
Citation: Singh, B.; Slowik, A.;

Bishnoi, S.K. Review on Soft

Computing-Based Controllers for

Frequency Regulation of Diverse

Traditional, Hybrid, and Future

Power Systems. Energies 2023, 16,

1917. https://doi.org/10.3390/

en16041917

Academic Editor: Abu-Siada Ahmed

Received: 19 December 2022

Revised: 28 January 2023

Accepted: 3 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Review on Soft Computing-Based Controllers for Frequency
Regulation of Diverse Traditional, Hybrid, and Future
Power Systems
Balvender Singh 1 , Adam Slowik 2,* and Shree Krishan Bishnoi 3

1 Department of Electrical Engineering, Government Women Engineering College,
Ajmer 305002, Rajasthan, India

2 Department of Electronics and Computer Science, Koszalin University of Technology, Politechnika
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Abstract: In recent decades the power system has become a complex network, to design a load
frequency control (LFC) requires solving a complex equation. Optimisation techniques are essentially
required to optimise the parameters of different controllers used for LFC issues in the power system.
In a unified power system, the LFC is examined from all angles using different optimisation strategies
to optimise the conventional PI, PID, cascaded, and fuzzy controllers as well as recently designed
controllers. This manuscript specifically reviews the use of soft computing techniques in the frequency
regulation of the power system with single/multiple areas that include conventional, renewable, and
combinations of both, with FACTS devices and certain energy storage devices such as superconductor
magnetic energy storage (SMES) and battery sources. Furthermore, deregulated power systems
and microgrids are also considered for the study. To regulate LFC under various disturbances such
as generation rate constraints (GRC) and dead band control, a few additional control approaches
are utilised. Models of the power system are discussed and analysed. In addition, the merits and
drawbacks of the studied techniques/structures that address design and implementation issues—as
well as control issues that relate to the LFC problems—have been discussed.

Keywords: soft computing techniques; interconnected power systems; load frequency control;
secondary frequency control; smart grids; microgrid; optimisation techniques; FACTS devices

1. Introduction
1.1. Motivation

The infiltration of renewable energy sources (RESs), the adoption of novel ideas like
the smart grid, and the computerisation of power system regulators are based on apprehen-
sive communication technologies and contributing to increase in the complexity of power
systems [1]. The aforesaid factors have an unswerving impact on the security, stability,
and functioning of the power systems. The voltage and frequency are the most crucial
power system indices. Frequency regulation in PS has received a lot of consideration due
to its importance [2]. Primary, secondary, and tertiary control are the standard divisions of
frequency regulation. The governor droop often implements the principal frequency regu-
lation, resulting in steady stated errors. The primary frequency control loop is accountable
for recording the frequency variation before the under/over frequency protection relays
are activated. The secondary control for controlling frequency in power systems is called
AGC, often referred to as LFC. It has two main objectives: (i) keep the frequency within a
desired range; and (ii) control the exchange of power via significant tie-lines between the
two control areas.
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The uncertainty of active power production is greatly raised as the level of infiltration
of RESs—such as wind farms and solar plants in power networks—increases, resulting in
frequency variations. Along with the stochastic nature of demand, this rise in active power
fluctuation would cause the power system's frequency to oscillate sharply. Therefore, more
reliable and ideal LFC techniques are required for use in future power systems in order to
address such issues.

In interconnected power systems, there have been numerous control strategies pro-
posed for LFC. Four categories of strategies can be made: (i) the design of PID controllers
for regulating frequency and tie-lines power flows is the primary emphasis of classical
control approaches; (ii) modern controls methods comprise best control strategy, i.e., adap-
tive control and sliding mode control; (iii) intelligent control strategies, i.e., fuzzy and
neural network based controller; and (iv) soft computing-based methods for fine-tuning
the parameters of controllers, which researchers have given a lot of attention to recently.

1.2. Contributions

Power system operation and control is a broad area of study in the area of power
systems that include controls for both frequency and voltage stability. These days, re-
searchers are paying a lot of attention to the problem of frequency management because of
the reasons outlined in Section 1.1. However, this topic encompasses a number of in-depth
and specific subjects, power system inertia support techniques, main frequency control,
secondary frequency control, and tertiary frequency control, as well as protection during
frequency emergencies.

The LFC deals with regulating the frequency due to minute disruptions like load
fluctuations and variations in RESs. In this study, we focus on the key details, namely LFC
models, control techniques, and optimisation techniques used for controller parameter
tuning. For researchers, frequency response models are crucial. Therefore, this paper
introduces the most significant frequency response (FR) models and categorises them into
two primary classes, namely models with emerging technologies and model structures
(referred to as conventional). This study evaluates the LFC control strategies of the last
ten years. The article emphasises the benefits and drawbacks of each control technique
and optimisation technique in this review. Moreover, a comparison of a few techniques is
shown clearly. Additionally, this study introduces the research directions and gaps, which
might serve as a useful road map for researchers.

The suggested optimisation techniques for the controller parameters tuning for LFC
are highlighted in this review. Furthermore, a survey of the proposed frequency response
model for power systems is conducted. In addition, LFC models found in contemporary
power systems, microgrids, and upcoming smart grid models are investigated. The same
goes for trends and potential avenues for future research. The frequency response modeling
of various power system topologies is initially discussed due to its significance in LFC
investigations. Table 1 illustrates how LFC models are split into various categories—namely,
traditional, hybrid, and future LFC models. Based on their configurations, the typical LFC
model structures are examined.

As a result, a thorough review of dual-area, conventional three-area and multi-area
PS—as well as FR models of signal control area—are conducted. Many distinct system
models and formations have been published in the literature, taking into account various
generating unit types as thermal, nuclear, hydro, and gas. The formations of present and
future PS models for FR are then split into main categories: AGC models with high voltage
direct current (HVDC) links and FACTS devices, LFC of deregulated PS, LFC models with
significant penetration of distributed generation and RESs, LFC in microgrids, and LFC
models appropriate for smart grids.
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Table 1. Representation of power systems: conventional, hybrid, and future power systems.

Power System Models for Optimal Frequency Regulation

S. No. Conventional Power
System

RESs Integrated
Power System

Islanded Microgrid(IMG)/
Smart Grid

1 Single area Single-area Single-area IMG

2 Multi-area (Two area, Three
Area, Four area, Etc.)

Multi-area (Two area,
Three Area, Four

area, Etc.)
Two-area IMG

3 Deregulated PS system Deregulated PS Distributed energy sources
(DGs)

4 PS with HVDC PS with HVDC —

5 PS with FACTS devices PS with FACTS devices –

6 PS with energy storage PS with energy storage –

2. Survey of Various LFC Models and Optimisation Techniques

In this section, the term conventional power systems refers to power systems where
electricity is produced using fossil fuels. In fact, the most renowned power plants for these
systems are thermal, hydroelectric, and nuclear generating units. PS are typically split
into single-area, two-area, three-area, four-area, and multi-area power systems as per their
size and interconnections. The power system models given in Table 1 are designed for
conventional as well as the deregulated power systems. The primary distinction between
a traditional monopolistic electricity market and the emerging competitive deregulated
market is that in the former, electricity is only considered to be a component of the energy
supply, whereas in the former it is viewed as a service and thus marketed similarly to other
commodities. Several FR models, control strategies, and optimisation techniques for LFC
models are suggested in the literature. According to no free lunch theorem, no optimisation
technique can be used to solve all problems that mean a particular optimisation technique
will be better suited for one kind of solution but may not be suitable for another. This
means that there is always a search to find a suitable optimisation technique for a particular
type of optimisation problem. A thorough assessment of the optimisation techniques used
for optimizing the different controller parameters of PS models for LFC is provided in the
following sections.

2.1. Single-Area Power System

Single area power system is a closely knit electrical area in which numbers of genera-
tors form a cohrent group. Figure 1 shows the representation is single area power system
that consists of a governor, turbine, and generator. The proposed AGC method for SAPS
and optimisation techniques are investigated in Table 2.
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Figure 1. Generalised block diagram of single area LFC of reheat thermal based power system.
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Table 2. Comparison of latest control strategy applied for LFC in the single-area power system.

Ref. No. Power System
Type Sources Devices Optimisation

Technique Controller

[3] Conventional Thermal Unit —-
Improved Particle

Swarm Optimisation
(IPSO)

PID

[4] Conventional Thermal, Hydro, and
Gas units —- Genetic Algorithm

(GA) PI

[5] Conventional Thermal Unit —-

Quadratic Regulator
Approach with

Compensating Pole
(QRAWCP)

PID

[6] Conventional Thermal, Hydro, and
Gas units HVDC Link Modified PSO PID

[7] Conventional Thermal Unit —- Iterative Linear
Matrix Inequality iterative PID (IPID)

[8] Conventional Thermal Unit —- Ant Colony
Optimisation (ACO) PID Controller

[9] Conventional Thermal Unit —- Elephant Herding
Optimisation (EHO) PID

[10] Hybird power
plant Thermal, wind units —- Bat Inspired

Algorithm LADRC

[11] Microgrid
Reheat thermal, diesel

engine generation
(DEG), wind

Battery energy
storage (BESS),
Fuel cell (FC)

Grey Wolf
Optimiser (GWO) Fuzzy PID

[12] Microgird DEG, PV, wind BESS, FC GA MPC and PID

[13] Microgrid Wind turbine, BDG
Mini Pumped
hydro energy

storage and BESS

Coyote-Optimisation
Algorithm PI controller

The design and implementation of LFC for single-area power systems (SAPS) is the
subject of the first studies on frequency control. In the literature [14–18], a number of
SAPS models with LFC control techniques are examined. A dynamic mathematical model
of frequency response for SAPS made up of thermal power plants is designed and a
robust frequency control technique is suggested in [19]. Single-area LFC models for power
networks with several energy sources—including hydro, gas, and thermal sources—is
presented in [17]. A well-described frequency response LFC model of hydroelectric power
systems is found in [20]. The improved PSO (IPSO) in Reference [3] is used for the AGC
issues of SAPS.

2.2. Two-Area Power System

A two-area power system is constructed using two different control areas connected
through a tie-line. The linearised two area power system is presented in Figure 2. A
summary of AGC used in two-area power systems (TAPS) is provided in [21–38]. Ref-
erences [21,22] study the influence of tie-lines models on the LFC of TAPS. In [25], the
LFC models for TAPS that take voltage control loop effects on the frequency response
are developed. In [27–29], frequency response models for TAPS that take into account
the nonlinearities of the GRC and the GDB are proposed. References [23,38] present a
discussion on how to simplify the frequency response model by reducing its complexity.
The multi-source, two-area LFC models that take nonlinearities into account are highlighted
in [29]. LFC models of TAPS with parametric and nonparametric disturbances are discussed
in references [27,29,36]. In [25], an LFC strategy is proposed for TAPS linked by HVDC/DC
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transmission lines. References [39,40] present TAPS frequency response models made up
of reheat-thermal turbines coupled by AC/DC links. For thermal–thermal two-area power
systems, load frequency control techniques that account for communication channel delay
are proposed in [21–25]. Two-area power systems reheat thermal turbine frequency model
with governor dead-band zone is shown in [30]. GRC non-linearity for the reheat thermal
turbine-governor system in TAPS is taken into consideration in [41,42]. Considering the
non-linearity of hydro power plants, the LFC strategy for hydro–hydro power systems
is presented in [17,43,44]. SMES units are offered as LFC models for TAPS in [45–47]. In
view of the influence of batteries and SMES, a frequency regulator for TAPS is provided
in [48]. In reference [49], an LFC model of traditional two-area PS is proposed, together
with the involvement of energy storage systems and electric vehicles. In [50], the LFC
models take into account the electrical load's stochastic nature. In [51,52], the LFC model
accounts for the uncertainty associated with RESs. The various optimisation techniques
used for tuning the different controller parameters and other details for two-area PS are
discussed in Table 3.
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Figure 2. Generalised diagram of two area LFC of reheat thermal-based power system.

Table 3. Comparison of latest strategy applied for LFC in the different power system models.

Ref. No. Power System
Type No. of Areas Sources Devices Optimisation

Technique Controller

[53] Conventional 1,2 Hydro-thermal
gas Units HVDC Differential Evolution

(DE) algorithm I, PI, PID

[54] Conventional 2 Thermal unit —- Particle Swarm
Optimisation PID controller

[36] Conventional 2 Thermal —- Differential Evolution 2-DOF PID

[55] Conventional 2 Hydro-thermal
gas —-

Teaching Learning
Based Optimisation

(TLBO)
PID controller
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Table 3. Cont.

Ref. No. Power System
Type No. of Areas Sources Devices Optimisation

Technique Controller

[56] Conventional 2 Thermal HVDC Multi-Verse Optimiser Fuzzy-PID
controller

[26] Conventional 2 Hydro-thermal
gas UPFC and SMES Firefly Algorithm Fuzzy-PID

[54] Conventional 2 Hydro-thermal
gas (GCSC) Sine Cosine Algorithm

Optimised fuzzy
fine-tuning
controller

[55] Convetional 2 DEG and TTG Additional inertia Imperialist Competitive
Algorithm (ICA) FOPID controller

[56] Conventional 2 Hydro-thermal
gas units HVDC, SMES Bull-Lion Optimisation PI-PDF controller

[57] Deregulated 2,3 Thermal–hydro – Imperialist Competitive
Algorithm (ICA). PID Controller

[58] Deregulated 4 Thermal–hydro —-

Binary Coded Genetic
Algorithm (BGA) and
Real-Coded Genetic

Algorithm (RGA)

PID controller

[59] Deregulated 2 Thermal–thermal TCSC
Quasi-Oppositional

Harmony Search
(QOHS)

PID controller

[60] Deregulated 2 Thermal-gas
power plants TCPS, SMES

Teaching Learning
Based Optimisation and

Pattern Search
‘TID controller

[61] Deregulated 4 Thermal units —- Water Cycle Algorithm
(WCA) CC-TI-TID

[62] Hybrid PS 2 Thermal–thermal,
PV power model —- Genetic Algorithm (GA)

Fuzzy logic
controller (FLC),

PID

[63] Hybrid PS 2
Diesel generator,

photovoltaic
power model

—- Bacterial Foraging
Algorithm

PI, PID, Fuzzy
Logic Controller

[64] Hybrid PS 2 Thermal, wind,
photovoltaic – Salp Swarm

Algorithm (SSA) PID controller

[65] Hybrid PS 2 Thermal and
wind —- Coyote Optimisation

Algorithm (COA) Cascaded PDn-PI

[66] Microgrid 2 Diesel generator,
wind and solar SMES, BESS Social-Spider

Optimiser (SSO) PID controller

[67] Microgrid 2 BDG, wind,
tidal units —- Yellow Saddle Goatfish

Algorithm (YSGA) PIFOD-(1 + PI)

[68] Microgrid 1,2 Thermal —-
Electro-Search

Optimisation (ESO)
with Balloon Effect

Adaptive
controller

For deregulated electricity networks, various control strategies have been presented as
the restructuring concept is adopted. In [69–80], LFC issues for deregulated power networks
are discussed. A power system is separated into sections under deregulation so that each
section has its own administrator. An independent system operator (ISO) is responsible
for overseeing power distribution companies (DISCOs), power transmission companies
(TRANSCOs), and power generation companies (GENCOs) in this regard [70–73]. The
GENCOs may or may not take part in LFC service in this new setting. In deregulated
power networks, the provision of auxiliary services is based on a competitive electricity
market [74,75]. For several kinds of deregulated electricity systems, frequency response
models have been established in the literature [70,71,73–78]. LFC strategy for deregulated
power systems with only thermal units are proposed in [75–77]. References [60,81] offer
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LFC strategies for deregulated hydro power networks. An LFC framework for deregulated
multi-source power system is depicted in [82]. For LFC research, a restructured TAPS with
both a thermal–gas and thermal–nuclear system is depicted in [83,84].

2.3. Three Area Power System

LFC modelling for three-area interconnected power systems (TAIPS) are presented
in [85–93]. An LFC model for a TAIPS is provided in [94], where steam-hydro power
units are taken into account in the first and second areas, while a steam power unit is
the only source of energy in the third area. In [93,95,96], a thermal power system with
three control areas is examined. In three-area interconnected power systems, radial and
ring networks among the various control areas are explored in [97]. In [72,98,99], a three-
area power system LFC model that takes GDB and GRC nonlinearities into account is
proposed. Reference [100] investigated the effects of communication latency on LFC in
TAIPS. The effects of parametric uncertainty on LFC of three-area linked power systems are
highlighted in References [98,101]. Three-area thermal power systems frequency control
model is proposed in [102,103]. The LFC for hydropower systems with three areas is
depicted in [58,104]. Three-area hydro-thermal power system load frequency controllers
are presented in [101]. The LFC for multi-source power systems that take into account
thermal, gas, and hydro energy sources presented in [105].

2.4. Four-Area Power System

To keep the frequency within a permitted range, large power systems are typically
separated into various control regions. The LFC issues in four-area interconnected power
systems (FAIPS) has been presented in [100,103,106–110]. An LFC for FAIPS with hydro
power units as the first effort in this sector is presented in [73]. Furthermore, the frequency
response models of FAIPS that are appropriate for LFC are presented in [111]. In [110], an
LFC strategy for interconnected multi-area power systems considering nonlinearities like
GRC and GDB is presented. Using a fuzzy control for an LFC model, the uncertainties of
the power system characteristics are taken into account in [112]. A FAIPS with various
energy sources and turbines—including hydro, gas, non-reheat thermal, and reheat thermal
power plants—is presented in [95]. LFC scheme for FAIPS using various structures, such as
longitudinal and ring connections is proposed in [109,110]; in this model, three area contain
thermal units and one area contains a hydro unit.

2.5. Multi-Area Power System

In nature, power systems are linked together. A larger system known as the multiarea
system is created by connecting various single areas together. A six area power system
consisting diverse power generating sources is presented in [113–116]. AGC models are
provided in [116]. For various restructured power system designs, such as five-area and
multi area power systems [75,79,107,117,118]. In reference [119], a TAIPS with two GENCOs
and DISCOs in each area was designed. In [120], the idea of a restructured TAIPS that is
vehicle-to-grid (V2G) enabled is put forth. References [121,122] presents a discrete mode
LFC method for a deregulated TAIPS. Furthermore, handling deregulation of the triple-area
and four-area power systems is shown in [71,102].

2.6. Microgrid and Smart Grid

A microgrid (Figure 3) is a tiny power grid that can function on its own or in tandem
with other microgrids. Energy generation that is distributed, dispersed, decentralised, or
embedded refers to the use of microgrids. LFC models of fuel cell, wind, and solar-powered
electric hybrid power systems is presented in [123–130]. Modelling the LFC takes into
account a microgrid and hybrid system made up of PV, WTG, micro turbines, fuel cells (FC),
capacitive energy storage (CES), and aqua electrolysers (AE). Active power flow and fre-
quency stabilisation is achieved using different optimisation based PID controller [131,132].
In [133,134], they explore how electric water heaters, demand response, and electric vehi-
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cles affect the LFC of microgrids. For LFC research, nonlinear microgrid models are also
proposed in [135].
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Due to its many benefits, smart grid control themes have recently attracted a lot of
attention from researchers. For use in upcoming smart grid systems, several new LFC
techniques have been devised in [126,136–144]. LFC models that take electric cars’ (Evs’)
contribution into account are presented in [139]. Similarly, a coordination mechanism be-
tween heat pump water heaters and electric vehicles is recommended for LFC in upcoming
smart grids [140]. Adaptive dynamic demand response, which is seen as LFC has been
given significant smart grid functionality in [126,136]. Frequency response models that
take into account the impact of various storage types have been proposed in [13,145,146]
and evaluated. In [143,147–149], a novel plug-in EV frequency response model is put forth
for the primary and secondary frequency control levels. Future smart grids may experience
issues with potential cyber-attacks on LFC systems, as stated in [142,150–152].

3. Soft-Computing-Based Controller for LFC

In order to maintain a steady system frequency, a power generating module has the
capacity to modify its active power output in response to a detected system frequency
deviation from a setpoint. Furthermore, the LFC is classified as: (i) primary frequency
control; (ii) secondary frequency control; and (iii) tertiary control.

(i) Primary frequency control: Changing a generating unit's power versus frequency
in accordance with its static generation characteristic as stablished by the speed
governor settings constitutes primary control. Restoring generation and demand
balance within the synchronous area at a frequency other than the nominal value
is the goal of primary control. This is done at the expense of the rotating masses of
the producing units and associated motors' kinetic energy. After the generation and
demand balance has been disturbed, the primary control action time is 0 to 30 s.

(ii) Secondary frequency control: Utilizing a central regulator, secondary control modifies
the active power set points of generating sets that are subject to secondary control in
order to simultaneously restore the system frequency to its set-point value and power
interchanges with neighbouring control areas to their planned values. Secondary
control assures that the complete reserve of primary control power activated will be
made accessible once again by changing the operating points of individual producing
units. A few minutes pass more slowly under secondary management than under
primary control. It starts acting roughly 30 s after a disruption or event and finishes
within 15 min.
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(iii) Tertiary control: Tertiary controls are any automatic or manual adjustments made
to the operating points of the participating generating units in order to replenish
a sufficient secondary control reserve or to provide the desired (from an economic
perspective) distribution of this reserve among the active generating units. Altering
the set operating points of thermal power plant generation sets, around which pri-
mary and secondary control acts, connecting or disconnecting pump storage hydro
power stations operating in an intervention mode, changing the power interchange
programme, and controlling load are all examples of tertiary control.

Due to its great advantages, revolutionary soft-computing-based control system design
has attracted a lot of attention from researchers over the past 15 years. The distinguished
advantages of using soft computing techniques include their less solution costs, assurance
of a solution and their viability. They can deal with difficult, nonlinear, and uncertain
technical problems. In contrast to other methods, numerous researches have supported the
viability of controller constructed on soft computing technique.

The LFC’s parameters have been optimised using soft computing approaches in
order to obtain good dynamic response. To best tune the gains of the controllers, lots of
evolutionary optimisation algorithms have been applied. The classification of the various
soft-computing-based controllers is presented in the Figure 4.
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3.1. Conventional Controller

The conventional control phenomena rely upon the traditional integer order (IO) con-
trollers, which are frequently used to leverage the governor and minimise the ACE/µACE
in the power system to improve FR. The conventional controller is designed with various
combinations such as Integral (I), Proportional Integral (PI), Proportional Integral Deriva-
tive (PID), Proportional Integral Derivative with filter coefficient (PIDN). The conventional
PID and PIDN controllers are presented in Figure 5a,b. Several research papers used
I/PI/PID controllers in conventional, deregulated, microgrid, and smartgrid environments
to deal with LFC issues. A basic integral controller tuned with Bacterial Foraging-Based
Optimisation [153], iterative linear matrix inequalities techniques by the mixed H2/H∞ tech-
nique based decentralised proportional-integral (PI) controller [154], biogeography-based
optimisation (BBO) tuned PID and fuzzy-PID four-area power system [155], conventional
PID controller tuned by various optimisation techniques (i.e., hybrid genetic algorithm-
simulated annealing (GA-SA), and chaotic optimisation algorithm (COA) and ant colony
optimization are proposed in [156,157]; and Hosoke-Jeeve’s optimisation tuned double
mode PI controller [158] tuned AGC are examined for regulating the system frequency
and tie-line power fluctuations. Reference [159] proposes a frequency-regulation PID reg-
ulator. In order to resolve the LFC issues in connected power systems, GA is utilised
in power systems for LFC controller gains as well as controller tuning [160]. A model
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based on population and inspired by the cooperative behaviour of fish schooling or bird
flocking—PSO—is frequently used [57]. A PSO-based PID controller is used in [3,161] to
overcome the LFC problem in single-area power systems. Similar to this, a PSO-based PID
controller has addressed the LFC issue in interconnected power systems with different
power units, including thermal, hydro, and gas turbines in [45]. A combination of two
algorithms PSO-GSA is used for tuning the parameters of PI-PD controller in multi-area
hybrid power system [162]. In [163], hybrid PSO strategies combining other soft computing
techniques are also suggested for LFC.
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Recently, various novels proposed soft computing techniques addressing the LFC
issue in both traditional and contemporary power systems have been created consider the
algorithm for differential evolution (DE) [119,164,165]. The flower pollination algorithm-
based PID controller is proposed in for LFC in three area power system [99]. The QOHS
algorithm has been employed for FR in single-area and three-area thermal-generation-based
power system [89], simlarly the QOHS algorithm has been used for hybrid diesel-tidal
generation based PS [166]. A Teaching Learning Based Optimisation (TLBO) tuned PIDD
controller is proposed for two-area PS in [48]. A modified bias (MB) and coefficient diagram
method (CDM)-based PID regulator has been used for FR in an independent microgrid
(MG) system under full unfavourable conditions and Grey Wolf Optimiser algorithm is
used for tuning the controller parameters [167]. A Bat-Inspired Algorithm (BA) optimised
PD controller has been deployed for single-area PS considering the high penetration of
wind [10]. A GWO algorithm is considered for optimizing the PID regulator parameters
for solar- thermal generation based three-area PS [168]. A bacterial foraging optimisation
based integral controller is applied to a three-area power system in [169]. Mouth-Flame
Optimisation (MFO) tuned PIDF controller is used for renewable based two-area hybrid
power systems [170].

3.2. Fractional Order Controller

Researchers have used so many optimisation techniques-based FO controllers to han-
dle LFC problems since they have advantages when compared with the IO-based classical
controller. The FOPID controller is an improvement over the conventional PID controller
that offers non-integer integro-differential order selection in addition to the traditional
PID controller gains. The FOPID model is presented in Figure 6. A Lion Algorithm-
based FO-based PI controller has been proposed for LFC in dual-area system made up
of hydro-thermal-gas power generating units in [171]. Alomoush introduced the use of
FOPID controllers in LFC problems in 2010 and established a performance comparison
between the use of FOPID controllers and IOPID controllers in dual-area conventional
power networks [172]. The parameters of the controller were tuned with the help of MAT-
LAB optimisation toolbox. Furthermore, the LFC of a single-area conventional system
with a non-integer BB-BC algorithm-based FOPID controller is presented in article [173].
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Reference [76] provides the design of a Bacterial-Foraging-based FOPID controller for FR
of a reconstructed triple-area thermal power system. The LFC of a two-area reconstructed
PS utilising a decentralised BB-BC based FOPID controller is investigated in [174] with an
expansion of the use of FOPID controller. How the FOPID controller compares to existing
IO-based I/PI/PID controllers with respect to the dynamic performance of the system
has also been examined. The paper [175] proposes a reheat, non-reheat, hydro turbine
based LFC single-area PS using a FOPID controller. The proposed controller's sensitivity
is established during parametric uncertainty. Furthermore, the impact of SMES on two
agent restructured PS using bat optimisation tuned FOPID controller has been investigated
in [176]. Grasshopper optimisation algorithm (GOA)-based FOPID has been deployed for
LFC in higher-order power systems [177]. A FOPI controller is proposed for frequency
regulation of a dual-area restructured power system [178].
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A novel reduced order LFC technique that uses a non-integer FOPID controller is
presented in [179]. Utilising a newly created fractional order IDF (FOIDF), the triple-area
multi-source reconstructed power network's system frequency and tie-line power are
stabilised. A tuned IO-based PIDF controller is used to compare the system dynamics [180].
Furthermore, an effective LFC of a single-area microgrid utilising a self-tuned non-integer
FOPID controller [181]. The design and implementation of a MOEO-optimisation-based
FOPID controller for the LFC in the isolated renewable hybrid microgrid is proposed
in [182]. A modified Black Hole Optimisation algorithm based stochastic non-integer
controller Fractional-Order Fuzzy proportional-integral-derivative (MOFOFPID) is built
up for a hybrid microgrid in [132].

3.3. Tilt Integral Derivative (TID)/Integral-Tilt Derivative (I-TD) Controller

Tilt integral derivative (TID) as a PID-type feedback control system compensator is
offered, replacing the proportional component with a tilting component with a transfer
function s−1/n. A better feedback controller is achieved because the whole compensator's
transfer function comes closer to an optimal transfer function [183]. The TID controller
is presented in Figure 6. An intelligent, efficient, and reliable LFC scheme is necessary
in today's complex and integrated power systems using RESs to maintain frequency and
tie-line power flow within a tolerable range. A novel LFC approach using a dual-stage
controller designed using fractional-order tilted-integral-derivative (TID) and integer-
order PD controllers is proposed [30]. Furthermore, SSA has been deployed to tune the
gains of the controller. Additionally, an optimal LFC structure summarizing the idea of
fractional-order based (TID) controller. The parameters of controller are optimised using
same SSA algorithm in [184]. In-depth analysis has been provided to support the CC-
TID controller's superiority over other widely used state-of-the-art controllers in terms
of several performance indices for the LFC in hybrid energy distributed power system.
Crow search algorithm is used with chaotic mapping (CCSA) for optimizing the controller
gains. In [185], a combination of FOPID and TID controllers is presented for the LFC in
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multi-area power system. In addition, the controller and SMES unit gains are tuned through
a new manta ray foraging optimisation algorithm (MRFO). In [186], a TID controller has
been proposed for LFC of a two-area interconnected power system. The optimum value
of gains of the TID controller is calculated using constrained nonlinear optimisation. a
new integral-tilt-derivative (I-TD) controller (Figure 7), optimised by a prevailing heuristic
optimisation and known as ‘Water Cycle Algorithm’ (WCA), is anticipated for the LFC of a
two-area, thermal-hydro-nuclear power units [187].
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3.4. Cascaded and Dual-Stage Controller

Cascaded controllers were used by numbers of researchers for minimizing the fre-
quency tie line power deviation. In cascade control, there are two controllers, one controller
located inside the feedback loop of the other. The output of the first controller serves as the
set-point for the second controller. This type of controller handles the distrubances more
effectively. This type of controller can respond to disturbances more efficiently. When there
are multiple measurements but only one control variable is accessible, cascade control is
employed. The basic configuration of cascade PI-PID and PI-PD controller is presented
in Figures 8 and 9. Dash et al. present a Bat Algorithm (BA)-based PD-PID controller for
the LFC system in [188]. Reference [189] used a Grey Wolf Optimisation-tuned PD-PID
controller to regulate the frequency of three-area thermal reheat system. In a dual-area
thermal-hydro with DG system, the use of a SCO-based PD-PID controller for the LFC issue
of hybrid power system is explored in [190]. Performance of the suggested controller in
comparison to a PIDF controller is also presented. Reference [191] provides an illustration
of the cascaded PI-PD controller's involvement in the LFC scheme four-area thermal plant.
In this context, a triple-area thermal-hydro-gas plant uses hybrid stochastic fractal search
and pattern search optimisation based cascaded PI-PD controller with plug in EV proposed
in [192]. A Marine Predator Algorithm (MPA)-based cascaded PIDA (Proportional-Integral-
Derivative-Acceleration) controller was used to deal with LFC issues in [193]. In [135], a
GOA-optimised FOPID-(1+PI) regulator is employed to regulate the frequency and tie-line
power in single-area multi source microgrid.
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3.5. AI Approaches  
Artificial neural network (ANN), adaptive neuro fuzzy (ANFIS), and fuzzy log-

ic-based controllers are commonly designed for the different LFC strategy.  

3.5.1. ANN Approach 
An extended control strategy for artificial neural networks (ANNs), centered on the 

idea of connected information processing phenomena, links the received net input neu-
ron and output neural signal in a non-linear (connected with weighted sum) connection. 
In order to produce better results in complicated power networks, ANN can be used for 
linear and non-linear LFC problems. With appropriate controller management, the ANN 
technique has been used in linear and non-linear power systems to restore the system 
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A new Stochastic Fractal Search (SFS)-optimised I-PDF controller was designed in [194]
to manage frequency fluctuation in triple-area (wind, thermal, and hydro) power plants.
In a traditional dual-area thermal network, a Whale Optimisation Algorithm (WOA)-
optimised PIDN-FOPD controller is employed for the same described problem [195]. The
WOA-optimised PIDN-fractional order integral-derivative (PIDN-FOID) controller is now
first equipped for LFC issue in dual-area thermal-gas system as a result of this extension. By
evaluating the performance of various non-cascaded I/PI/PIDN controllers, the superiority
of the controller is determined [195]. A novel multi verse optimisation (MVO to tune
the combination of FOPI and FOPD controller for multi-area power system consisting
hydro, thermal, and gas units in each area and the system is examined in two prospects—
i.e., with and without HVDC link—to realise practical situation [196]. An Imperialist
Competitive Algorithm (ICA)-tuned fuzzy PIDN-fractional order integral (FPIDN-FOI)
regulator for minimizing the frequency oscillation in multi-area system is presented in [197].
The equilibrium-optimiser-based cascade FO-3DOF-PID and tilt-integral-derivative (TID)
regulator for LFC in hybrid power system consisting renewable energy source integrated
has been proposed in [198].

A recently designed sine-cosine algorithm optimised FOPI-FOPD regulator is used in a
dual-area and triple-area reconstructed PS for AGC context by extending the FO based cas-
caded controller and analysis is also done on the proposed controller's superiority with re-
gard to settling time and peak overshoot, undershoot of frequency deviation [199]. Accord-
ing to [82], a Volleyball Premier League (VPL)-optimisation tuned deregulated dual-area
plant was accomplished using s two-degree-of-freedom proportional-integral-FO-based
proportional-derivative with derivative filter (TDF-PI-FOPDN) and a fair comparison has
also been demonstrated with an IO-based integral and PID controller. For triple-area LFC
systems, the fundamental TDF-based cascaded (TDF-CC) controller is proposed in [200]
and its performance is compared with cascaded/non-cascaded I/PI/ PID/TID/PI-PD
controllers. The same Salp Swarm Algorithm (SSA)-optimised cascaded CC-TID controller
is used for the same context with the increase of the control areas [201]. The Artificial
Hummingbird Optimiser Algorithm (AHA)-tuned tilt fractional-order integral-derivative
with fractional-filter (TFOIDFF) is proposed for renewable integrated hybrid power system
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in [202]. In [203], a new cascaded SSA tuned fuzzy-PI-TI controller is deployed for AGC
of hybrid PS. In [204], a novel cascade fuzzy-noninteger CFPDµF-PI control strategy has
been proposed to manage the frequency deviation that occurs due to the existence of RES’s
units in the power system. In the CFPDµF-PI controller, FPDµF as a primary and PI as a
secondary controller and Slime Mold Algorithm (SMA) are used collectively as the opti-
miser for controller gains. A Harris’ Hawks Optimisation-tuned FO3DOFTID controller is
proposed for multi-area PS in [205].

3.5. AI Approaches

Artificial neural network (ANN), adaptive neuro fuzzy (ANFIS), and fuzzy logic-based
controllers are commonly designed for the different LFC strategy.

3.5.1. ANN Approach

An extended control strategy for artificial neural networks (ANNs), centered on the
idea of connected information processing phenomena, links the received net input neuron
and output neural signal in a non-linear (connected with weighted sum) connection. In
order to produce better results in complicated power networks, ANN can be used for
linear and non-linear LFC problems. With appropriate controller management, the ANN
technique has been used in linear and non-linear power systems to restore the system
frequency as proposed in [104,206]. In [207], an application of ANN for three area PS is
illustrated in [207]. A linearised reheat thermal TAPS LFC strategy with ANN support
has been built in [208]. Reference [209] shows the implementation of the artificial model
predictive (AMP) method for controlling the frequency of the dual-area linearised power
system. In [210], they discuss the simulation of a fuzzy logic technique for reinforced
learning for triple-area restructured power networks, and it is shown how to use the
multi-surface perceptron neural structure (MLPNN) for the LFM problem for the dual-
area restructured power network. Reference [211] takes into account poolco and bilateral
transactions in traditional multi-area electric power networks when studying triple-surface
feed-forward artificial neural networks for frequency stabilisation. A PSO-based ANN
controller for LFC of an EV-integrated microgrid is presented in [161].

3.5.2. Neuro Fuzzy and Adaptive Neuro Fuzzy Approach

The use of the neuro-fuzzy approach for LFC has been demonstrated by a number
of researchers. Studies [212,213], which concentrated on a dual-area LFC analysis under
a recurring fuzzy neural network based feed-forward controller, have acknowledged
the involvement of neuro-fuzzy networks in LFC issues. Dual-area thermal-hydro plant
simulation results plotted under a hybrid neuro-fuzzy controller are proposed in [213].
For conventional FAIPS, Gheisarnejad et al. [111] analysed the Fractional order-fuzzy PID
control technique and examined its performance for a two-area conventional power system;
an intelligent neuro-fuzzy technique has also been examined. It is framed in [214] how a
fuzzy-neural net tuned controller is used for the LFC issues of a dual-area reheat turbine
network. In [215] an ANFIS approach with SMES-TCPS is proposed for LFC of three
unequal area of power.

Similar to this, researchers have grown interested in the adaptive neuro-fuzzy interface
topology (ANFIT) that is based on the conventional feed-forward technique and has no
synaptic weight [122]. In [58], the functionality of an ANFIT-based controller for the AGC
of a three-unequal thermal-hydro plant has been presented. The paper [216] provides an
illustration of the use of an adaptive ANFIT-PID controller in a single-area electric power
network. A design of an automatic power frequency regulator using an integrated four-area
network of renewable resources (wind and solar PV) for frequency stabilisation is presented
in [217]. In reference [218], they introduce a relative performance analysis of the ANFIT
controller for the LFM problem of a six-area network consisting of super-capacitor (SC) and
FACTS devices. A PSO-tuned FO-Fuzzy-PID controller is applied to a hybrid power system
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in [219] they present how a non-integer controller is applied to the controlled system’s
frequency.

3.5.3. Fuzzy Approach

Due to its sensible wide operating range and incredibly rapid response time, an
efficient fuzzy logic approach for regulating system dynamics has rekindled attention
among researchers. For non-linear multi-area power system frequency regulation, Chang
et al.’s initial study in [220] monitored the PI controller using fuzzy logic automatic power
frequency management (APFM) of linear or non-linear power system. It is discussed
in [49,112,117,221] and involves monitoring various traditional as well as non-integer
controllers with fuzzy logic assistance. An ideal decentralised Water Cycle Algorithm
(WCA)-tuned type-II FLC for frequency stabilisation of conventional electric power sys-
tems with GRC and GDB nonlinearities is presented in [222]. A design of the online control
of type-II fuzzy technique being used for the LFC of a dual-area restructured power net-
work is illustrated in [223,224]. Reference [225] uses a relative analysis of type-I and type-II
fuzzy approaches for the APFM of a four-area classical network. The Big-Bang Big-Crunch
algorithm is used for tunning the membership function and controller parameters of the
proposed controller. Furthermore, a multi-area electric power network’s optimal LFC oper-
ation employing a neuro-fuzzy adaptive gain scheduling controller technique is examined
in [58]. In [225], a type-II fuzzy system is developed for the RES’s integrated microgrid. A
type-2 (T2) fuzzy controller has been suggested for LFC of two-area PS with the considering
the GRC. The performance of the controller is compared with PI controller and type-1 fuzzy
controller [75]. To address the LFC problem, ref. [226] proposes an adaptive fractional order
(FO)-fuzzy-PID controller for LFC of a renewable hybrid power system. Furthermore, the
parameters of controllers have been tuned using a TLBO algorithm.

The benefits of fuzzy technique in a traditional system lead to support in green
microgrid power system. The management of secondary load frequency for an island
micro-power network has been the focus of the authors of [227] using the PSO tool. For
the LFC problem of the dual-area solar-PV-wind based linked microgrid power system,
a nominal fuzzy-PID controller has been achieved [184]. MPA algorithm is used to tune
the scaling factor of the controller. In paper [228], it is explained how to determine the
best adaptive neuro-fuzzy PID controller parameters by using the improved sine-cosine
technique (ISCA). In [229], the frequency regulation of hybrid microgrid made up of RESs
and energy storing devices has been maintained using type-II fuzzy-PID controller. The
proposed controller has been tuned by Moth Swarm Algorithm.

3.6. Other Modern Controllers

In AGC and microgrid networks, a few recently developed controllers (Table 4) have
proven to be reliable for LFC schemes. In order to decrease frequency oscillation in a
single-area hybrid power network used sliding mode controllers in [186]. The paper [230]
proposed an integral higher degree SMC controller to properly address the LFC problem
for the triple-area hydro power plant in order to improve the SMC controller action. For
independent renewable microgrid systems, a unique sliding mode consensus controller
(SMCC) has been designed [231]. Reference [132] provides an illustration of how the
H-infinity controller is set up and how it is used for LFC in a single-area distributed
microgrid network powered by SMES and UCs. An iterative PID-H-infinity (IPID-H-
infinity) controller for LFC of hybrid renewable microgrid system was recently proposed
by Pandey et al. [232].
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Table 4. Merits and demerits of controllers.

Controllers Merits Demerits

Conventional Controller
• These methods are well investigated in the

available literature.
• Smile to design.

• It delivers larger frequency deviation.
• Fails to perform better under the different

operating conditions.

Fractional Order
Controller

• Using the FO differential equation,
real-world system characterisation
is simple.

• Robustness, stability, and load rejection
capability is more than classical
IO controllers.

• The higher order can be reduced to low
order in FO based controller.

• Takes more time to achieve a stable state.
• Numbers of control parameters need to

tune optimally for better
dynamics response.

Tilt Integral
Derivative/Integral- Tilt

Derivative Controller

• Robustness, stability, and load rejection
capability is more than classical
IO controllers.

• It offers easier tuning, enhanced
disturbance rejection capacity, and
demonstrates outstanding sturdiness to
parameter variability

• Takes more time to achieve a stable state.
• Numbers of control parameters need to

tune optimally for better
dynamics response.

Cascade/Dual-Stage
Controller

• Provides an additional sensor to help in
disturbance reduction before the output
quality is final.

• Due to the larger number of tuning nubs
compared to non-cascaded controllers
improves the system dynamics.

• More time is required because controller
has more tuning parameters.

• High level of tolerance for sensor error
is required.

• Investigation of cyber-attack
robustness required.

• Selection of primary controller and
secondary controller is an important factor
to demonstrate superior system responses.

Fuzzy Logic Based
Controller

• These controllers are cheaper to develop,
they cover a wider range of
operating conditions.

• They are more readily customizable in
natural language terms.

• Adaptable, simple knowledge base design.
The concepts of control and supervision are
defined in the same language.

• When the final user is not a control
engineer, end-user interpretation is simpler.

• Simple calculation toolboxes and
specialised integrated circuits are
widely accessible.

• In rule bases, consistency, redundancy, and
completeness can be verified (knowledge
acquisition supervision). This might
enhance user interpretability and accelerate
automated learning.

• Due to its capacity for universal
approximation, FLC can incorporate a
standard design (PID, state feedback) and
fine-tune it to specific plant nonlinearities.

• Retuning takes a lot of time even if applied
to a similar plant in other location.

• Instinctive fuzzy PID-type design does not
exactly perform better to its well-tuned
conventional complement.
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Table 4. Cont.

Controllers Merits Demerits

ANN Controller

• The ANFIS offers various benefits, such as
the capacity for rapid learning, adaptability,
and the ability to capture the nonlinear
structure of a process.

• Simple calculation toolboxes and
specialised integrated circuits are
widely accessible.

• Retuning is time consuming, even when
applied to the same plant at
another location.

The two-degree-of-freedom (2DOF) and three-degree-of-freedom (3DOF) PID con-
trollers have been used in several studies. The output signal is produced by the DOF-PID
controller block based on the difference between a reference signal and a measured system
output. According to the given setpoint weights, the block computes a weighted difference
signal for each of the proportional, integral, and derivative actions. The sum of the pro-
portional, integral, and derivative actions on the corresponding difference signals—with
each action weighted in accordance with the gain parameters—results in the block output.
The derivative action is filtered by a first-order pole. Gains on controllers can be adjusted
manually or automatically. The Simulink Control DesignTM programme is necessary for
automatic tuning. The fundamental diagram of 2DOF-PID and 3 DOF-PID is presented
in the Figures 10 and 11. A novel Seagull Optimisation Algorithm (SOA) tuned with
three-degrees-of-freedom (3DOF) is suggested for multi-area (thermal, hydro, and nuclear
units) power system [233].
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A hybrid FOPID controller made by combining the FOPID and TID controller is
proposed for LFC issues of multi-area PS. A Manta Ray Foraging Optimisation (MRFO)
algorithm is used for optimizing the parameters of proposed controller [234]. Further-
more, in [235] a two-degree-of-freedom FO-based PID controller with AGC is discussed.
The performance of the proposed controller is compared to that of the FOI, FOPI, and
FOPID controllers.

4. Future Scope

The modern power system is experiencing structural modifications as a result of
difficulties with environmental effects, growing industrialisation, higher demand, and
supply for loads, as well as a better quality of life. India pledged to cut its carbon footprint
by 33–55% from 2005 levels by 2030 as part of the Paris Climate Agreement and would work
to produce 40% of its total electricity output from non-conventional sources in the same
year. As a result, the system becomes oscillatory due to an increase in the penetration level
of probabilistic RESs and system inertia, which causes changes in the system's frequency
and interchangeable tie power. However, frequency oscillation that exceeds the rated
limit causes power outages and so-called blackouts. It is abundantly obvious that the
existence of renewable energy could cause frequency regulation issues for the modern
electric power network of the future. Therefore, a more sophisticated control system is
needed to deliver consistent electricity with better-coordinated frequency regulation while
taking into account new renewable resources. Based on the observed literature survey,
the following list of possible prospective studies in the area of LFC problems needs to be
investigated:

• Examine some recently discovered renewable resources and how they fit into LFC.
• The LFC problem in restructured renewable microgrids needs to be further investigated.
• The existing controllers tuned with novel optimisation techniques for fine-tuning the

controller gains that improve the frequency profile need to be investigated.
• Recently considered controllers that have been applied for LFC on any power system

need to be investigated.

The contribution of upcoming restructured power market in microgrid LFC is an
essential structure where GENCO and DISCO will be taken care of. For stable microgrid
operation that takes into consideration the dynamics of restructured microgrids, additional
work is needed to create improved LFC control techniques:

• Create an innovative approach to optimal-robust control that can manage system
dynamics, parametric variation, and variations in power output.

• Create some cutting-edge fractional order (FO) and dual/triple-stage cascaded con-
trollers to improve system performance.
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• Future load forecasting and prediction are essential for microgrid functioning. As a
result, LFC system could leverage deep learning-based encryption algorithm.

• Look into a viable control strategy to locate and isolate LFC network faults.
• Create an ideal control method for real-time LFC.
• It is necessary to investigate more communication-based LFC techniques for power

networks.

To achieve LFC, various power system controllers and components exchange control
signals or system frequency deviation signals. These signals are transmitted across com-
munication infrastructure as data packets. As a result, the underlying communication is
crucial for the operation of LFMC activities. A strong and trustworthy communication
framework is necessary for the LFC to operate steadily and smoothly.

There have been various communication standards and protocols proposed for smart
grids. Since it suggests an object-oriented modelling for all the components/domains of
the power system, the IEC 61850 standard series has emerged as the front-runner among
them [231]. This IEC 61850 object-oriented modelling technique is applied for power
system devices in the organisation of data, the configuration of objects, and the mapping
of those objects onto protocols to ensure their consistency and interoperability. IEC 61850
was initially designed for substation automation, but in more recent iterations it has been
embraced for power utility automation [236].

The effects of LFC methods on single- and multi-area power systems' susceptibility to
cyber-attacks have been examined. Utilizing cutting-edge information and communication
technologies, single- and multi-area microgrid networks have grown dramatically in order
to deliver independent operation, management, and flexibility. The need for protection
for such networks from cyber-attack is increased because they are not entirely secure.
The evaluation of unwanted data attack effects on tie-line power exchange is important.
With the intention of diminishing cyber-attacks, the proper cyber security systems should
be implemented.

Numerous factors—including environmental concerns, issues with fossil fuels, energy
system security, problems with the economy, and operating costs—are changing the way the
power system looks. Numerous nations have made the decision to increase the proportion
of RESs such as wind and solar in their energy systems. Numerous issues arise as a
result of growing the proportion of RESs in power systems, including a decrease in the
system's overall inertia, an increase in the power imbalance during short-term operation,
and an increase in frequency and tie-line power oscillations. The system oscillates and the
frequency oscillation (highest frequency deviation) rises when the overall inertia is reduced,
among other issues. The frequency oscillations directly increase when the power imbalance
in instant operation increases. It is obvious that frequency control issues would arise in both
present and future power systems. These systems would struggle to maintain sufficient
damping and inertia. In order to control such frequency problems, appropriate control
mechanisms and ancillary services such as main and secondary reserves are required. The
following list of research holes in the area of LFC that require additional study is based on
the literature review:

• Increasing the robustness of LFC-related control approaches.
• Optimal-robust control techniques for LFC that can manage changes in both plant

parameters and power output.
• Developing new LFC objective functions that can enhance the performance of power

systems, taking into account the dependability of LFC loops
• Improving the capacity of LFC models to handle cyber-attack glitches.
• Suggesting appropriate control strategies that can identify the sensor faults and isolate

them from LFC loops.
• Developing new fault diagnosis techniques that work with LFC.
• Recommending appropriate control techniques to identify and isolate sensor defects

in LFC loops.
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• Developing new control strategies that utilise wide variation in the plant paramters
and load demand.

• Developing control strategies for power systems modelled without assumptions.

The potential for demand-side participation to provide some ancillary services for
independent system operators, such as primary and secondary storage and LFC services,
is now being investigated in great detail. Realistic participation strategies are needed
to minimise the oscillatory increase in frequency. For contemporary power systems, a
suitable coordination between demand-side and generation-side participation in LFC can
be suggested as a promising area of study. To support demand-side participation in LFCs,
further research into the infrastructure of contemporary power systems is also needed.
Where extensive market research is required for infrastructure and supporting services,
electric vehicles and other demand side factors can contribute to Smart Load LFC. Therefore,
new strategies are needed to reduce the oscillatory increase in frequency.

5. Conclusions

The most recent advances in LFM approaches for various traditional and renewable
energy-based power systems and renewable integrated microgrid/smart girds are surveyed
in this article. Single- and multi-area power systems are covered. An effort has been made
to obtain a critical remark on precise single/multi-area power system frequency response
models, LFC for RESs-based power systems, and their relative analysis in conventional,
deregulated, and microgrid power domains due to the significant frequency stabilisation
feature in modern power systems. There has been some discussion of the mathematical
modelling related to changes in frequency deviation, tie-line power deviation, tie-line error,
and control error of conventional/microgrid power networks under the LFC scenario.
Additionally, the detailed applications of classical controllers, FO controllers, tilt derivative,
tilt integral controllers, recently invented cascaded controllers, as well as other recently
developed and used controllers for the LFC are examined. Different controllers’ merits
and demerits have also been examined. Additionally, various current soft computing
strategy are examined for the LFC problem, including optimisation algorithms, fuzzy logic
method, artificial neural network, and other recent approaches. Finally, the future scope
and research gaps of this domain have been identified.

The research makes it clear that LFC is essential for future power systems that include
renewable energy resources. The recent trend involves using various computing techniques
to boost LFC performance and accuracy. Finally, a few areas for further research in the
field of contemporary LFC systems are discussed. To enable large-scale application, in-
tegrated modelling and application studies that pair these LFC approaches with feasible
communication technologies are needed.
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Abbreviations

Follwing abbreviations has been used in this menuscript

PS Power System
FR Frequency Response
DG Distributed Generation
FC Fuel Cell
PID Propotional Integral Derivative
PIDD Proportional-Integral Plus Double Derivative
PSO Particle Swarm Optimisation
SMES Superconducting Magnetic Energy Storage System
TID Tilt Integral Derivative
IDD Integral Plus Double Derivative
BESS Battery Energy Storage System
MPC Model Productive Control
LADRC Linear Active Disturbance Rejection Control
GCSC Gate Controlled Series Capacitors
TTG Tidal Turbine Genereation
CC-TI-TID Fractional Order Calculus-Based Cascade Tilt-Integral–Tilt-Integral-Derivative
ID Integral Derivative
SCO Sine-Cosine Optimisation
ABC Artificial Bee Colony
AE Aqua Electrolyser
BFO Bacterial Foraging Optimisation
BB-BC Big-Bang Big-Crunch
MOEO Multi-Objective Extremal Optimisation
CSA Cuckoo Search Algorithm
DG Distributed Generation
DISCOs Distribution Companies
EVs Electric Vehicles
GDB Governor Dead Band
GENCOs Generation Companies
GRC Generation Rate Constraint
PDn Proportional Derivative with Filter
ID Integral Derivative
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