
Citation: Berbesi, L.; Pritchard, G.

Modelling Energy Data in a

Generalized Additive Model—A

Case Study of Colombia. Energies

2023, 16, 1929. https://doi.org/

10.3390/en16041929

Academic Editors: José Luís Sousa,

Luís Pires Neves and António Gomes

Martins

Received: 3 November 2022

Revised: 1 February 2023

Accepted: 7 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Modelling Energy Data in a Generalized Additive Model—A
Case Study of Colombia
Lina Berbesi and Geoffrey Pritchard *

Department of Statistics, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
* Correspondence: g.pritchard@auckland.ac.nz

Abstract: Energy demand modelling is essential for reliable informing and framing energy policy
decisions. More accurate modelling betters ensuring availability of energy and energy quality. Energy
availability is related to energy access across the country and defines important economic measures
such as energy poverty, which plays a critical role in developing countries. Energy quality is related
to the reliability of the supply for correctly estimating energy needs. To incorporate spatial and
temporal components of energy in a way that availability and quality are accurately assessed, this
article discussed a number of suitable task methods for this (Second-generation GAMs with one-
dimensional smoothers: Cyclic/Non-Cyclic Cubic Splines and two-dimensional smoothers: Markov
Random Fields/Tensor Splines Interactions). The results showed that the complete consideration
of both temporal and spatial aspects leads to a better fitted model which explains more of the
data variation.

Keywords: generalized additive models; cubic splines; Markov random fields; tensor product splines;
energy modelling

1. Introduction

Energy demand modelling in developing countries plays a huge role in framing policy
decisions for energy management, as a country’s rapid pace of transformation calls for
models that both adjust to short-term needs but also for more refined approaches that allow
to make long-term plans for energy coverage. In that sense, quantitative analyses that
evaluate a country’s population energy consumption across time and space are important
because they enable the identification of gaps in energy access and patterns in energy
consumption avoiding underestimation-shortage and overestimation-costs.

Ensuring access to affordable, reliable, sustainable, and modern energy is the seventh
goal in the sustainable development goals from the United Nations [1]. Unfortunately,
this has been hard to accomplish for Colombia due to the geography of the country with
a considerable amount of land, around a million square kilometers, equivalent to three
medium-sized European countries. In addition to, natural barriers such as mountains or
rivers create connectivity difficulties and lead to elevated costs of energy installations [2].

The vulnerability of the poor is aggravated by climate change and the volatility of energy
prices [3]. For tropical countries such as Colombia, those two aspects are strongly associated
with temporal demand variation. On one side, climate change makes the rainy/dry season
more pronounced and aggressive, which can be addressed in a model by including a yearly
pattern. On the other side, the volatility of energy prices is hard to control if no modelling is
implemented over energy data and if the tendencies and patterns are unknown.

Often the spatial aspect is ignored when modelling energy [4], meaning that neither
consulting companies nor governmental entities, especially in developing countries, include
spatial elements in energy modelling. Nonetheless, the spatial characteristics of the data
when modelled can explain a lot about what is happening in the regions and can often
be linked to socio-economic characteristics (i.e., size or number of households) of the
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regions. Analyses using global data sets or global analyses often fail to provide sufficient
information on energy access [3].

To date, the spatial information in Colombia that is publicly accessible in regards to
energy is given by the energy operators, which can be associated with regions, but there
is not further detail available publicly related to households. Each energy operator has
its separate household information, but this information is being sent already aggregated
to the government entities that foresee the energy market. Therefore, there is no way of
desegregating the data at a further level of detail.

In 2007, four percent of the Colombian population was not connected to the national
grid accounting for sixty-six percent of the national territory [5]. Since then there has not
been any other publication that addresses the percentage of the population that dwells
in the non interconnected energy grid areas, this could nevertheless be inferred from the
reports of non-interconnected zones/departments plus census data. In 2014 a map of non-
interconnected zones showed that eleven out of the thirty-two departments were partially
or entirely not connected to the grid [2] (See Figure 1). This is equivalent to fifty-four
percent of the territory when measured by department area. An analysis over historical
demand in 2018 unveiled that five out of thirty-two departments were not connected to
the national grid which is equivalent to thirty percent of the territory when measured by
department area [6]. Even with an improvement of twenty percent on energy coverage
between the years 2014 and 2018 there is still a significant portion of the country that is not
being accounted for.

Figure 1. Energy access in Colombia. Zones partially or entirely non-connected to the national energy
grid. (A) 2014. (B) 2018.
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Scarcity in energy access or availability is common in developing countries, inherently
related to space rather than time makes modelling exclusively with temporal parameters
not ideal. Broadening the access to modern energy services is something that needs to
be addressed by all countries but also represents a colossal challenge for the developing
ones [3].

This article explores the potential of combining spatial and temporal data for im-
proving the reliability of energy demand modelling in Colombia with the constraints data
available to date has while stating modelling possibilities for future data desegregated at a
lower level.

2. Materials and Methods

This article explores the use of second Generation GAMs to model spatial-temporal
energy data with one-dimensional smoothers: Cubic Splines Cyclic and Non-Cyclic, and
two-dimensional smoothers: Markov Random Fields and Tensor Splines, for the interac-
tions used as case study data from Colombia. Smoothing splines through GAMs are more
flexible than classically used GLMs, recognizing and characterizing non-linear relationships
that can accommodate both space and time covariates [7]. Gaussian Markov Random Fields
as Penalized Regression Spline make use of the penalty precision matrix to fit the smoothers
to the data.

2.1. One Dimensional Smoothers: Cubic Regression Splines Non-Cyclic and Cyclic

A commonly used method for modelling time in energy demand modelling is the
Cubic Regression Spline due to its high interpretability [8]. Cubic splines are widely used
in the literature to model non-linear relationships not only in the energy field but also
in other fields as well [9,10]. Splines of degree df are defined as a continuous piecewise
polynomial b1(x), b2(x), . . . , bk(x) of the same degree with k basis functions, also called
knots at ε1, . . . , εk regions of the explanatory variable x [11].

According to Ref. [8] a spline can be represented as

f (x) =
k

∑
j=1

bj(x)γj (1)

where bj are the basis functions and γj is the vector containing all the basis coefficients.
Ref. [10] reframes Equation (1) based on not just the knots k but also the degree of the spline
d f as

f (x) =
K+d f+1

∑
k=1

bk(x)γk (2)

The idea of this is that with k knots there are k + 1 polynomials of degree d f , which
makes the model have k ∗ d f constraints, which generates (k + 1)(d f + 1) − k ∗ d f =
k + d f + 1 free parameters as pointed out by Ref. [10]. In a cubic spline the degrees of
freedom are therefore k + 4.

The representation of a cyclic spline is the same as for a cubic one, with the exception
being that the limits of the summation do not go until the k, but until k− 1 due to the cyclic
end condition

f (x) =
k−1

∑
j=1

b̃j(x)γj (3)

Both cubic and cyclic spline have a second derivative that follows

J(x) =
∫ xk

x1

f ′′(x)2dx (4)
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Equation (4) is equivalent to γT DT B−1Dγ if the spline is cubic and γT D̃T B̃−1D̃γ if the
spline is cyclic cubic and they both can be summarized into γTSγ and γT S̃γ, where S and
S̃ are the penalty matrices for each cubic and cyclic cubic spline, respectively.

2.2. Two Dimensional Smoother: Tensor Product Smooth Interactions

All the concepts referred to in this section are derived from Ref. [8].
In order to include the interaction between the one-dimensional smoother, a tensor

product smooth interaction was included. If there are two covariates x and z with smooth
functions f (x) and f (z) with basis bj(x) and am(z) such as

f (x) =
k

∑
j=1

bj(x)γj and f (z) =
l

∑
m=1

am(z)δm (5)

Therefore, the smooth function of f (x, z) can be represented as

f (x, z) =
k

∑
j=1

l

∑
m=1

bj(x)am(z)δjm (6)

This assumes that the vector containing the basis coefficients for x γj varies smoothly
with z such as

γj(z) =
l

∑
m=1

am(z)δjm (7)

The tensor product penalties are also derived from the associated penalty function for
each covariate

J(x) = γTSxγ and J(z) = δTSzδ (8)

leading to a double penalty based on the tensor product of Equation (8) such as

Jx( f (x, z)) = γT S̄xγ and Jz( f (x, z)) = γT S̄zγ (9)

where γ is the vector of γjl arranged in the corresponding order according to covariates x
and z, S̄x is the marginal penalty matrix for x and S̄z is the marginal penalty matrix for z.

2.3. Two Dimensional Smoother: Markov Random Fields

In a space where two-dimensional smoothers have to be used, Markov random fields
can be fitted through a neighbourhood structure that works well with discrete geographic
regions. As stated by Ref. [12] a random field, also called a stochastic field, is a collection
of random variables X(s) = X(s1), X(s2), . . . , X(sn) at locations s1, s2, . . . , sn s ∈ Rn where
each random variable is defined on a probability space (Ω, F, P) where Ω is an abstract
sample space also known as topological space, F is a field of subsets of the abstract sample
space Ω and P is the probability measure on the space (Ω, F) that satisfies the Kolmogorov
axioms: (a) P(Ω) = 1 , (b) 0 < P(Ai) < 1 for all sets Ai ∈ F and (c) If Ai ∈ F and
Ai ∩ Aj = ∅ then P(

⋃∞
i=1 Ai = ∑∞

i=1 P(Ai).
The random fields range from Gaussian to Non-Gaussian and from Discrete to Con-

tinuous [12] and can be applied over space or time [13]. For this application over discrete
space lattice or areal regionally aggregated data, Gaussian random fields were preferred
for being more intuitive when compared with non-Gaussian ones [14]. A Gaussian Ran-
dom Field (GMRF), as defined by Ref. [15], is a random vector of n finite dimensions
X(s) = X(s1), X(s2), . . . , X(sn) for a finite set of locations s1, s2, . . . , sn s ∈ Rn that follows a
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multivariate Gaussian/Normal distribution X N(µ, Σ) with mean vector µ and positive
definite covariance matrix Σ such as

µ = E[X(s)] =


E(X(s1))
E(X(s2))

. . .
E(X(sn))

 (10)

Σ = Cov(X(si), X(sj))

Cov(X(s1), X(s1)) Cov(X(s1), X(s2)) . . . Cov(X(s1), X(sn))
Cov(X(s2), X(s1)) Cov(X(s2), X(s2)) . . . Cov(X(s2), X(sn))

. . . . . . . . . . . .
Cov(X(sn), X(s1)) Cov(X(sn), X(s2)) . . . Cov(X(s1), X(sn))

 (11)

The multivariate normal distribution for the random vector X(s) of n finite dimensions
with the mean vector µ and covariance matrix Σ is the following

p(X) =
Σ−1/2

2πn/2 exp
{
− 1

2
(X− µ)TΣ−1(X− µ)

}
(12)

The Gaussian Random Field (GMRF) can also be defined in terms of a sparse matrix
allowing the employment of sparse matrix solution techniques and properties and ulti-
mately a faster computation, as indicated by Ref. [15]. The precision sparse matrix, in this
case would be the inverse of the covariance matrix such as Q = Σ−1, making the model
become X N(µ, Q−1). The multivariate Normal distribution for the random vector X(s)
of n finite dimensions when using the precision sparse matrix Q instead of the covariance
matrix Σ could be expressed as

p(x) =
|Q|1/2

2πn/2 exp{−1
2
(X− µ)TQ(X− µ)} (13)

This finite set of locations s1, s2, . . . , sn S ∈ Rn from the Gaussian Random Field
(GMRF) are defined within a neighbourhood structure that is represented through an
undirected labelled graph g = (v, ε) where v is a set of labelled nodes/regions v = 1, . . . , n
and ε is a set of undirected edges from node i to node j i, j where i, j ∈ v and i 6= j n the
case of areal data the edges are the spatial borders between the regions.

If the regions share a common border, then the sparse matrix is non-zero Qij 6= 0
and the regions i and j are neighbours such as ne(i) = j ⇐⇒ ne(j) = i, which can also
be expressed as i ∼ j ⇐⇒ j ∼ i. It can be said that the neighbouring regions i and j are
conditionally dependent such as p(xi|xj) when i, j ∈ v and i 6= j.

If regions i and j do not share any spatial border, then there is no edge between i and j,
and then the sparse matrix is zero Qij = 0, and that xi⊥xj|x−ij for all i 6= j, which means
that the regions i and j are not neighbours and are conditionally independent of all the
other regions in the neighbourhood structure, and x−ij indicates all elements except for i
and j.

For the case presented here, a fully connected neighbourhood structure is assumed,
which can be represented through a fully connected undirected labelled graph, in which
i, j ∈ ε for all i, j ∈ v with i 6= j.

Figure 2 represents an areal data neighbourhood structure with 14 nodes or regions
such as v = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14} and with 29 as the set of edges or bound-
aries between regions
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ε =



{7, 13}, {7, 2}, {13, 2}, {13, 11},
{13, 3}, {13, 6}, {2, 12}, {2, 11}
{12, 11}, {12, 8}, {11, 8}, {11, 0}
{11, 3}, {8, 0}, {8, 1}, {6, 14}
{10, 14}, {10, 4}, {14, 4}, {4, 5}
{5, 1}


As can be seen in Figure 2, region 7 is a neighbour of regions 2 and 13 such as

nei(7) = {2, 13}, region 13 has as neighbours the regions 7, 2, 11, 3, and 6 such as nei(13) =
{7, 2, 11, 3, 6}, and so on. The average amount of neighbours for this neighbourhood
structure is four, with a minimum of two neighbours in region 7 and a maximum of seven
neighbours in region 0, such as nei(0) = {11, 8, 3, 14, 4, 5, 1}.

Figure 2. Neighbourhood structure relationship applied to Colombia. Regions form an irregular
lattice. The left column shows the conditional dependence between the connected regions while the
right column translates it to nodes.

3. Results

The demand data in this study is kilowatts hourly information collected monthly and
published yearly by the entity that oversees the grid of the electricity sector in Colombia [6]
(See Figure 3).

Figure 3. Unsmoothed data from January 2013 to December 2018.

The input data used for both spatial and temporal regressions are hourly aggregated
information for each department by day in a range of five years from 2013 to 2018. No
disaggregated information from smaller administrative areal units such as municipalities
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or point data about home consumption was available. The thirty-two departments were
grouped into fifteen regions for this analysis, as shown in Table A1 from Appendix A.

3.1. Non-Spatial GAM: Generalized Additive Model Regression Using Cubic Splines as a
One-Dimensional Smoother for Modelling Time

Additive models were introduced by Ref. [16] to deal with the dimensionality problem
of the General Linear Models GLMs through univariate smoothing [17]. The GAMs Stone
approach can be seen as a traditional way of portraying GAMs, which in this case has
the demand as the response variable d, and space or time as predictors xj, which can
be written as

d = α0 + f1(x1) + f2(x2) + · · ·+ fk(xk) + ε (14)

or its summarised version

d = α0 +
k

∑
j=1

f j(xj) + ε (15)

where α0 = E[ f (x)] and f j are the smooth functions over the covariates xj.
The Stone approach fails to include interaction and therefore has unsatisfactory results

when interaction exists [18]. It is here that the approach from Ref. [11] becomes important,
as it not only includes interactions f j but also includes the link function g over the response
variable d to analyse xj within a solution space of any member of the exponential family,
usually Gaussian-Normal, but it is open to Gamma, Poisson, or Binomial [17]. Then, a
Generalized Additive model over the demand according to the Hastie and Tibshirani
approach can be written as

g(µ) = α +
k

∑
j=1

f j(xj) + ε (16)

where f j are the smooth functions over the covariates xj allowing for both single basis
smoothing ∑j f j(xj) and interactions ∑j 6=i f j(xi, xj) and µ = E(d). In this approach, α is a
regression for the variables that will not be modelled additively. Hastie and Tibshirani
defineed the procedure for estimating α and f j as a local scoring procedure for generalized
additive models.

In the early 2000s, Ref. [19] provided a more recent perspective to the GAM definition
developed by Ref. [11], denoted in Equation (13). The author directly defined the iterative
procedure with a model structure that has index i, in which α is represented as the product
of the model matrix A and a vector of the associated model parameters θ, where the
intercept is assumed to be included. A is a design matrix for the covariates x with linear
effects. The author also included a linear operator Li j to multiply the smooth function f j.

g(µi) = Aiθ +
k

∑
j=1

Lij f j(xj) + εi (17)

where di is distributed according to an exponential family EF that has median µi and
variance φ , di ∼ EF(µi, φ).

The cubic regression spline smoother is represented through the function f j where bj is
a base function of the spline and γj is the vector containing all the basis coefficients such as

f j(xj) =
k

∑
j=1

bj(x)γj (18)

Finally, a vector of coefficients γ that contains the linear fixed effects vector θ followed
by all the basis coefficients γ for f j such as γ = {θ, γ1, . . . , γk} is defined. Then the
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estimation of the vector of coefficients γ̂ from the GAM model will be done by penalized
maximum likelihood, where the optimal is given by some smoothing parameters δj [19]

γ̂ = argminγ

(
D(γ) +

k

∑
j=1

δjγ
TSjγ

)
(19)

where Sj is a penalty matrix and the deviance of the model D(γ) = 2(l(γmax)− l(γ))φ.
Note that not only the optimal vector of coefficients γ̂ must be estimated but also

the parameters themselves δj. The smoothing parameters estimation δj is done either by
prediction error criteria (GCV) or maximum likelihood (ML or REML) [20].

The method that we will be used in this article for selecting the smoothing parame-
ters γj is the Restricted Maximum Likelihood, REML. This will be done instead of other
smoothness selection methods such as ML, Maximum Likelihood, and GCV, Generalized
Cross-validation. In REML unlike ML, the estimation of variance components is better,
as it has a higher probability of providing a complete rank of estimates of the variance
components [21]. On the other hand, REML is preferred over GCV due to it having a higher
penalty for overfitting and being less likely to have multiple minimum points, therefore
being less likely to have highly variable smoothing parameters λj [22].

In the literature, demand electricity is usually modelled by three patterns: daily,
weekly, and monthly. Ref. [4] modelled the previously mentioned patterns through a GAM
by preselecting the knots according to the number of unique values of the variables included
in the model. In that case, when modelling the patterns, only continuous variables were
included with 24 knots for the daily pattern, 7 knots for the weekly pattern, and 12 knots
for the monthly pattern. In this case, the daily pattern was included in the model through
an hour variable, the weekly pattern through a categorical variable that differentiates days
between weekend and weekdays, and instead of including a monthly pattern a trend
pattern was included. In the model, the interactions between categorical and numerical
variables were included. Knots were not set up based on unique values but on sensible
values according to the underlying data.

Initially, the daily pattern was included in the model using a cyclic spline smooth
over the discrete variable hour with a range from 0 to 23, s(hr, bs = cc, k = 24). After this,
the weekly pattern was included in the model as a categorical variable, wk, where weekly
days were classified as 1-Monday and 7-Sunday, and were aggregated into two factors,
wk/wknd. The corresponding interaction between the discrete numerical variable that
accounts for the daily pattern, hr, and the categorical variable, wk, that accounts for the
weekly pattern was also included using a factor smooth-interaction with the argument
inside the smooth function, s, in the following way s(hr, bs = cc, by = wk, k = 24). Finally,
trend pattern was fitted not by using the month’s numeric notation from 1 to 12 or the
days of the year from 1 to 365, but through a trend variable that goes from 1 to 43,800, that
accounts for the total number of data points available days per years per hour between 2013
and 2018 through a cubic spline smooth s(time, bs = cr, k = 10). The interaction between
the daily pattern and the trend pattern was fitted using pairwise bivariate tensors product
interactions ti(hr, time, bs = c(cc, cr), k = c(24, 10)).

This model can be expressed as

g(µi) = Ai + f s
1(hour) + weekday + f T

3 (time)

+ f I
1,2(hourbyweekday) + f I

1,3(hour, time)
(20)

where Aiθ accounts for the linear effects and the f function accounts for the non-linear effects
defined by each smoothed covariate. The super indexes S, TandI correspond respectively
to the Seasonal, Trend, and Interaction components. In the model µi = E(di) with the
response variable demand being distributed as di N(µi, φ).

As can be seen in Table 1, the resultant temporal model accounts for eighty-five percent
of the electricity demand variation.
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Table 1. Model summary table for non-spatial GAM.

Rsq Dev REML Scale Est n

0.852 0.853 7.573× 105 1.874× 1011 52,584

The Wald t-test in Tables 2 and 3 for the non-spatial GAM model shows that all smooth
terms and parametric terms are highly significant.

Table 2. Parametric coefficients for non-spatial GAM.

Var Estimate Std.Error t-Value Pr

Intercept 7,146,219 10,848 658.8 <2 × 10−16

weekday (wk/wknd) −697,836 4180 −166.9 <2 × 10−16

Table 3. Smooth terms/non-parametric coefficients for non-spatial GAM.

Var Estimate Std. Error t-Value Pr

hour-s(hr) 21.2287 22.000 56.312 <2 × 10−16

hour by weekday-s(hr):wk/wk 18.5862 22.000 12.482 <2 × 10−16

hour by weekday-s(hr):wk/wknd 0.6319 22.000 0.029 7.63× 10−15

time-s(time) 8.8768 8.981 142.593 <2 × 10−16

inter hour and time-ti(hr,time) 90.1125 198.000 4.785 <2 × 10−16

The knots were preselected, but not based on unique values, as in Ref. [4], but on
sensible values that reduce the heteroscedasticity of the data as much as possible while
maintaining them at logical levels below 24 knots. Splines over 10 knots are rare and can
lead to model overfitting, so in this case the upper limit was set to 24 because of the number
of unique values of the variable hours. Previous literature also points out that selecting
unique values for time related variables makes a better fit.

Heteroscedasticity which indicates if the basis dimension k is too low, was checked
through the k-index in Table 4. The model was divided between the residual variance to
get a p-value.

Table 4. K-check for non-spatial GAM.

Var k edf k-Index p-Value

s(hr) 22 21.2287 0.9827 0.1175
s(hr):wk/wk 22 18.5861 0.9827 0.1075

s(hr):wk/wknd 22 0.6318 0.9827 0.1050
s(time) 9 8.8768 0.8344 0.0000

ti(hr,time) 198 90.1124 0.8369 0.0000

The hours variable and its respective interactions showed no evidence of heteroscedas-
ticity with a p-value over zero. On the other hand, the number of data points was clearly
heteroscedastic with a p-value around zero. For reducing heteroscedasticity in the model, it
was attempted to increase the number of knots for the data points variable up to 50, but this
had little to no effect in the k-index or p-value. Fifty knots were chosen as an upper limit
to test the heteroscedasticity values due to it accounts of two years of data. Going above
this value was not explored because the size of the data does not call for a high number
of knots, considering that there were only five years available. The residual vs. fitted plot
(See Figure 4—second plot from left to right) also shows proofs of heteroscedasticity or
non-constant spread in the data.
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Figure 4. Diagnostic plot for non-spatial GAM.

The model demonstrated convergence after ten iterations supporting the data being
enough for the number of parameters. However, by looking at the Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF) it can be seen there is remaining
autocorrelation that the model is not capturing (See Figure 5).

Figure 5. Autocorrelation residuals of non-spatial GAM.

As is the case for GAMs, the correlation among covariates was tested through con-
curvity instead of collinearity due to the non-linear nature of the model. As expected, there
is acceptable concurvity between individual effects and interactions (See Figure 6). There is
no reason to believe that smooth terms of the model approximate to other terms.

Figure 6. Pairwise estimated concurvity of non-spatial GAM.

Figure 7 exhibits flat line in the density graph (first line, third figure) for the interaction
of hours and weekend indicating there is no much of an effect in the interaction of such
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variables.On the contrary, the interaction between hours and weekdays shows a clear spline
pattern in the density graph (first line, second figure). Both the individual effects of hours
and data points portrayed in the first figures of the first line and second line show splines
with a higher degree of curvature than the interactions.

Figure 7. Partial effects for the non-spatial GAM: effects for individual covariates, interaction
covariates, and parametric factor term.

3.2. Spatial GAM: Generalized Additive Model Regression Using Markov Random Fields as a
Two-Dimensional Smoother for Modelling Space

Often, space modelling is associated with Geographically Weighted Regression,
GWR [23], which according to Ref. [24] is based on the Varying Coefficient Model, VCM
proposed by Ref. [25]. Although there are many other types of modelling such as the Geoad-
ditive model [26], this one is specifically based on GLMs. In this article, the space modelling
is going to be based on GAMs, as proposed by Refs. [24,27] and later incorporated by
Ref. [8].

The spatial modelling will be performed through GAM using GMRF over areal data,
which is often considered a separate spatial modelling technique [28] but in this case it was
incorporated to the Generalized Additive Model as a two dimensional smoother so it can
account for the model covariance as a function of the location, as proposed by Refs. [8,27].

Areal data is important for its various applications not only in the energy demand fields
where observations could be allocated to a region according to the electricity operator but also
to census and survey data where observations are aggregated to administrative districts.

Spatial GAM has the same structure as a non-spatial GAM with the addition of a term
that accounts for the spatial effect represented through the smooth function f spat(si) [27]
such as

g(µi) = Aiθ +
k

∑
j=1

Lij f j(xj) + f spat(si) + εi (21)

where di ∼ EF(µi, φ).
In Equation (21), Aiθ accounts for the linear effects of covariates x while ∑k

j=1 Lij f j(xj)

accounts for the non-linear deterministic effects defined by the smoothers and f spat(si)
accounts for the spatially correlated effect that in the equation is calculated by the GMRF.

Here the dependence of all the terms from the spatial locations is suppressed for
simplicity, but it is assumed when including the Gaussian stochastic process assumptions
through f spat(si), therefore no subindex s related to the locations is included.

Equation (21) can also be represented in terms of the vector of spatial effects v [27]
through an incidence matrix Ri, which ensures that each observation is assigned the spatial
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effect of the corresponding s region it belongs to by assigning ones or zeros according to
whether that observation i has been collected in that region s or not

Ri = R[i, s] =

{
1
0

(22)

which translates to

g(µi) = Aiθ +
k

∑
j=1

Lij f j(xj) + Riv + εi (23)

After establishing the Generalized Additive Model, GAM, this article will proceed to
explain the assumptions under the spatially varying effects vector, v.

To understand how the spatially varying effects vector v operates and its underlying
assumptions, it is necessary to briefly recapitulate the fact that the spatial effect vector
forms part of a spatial function f spat(si) expressed as Riv for the specific case of discrete
spatial areal data. v distribution follows a Gaussian Markov Random Field, GMR,F prior
distribution conditional on the variance parameter τ2 [24]. In numeral 2.3, it was mentioned
how Gaussian Markov Random Fields, GMRFs, follow a multivariate normal distribution
such as X N(µ, Σ). In this case the multivariate normal model does not fully specify the join
distribution of γ because the variance Σ is known and denoted as τ2, but µ is a completely
unknown reason, which is why we say that the prior is an improper prior, making the
Gaussian Random Field be an Intrinsic Gaussian Random Field, IGMRF [29]. The use of
improper prior distributions is widely done and preferred in Bayesian statistical analysis
when the information about parameters is weak or missing [30]. According to Ref. [15],
Intrinsic Gaussian Random Fields, IGMRFs, can be defined in both regular or irregular
lattice. A lattice is a structure or pattern for arranging an area of land into spatial units
called sub-areas, cells, or units [31]. As stated in Ref. [31] these sub-areas share boundary
edges between a single or more sub-areas and cannot intersect with each other. As regards
the regularity or irregularity nature of the lattice, it all depends on the application over
which spatial data is going to be analysed. Radar data, for example, is usually based on
regular grids because the sub-areas formed have the same shape and size. However, when
the spatial data are administrative regions, as in this case, then the nature of the lattice is
irregular because they are defined following the natural shape of the territory, often setting
boundaries according to natural features such as rivers or mountains. This applies only
for first level divisions of a country such as states or departments. The ones that follow
census units are not related with the territory but are more defined for data collection
purposes. Due to the idea being to estimate X− µ from the spatially varying effect vector
v, then the deviation between spatial parameters v of adjacent regions such as vs − vr will
proceed to be measured, which carefully corresponds to the form of a random walk of
first order such as vs − vs−1 = εs with εs ∼ N(0, τ2), where s exists in a set of regions
S = {s1, s2, . . . , sn} ordered in a neighbourhood structure called δs where δs ⊂ S [27], which
is what Ref. [15] define as a First-order intrinsic GRMF on irregular lattices and for which
they use the German regions as an example. So, basically, a first-order intrinsic GRMF on
irregular lattices as defined in Ref. [15] and later used an incorporated as a spatial smoother
for modelling Generalized Additive Models by Ref. [8,27] is an independent Gaussian
relationship between neighbouring regions i and j such as vs − vr ∼ N(0, τ2), also called
an independent Gaussian increment or deviance between adjacent regions, which yields to
the multivariate Gaussian Intrinsic GMRF prior, as denoted by Ref. [27].

p(v|τ2) =
1

2π(n−1)/2(τ2)(n−1)/2
exp
{
− 1

2τ2 ∑
s∈S

∑
r∈δs ,r<s

(vs − vr)
2} (24)

This relation or deviance between the adjacent region shown in Equation (24) as
∑s∈S ∑r∈δs ,r<s(vs − vr)2 and [15,32] can also be represented as ∑s∼r(vs − vr)2 , where s ∼ r
symbolizes the set of all unordered pairs of neighbours. The pairs are defined as unordered
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to prevent double-counting due to the fact that if s is a neighbour from r, the order in which
they get expressed s ∼ r ⇐⇒ r ∼ s does not matter, as seen before in numeral 2.3.

The quadratic form ∑s∈S ∑r∈δs ,r<s(vs − vr)2, which represents the difference between
the X vector and the /mu vector in the multivariate Gaussian prior of the GAM. can also
be expressed in a matrix-vector form as shown in Refs. [24,27,33].

Where v is the spatially varying vector, v′ is the transposed version of the spatially
varying vector, and K is a precision matrix, otherwise known as Q [15].

Letting Ns represent the number of neighbours for region s such as Ns = |δs| the
elements of the K precision matrix from Equation (23) as

K = Ksr =


Ns s = r
−1 s ∼ r
0 otherwise

(25)

The super index of n− 1 could be expressed as the rank of improper precision matrix
K rank(K) = rk(K) [34]. The precision matrix K is called improper because it does not have
a full rank. The rank of the precision matrix K from an Improper GRMF of order k is usually
expressed as n− k [15].

Ref. [27] states that the multivariate Gaussian Intrinsic GMRF prior for spatial effects
vector γ expressed in Equation (21) and its corresponding equivalent Equation (23) can
also be articulated under full conditionals as

vs|v−s ∼ N
( 1

Ns
∑

r∈δs

vr,
τ2

Ns

)
(26)

Equation (26) can also be expressed in terms of known unequal weights based on the
extent of the common boundary or the distance to the region centroids [27,32]. but the
application in this document is going to be restricted to equal weights wsr = 1 for each
neighbouring regions s ∼ r, making wsr have no effect over the Equation (26), which is
why we are not including it.

In order to run the spatial GAM, data was aggregated into regions based on the energy
operators, as previously mentioned.

The Spatial Component from the GAM was defined using a neighbourhood structure
to get a precision penalty matrix K for the regions. Neighbouring regions were defined
by making a neighbours list for each region based on contiguous borders, as shown in
Figure 8.

This model can be expressed as Geoadditive regression because it has no further terms
but the one with the spatial component such as

g(µi) = Riv (27)

where Ri = R[i, s] is the incidence matrix between observation i and region s in which
the observation i was collected, and v is the spatially varying effects vector that follows
a Gaussian Markov Random Field, GMRF, prior distribution conditional on the variance
parameter τ2 such as vs|v(−s) ∼ 1

Ns
N
(
1/Ns ∑r∈δs vr, τ2

Ns

)
being Ns the number of neigh-

bours for region s that can also be represented as δs and in this case would represent the
neighbourhood relationships shown in Figure 8.

The purely spatial GAM with Markov Random Fields has as a constraint, as it can
only be limited to cross-sectional data where the precision penalty matrix K dimensions are
based on the set of regions, such as K, which has [s, s] dimension. This is why the application
of the GMRF in this dataset was limited to aggregated data from one-year—2018.
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Figure 8. Map of the neighbourhood structure based on MRFs.

As can be seen in Table 5, the resultant spatial model accounts for seventy-seve percent
of the electricity demand variation. The Akaike Information Criteria AIC for this model is
not truly comparable with the non-spatial GAM, which is considerably higher.

Table 5. Model summary table for spatial GAM.

Rsq Dev REML Scale Est n

0.563 0.770 48.681 42.681 14

The was no need to calculate the concurvity, because the model was only dependent
on one covariate, which was the Markov Random Fields, and the diagnostic showed that
the model converges after five iterations, which means the data is enough for the number
of parameters.

Moran’s I test was calculated to test the spatial autocorrelation in the data, and, as
can be seen in Tables 6 and 7 the value obtained showed no autocorrelation meaning the
assumption of independence was maintained.

Table 6. Moran’s I test under normality spatial GAM.

Moran-I Statistic Stand Deviate p-Value

0.99897 0.15890

Table 7. Moran’s I test sample estimates of spatial GAM.

Moran-I Statistic Expectation Variance

0.06986 −0.07692 0.02158

3.3. Extension of the Non-Spatial GAM with a Spatial-Categorical Regional Component

After running both temporal and spatial models as separate. A final model was built,
where a covariate accounting for the regions was included over the already tested temporal
one. Unfortunately, there was no way of doing this with Markov Random Fields across
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longitudinal data.For this reason, it was decided to use a categorical variable that had the
ID of the regions such as

g(µi) = Ai + f s
1(hour) + weekday + f T

3 (time)

+ f I
1,2(hourbyweekday) + f I

1,3(hour, time) + IDspatial
(28)

The components remain the same as the ones in Equation (28) for the non-spatial GAM
with the addition of the categorical component that accounts for the IDs of the regions.
The link function keeps being Gaussian, therefore di ∼ N(µi, φ) is maintained.

As can be seen in Table 8, the resultant extended non-spatial model with the spatial
categorical ID variable accounts for ninety-six percent of the electricity demand variation,
which is ten percent more than the temporal model by itself.

Table 8. Model summary table extended non-spatial GAM with a spatial covariate.

Rsq Dev REML Scale Est n

0.962 0.962 6.9594× 106 1.8572× 1010 525,560

The Wald t-test from the summary in Tables 9 and 10 for the extended model shows
that all smooth terms and parametric terms are highly significant.

Table 9. Parametric coefficients extended non-spatial GAM with a spatial covariate.

Var Estimate Std. Error t-Value Pr

Intercept 312,680.9 619.1 505.028 <2 × 10−16

wk/wknd −70,008.7 416.6 −168.053 <2 × 10−16

ID1 −88,951.4 840.8 −105.791 <2 × 10−16

ID2 745,127.5 882.2 844.602 <2 × 10−16

ID3 1,809,891.3 875.7 2066.692 <2 × 10−16

ID7 1,407,854.7 863.1 1631.194 <2 × 10−16

ID8 221,853.2 840.8 263.846 <2 × 10−16

ID11 2565.2 857.0 2.993 0.00276
ID12 −262,552.1 869.4 −301.993 <2 × 10−16

ID13 457,133.2 844.0 541.619 <2 × 10−16

ID14 −289,039.5 848.3 −340.734 <2 × 10−16

Table 10. Smooth terms/non-parametric coefficients extended non-spatial GAM with a spatial
covariate.

Var Estimate Std. Error t-Value Pr

s(hr) 20.937 22 24.376 <2 × 10−16

s(hr):wk/wk 17.119 22 4.751 <2 × 10−16

s(hr):wk/wknd 2.450 22 0.120 8.57× 10−15

s(time) 8.989 9 2723.631 <2 × 10−16

ti(hr,time) 126.624 198 69.221 <2 × 10−16

The Akaike Information Criteria AIC for this model was nine times higher than the
non-spatial GAM which points to the non-spatial model being a better fit even when the
extended model explains more of the demand variation.

The model converges after seven iterations, showing the data being enough for the
number of parameters, even where the heteroscedasticity still persists for the time individ-
ual covariate and its respective interaction as shown in Table 11.
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Table 11. K-check extended non-spatial GAM with a spatial covariate.

Var k edf k-Index p-Value

s(hr) 22 21.2287 0.9827 0.1175
s(hr):wk/wk 22 18.5861 0.9827 0.1075

s(hr):wk/wknd 22 0.6318 0.9827 0.1050
s(time) 9 8.8768 0.8344 0.0000

ti(hr,time) 198 90.1124 0.8369 0.0000

Regarding concurvity, the conclusions from the non-spatial model are maintained.
There concurvity of minor magnitude between the individual effects and the interactions.

For the extended model the conclusions remain the same as for the non-spatial GAM
(See Figure 9). In this model there is additional information about regions not included
in the non-spatial GAM. The model shows predominance in the energy consumption of
regions three-Centro, seven-CostaAtlantica, and two-Antioquia when compared against
other regions.

Figure 9. Partial effects for the extended non-spatial GAM with a spatial categorical variable: effects
for individual covariates, interaction covariates and parametric factor terms.

For the purpose of comparing both models, the non-spatial GAM without the ID
variable was fitted again over the same dataset as the one used for the extended version,
so we could run an added variable test to check if the extra variable was contributing to
explain the response or not.

The results in Table 12 show that there is strong evidence that the spatial categorical
variable does contribute to explaining the response even when an AIC test between the
two models prefers the model with fewer terms.

Table 12. Analysis of deviance table.

Resid. Df Resid. Dev Df Deviance F Pr (>F)

525,450 2.3855× 1017

525,342 9.7571× 1015 108.3 2.2879× 1017 113,757 < 2.2× 10−16
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4. Discussion

A holistic approach between spatial/temporal data is hard to accomplish when mod-
elling data with Generalized Additive Models over areas instead of points (discrete-data
versus continuous-data). The fact that data is limited to areas in these case regions makes it
difficult to incorporate in longitudinal datasets due to methodologies that model area data
across space, such as the two-dimensional smoother Markov Random Fields, are mainly
designed for cross-sectional data rather than longitudinal.

Thin-Plate Spline modelling was considered as another two-dimensional smoothing
methodology but was left out of scope due to data needed to be converted from areas into
points using centroids. In the cases of Colombian regions, such centroids would be more
than 100 km away from each other, which would lead to Thin-Plate splines not behaving as
a surface but as disaggregated ellipsoids.

Due to the previously mentioned limitations of working with areal data, it was decided
to first model the individual region’s IDs against the demand and verify the assumptions
of spatial autocorrelation with Markov Random Fields. Then the spatial component was
incorporated into a temporal extended model using a categorical parameter based on the
IDs of the regions.

Areal data has limitations when visualizing the variation of the dependent variable
as a function of the distance using methods such as variograms. Variograms do not work
well for areal data, especially when the number of regions is not significant due to there are
not enough points to conclude over the pattern and the fact of whether the data is spatially
autocorrelated or not. Nonetheless, Moran’s I test seems to work equally well for checking
the independence, spatial autocorrelation assumptions, regardless of the nature of the data,
areal or point-based.

Areal data from wider geographical units such as regions, states, or departments do
not allow for the inclusion of a space component as a non-parametric two-dimensional
smoother but smaller geographical units like census units, cities, or households could poten-
tially allow so. While household energy information has identification constraints around
it. Aggregation by smaller census areas does not. Energy modelling using household
information could lead to more accurate spatial modelling when used in association with
population characteristics helping to drive scientific policy advice for the energy sector.

Heteroscedasticity was found to mainly be connected to the number of knots of
the time variable, as shown by the k-test. Increasing the number of knots to get rid of
heteroscedasticity was considered but let out of scope to avoid overfitting.

5. Conclusions

In this article, the use of Generalized Additive Models with one-dimensional and two-
dimensional smoothers is proposed as an alternative to understand how the energy demand
behaves across space and time. A model using isolated temporal covariates could not be
as insightful as one where both time and space aspects are incorporated and would also
not be making the most of the GAM features of including multi-dimensional smoothers.
The practical applicability of Markov Random Fields is limited to cross-sectional data
when no temporal covariates are included.In this case, regional IDs in MRFs explain up to
seventy-seven percent of the response variation.

The holistic consideration of both space and time leads to the best prediction ac-
curacy, ninety-six percent versus eighty-five percent, from the purely temporal model,
but in this case it is limited to include the regional component as a categorical parameter.
In order to be able to work out the inclusion of a space component as a nonparametric
two-dimensional smoother rather than a parametric one, the underlying data would have to
come as coordinates and preferably disaggregated to smaller geographical units. However,
this level of detail, which may be common in developed countries, it is hard to acquire in
developing ones.

Future work as stated in the discussion session would encompass the gathering of
point-based information about around energy consumption in the country to validate
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conclusions obtained with areal data. Minor scale exercises with point-based data in a
city or small geographical area will be sufficient to show how a national exercise could be
carried and the benefits of point-based data over areal data.

Availability of point-based data would further enhance the reliability of energy mod-
elling as policy advice.
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Appendix A

Table A1. Grouping of states into regions.

Region State

Costa Atlantica La Guajira
Magdalena
Atlántico

Cesar
Bolívar
Sucre

Córdoba

Oriente Norte de Santander
Santander

Boyacá
Arauca

Casanare

Antioquia Antioquia

Chocó Chocó

CQR Caldas
Risaralda
Quindío

Valle Valle del Cauca

Sur Cauca
Nariño

Putumayo

https://www.xm.com.co/portal-de-indicadores
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Table A1. Cont.

Region State

Centro Cundinamarca
Bogotá
Meta

Guaviare Guaviare

THC Tolima
Huila

Caquetá

Amazonas Amazonas

Vaupés Vaupés

Guainía Guainía

Vichada Vichada

The State of San Andres Island was excluded from the regions due to it having its
own supply of energy not connected to the national grid, but also due to the fact that
the neighbourhood matrix used to capture spatial autocorrelation is based on adjacency.
A distance based neighbourhood matrix could be calculated using K nearest points, or
the Euclidean distance. However, San Andres is a disputed island between Nicaragua
and Colombia which is closer to mainland Nicaragua (200 km) than to Colombia (700 km)
which would cause an unusual neighborhood structure. Distances between the centroids
of regions on mainland do not exceed 400 km on average. Including San Andres would
introduce and outlier in the distance matrix that would later on have to be removed to
avoid distortion in the statistical analysis and measurement errors.
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