. It was initially performed
with the elicitation of decision-makers in a sanitation company to solve the problem of
sorting flow areas for investments and priorities for maintenance actions.

The proposed evaluation exploited six clustering techniques: K-Means, K-Medoids,
Fuzzy C-Means, PSO for clustering, a Genetic Algorithm for clustering, and Differential
Evolution. These algorithms were compared with the original application of ELECTRE TRI
and provided a start view for limits of classes in this problem. In ELECTRE TRI or another
sorting method, the decision-makers intuitively define these limits. However, commonly,
they do not have an initial start or “north” to do this.

This work provided this overview contributing practically to support the decision
process. The practical contributions may be highlighted as the opportunity offered to the
decision-makers to analyze the limits between classes only by the data behavior when
they do not feel comfortable defining it alone. In this sector, the experts had notarial
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knowledge to define these class limits; most sanitation companies’ cases did not have
enough information to correctly define these class limits and thresholds. By applying this
methodology, the decision-makers could not have much experience defining the initial
limits for analysis.

Thus, this work also can contribute to the theory with a development that aggregates
methodologies in the multi-criteria sorting analysis, widening the existing results and
methods in the literature.

Some limitations, such as the existence of reliable datasets to support the clustering
application and the definition of weights for criteria, still need expert understanding to
do it coherently. A correct definition of these parameters can lead to biased results. Fu-
ture works can be developed to generalize this methodology, like developments of this
proposal considering several cases studies related to sanitation or electrical systems and
sensitivity analysis to make improvements. In addition, further investigations on other clus-
tering methods, such as self-organized maps and other bio-inspired metaheuristics, should
be performed.
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