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Abstract: The space Brayton nuclear reactor system usually adopts the helium–xenon gas mixture
(He–Xe) as the working fluid. The flow of He–Xe in the micro channel regenerator of the system is
generally laminar. Since the properties of He–Xe are significantly different from those of common
pure gases, the impact of this difference on the laminar flow and heat transfer needs to be evaluated.
In present study, the numerical simulations of laminar convective heat transfer for helium, nitrogen
and He–Xe are conducted by Ansys Fluent. Compared with simulation results, the applicability of
existing laminar friction factor (f ) and Nusselt number correlations is evaluated. By establishing
the functions of property ratios with the temperature ratio and the mixing ratio, a new laminar
f correlation for property-variable He–Xe is proposed. Results show that the calculation error of
existing f correlations for He–Xe is obviously large, exceeding 13%. With the new f correlation, the
predictions of laminar f for He–Xe are in good agreement with the simulation results in the fully
developed region, and the calculation error is reduced to 3%.

Keywords: space nuclear reactor power; helium–xenon gas mixture; laminar flow; flow friction
factor; numerical simulation

1. Introduction

To meet the growing demand of space exploration, it is necessary to develop a more
advanced and reliable space power system [1–3]. In comparison with common space
power sources, such as chemical fuel cells or solar photovoltaic arrays, the high-power
space nuclear reactor system can provide long-term, stable and efficient energy for nuclear-
powered spacecrafts and planetary bases [4–8]. A gas-cooled reactor using the helium–
xenon gas mixture (He–Xe) as coolant, combined with a direct Brayton cycle, can achieve
a scheme for space nuclear power system with a lower specific mass and more compact
design [9–12]. To reduce the aerodynamic loads of compressor and obtain an acceptable
convective heat transfer coefficient, the He–Xe with molecular weight of 14.5–40.0 g/mol is
generally recommended [13–16].

The high-temperature He–Xe regenerator is an important component of the space
Brayton cycle system [17]. Due to the small size of heat exchange unit in the regenerator,
the flow of He–Xe inside is usually laminar. Under the condition of constant properties,
there exist theoretical solutions to the laminar friction factor (f ) and Nusselt (Nu) number
in the fully developed region in a smooth tube (f Re = 64, Nu = 48/11) [18]. However, when
the wall temperature (Tw) differs greatly from the mainstream temperature (Tb), the cross-
section properties in the tube will be different. Due to the influence of variable properties,
the new law of the flow and heat transfer different from that of constant properties may
appear [19–22]. Correlations derived from constant properties might not be applicable
to the condition of variable properties [23,24]. The variation of properties for He–Xe is
related to the mixing ratio, temperature, etc., and is different from that of common pure
gases [25,26]. Additionally, the Prandtl (Pr) number of the recommended He–Xe with
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14.5–40 g/mol will be as low as about 0.2, which is significantly lower than that of air, water
and other conventional fluids (Pr > 0.70) [14,27]. In order to better evaluate the influence
of property difference on the laminar flow and heat transfer, it is necessary to carry out
in-depth research.

Our research is a traditional research topic about the gas flow and heat transfer with
variable properties, and predecessors have conducted lots of studies on it. Maxwell et al. [28]
numerically investigated the laminar convective heat transfer of air with variable properties
in a rectangular channel, and the thermal entrance effect was analyzed. Taylor et al. [29]
studied the gas laminar flow and heat transfer in the range of large temperature ratio
(0.35 < Tw/Tb < 7.35) through experiments, obtaining a new f correlation by fitting experi-
mental data. Additionally, Kays et al. [18] reviewed lots of researches on the gas laminar
flow and heat transfer with variable properties, by which the modified f and Nu number
correlations with temperature ratio were proposed. Herwig et al. [30] theoretically studied
the laminar flow and heat transfer of gases under the small uniform heat flux; the expres-
sions of f and Nu number in form of the property ratios were presented. By fitting the
relevant experimental data, simplified correlations with the temperature ratio were also
proposed by Herwig. However, the above studies mainly focused on single-component
gases, not involving the gas mixtures with lower Pr numbers. Additionally, since most of the
existing f and Nu number correlations for property-variable laminar flow are obtained by
fitting experimental data, lacking theoretical basis, the application scope of the correlations
is limited. In terms of laminar flow and heat transfer of He–Xe, Kurganov et al. [19] nu-
merically compared the property-variable laminar f for monoatomic gases, diatomic gases,
polyatomic gases and He–Xe, finding that the f of He–Xe was greater than that of other
gases under the same conditions. Yang et al. [17] also investigated the He–Xe laminar flow
and heat transfer in the high-temperature microchannel regenerator. However, the above
two studies did not give the suitable f correlation for He–Xe. Therefore, the laminar flow
and heat transfer characteristics of He–Xe with variable properties have yet to be revealed,
and the suitable laminar f correlation for He–Xe still needs to be proposed.

In the present paper, the numerical simulations are firstly conducted to compare
the difference in laminar flow and heat transfer between the He–Xe and conventional
helium, nitrogen. The applicability of existing property-variable laminar f and Nu num-
ber correlations for He–Xe is evaluated. Thereafter, based on the theoretical expression
of property-variable laminar flow, the quantitative analysis is conducted to explain the
difference in laminar flow f between He–Xe and conventional gases. Additionally, by
establishing the functions of property ratios with the temperature ratio and the gas mixing
ratio, a new laminar f correlation for property-variable He–Xe is proposed. This new
model can be used for the subsequent thermal hydraulics calculation and analysis of the
micro-channel regenerator in space nuclear reactor systems.

2. Numerical Simulation Method
2.1. Calculation Model

For laminar flow, the numerical simulation based on the computational fluid dynam-
ics (CFD) method is to directly solve the governing equations without introducing any
assumptions and empirical coefficients. Under the premise of ensuring grid independence,
numerical simulation results can be used as benchmark values. Therefore, the applicability
of existing laminar f and Nu number correlations for He–Xe can be verified by comparing
with the CFD simulation results.

As shown in Figure 1, the calculation model is a straight circular tube with a diameter
(D) of 5.87 mm. The total length is 680.92 mm, of which the first part (L1 = 56D) is adiabatic
while the remaining (L2 = 60D) is heated by uniform heat flux. In terms of the boundary
conditions, the inlet is set to ‘mass-flow-inlet’, the outlet is set to ‘pressure-out’, and the
wall surface adopts a non-slip boundary. The parameters of the specific calculation case
are shown in Table 1. The setting of heat flux in Table 1 is to obtain different Tw/Tb, so
as to better explore the influence of gas variable properties. The flow setting of different
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gases is to keep the inlet Reynolds number consistent. It is noted that four helium–xenon
gas mixtures of different molecular weights have been selected in previous studies [25,26],
among which the He–Xe of 14.5 g/mol and 40.0 g/mol are commonly used as the working
fluid in space reactor systems [6,13,15,31]. In the present paper, the He–Xe of 14.5, 28.3, 40.0
and 83.8 g/mol are also chosen.
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Table 1. The boundary conditions of numerical simulation.

Cases Gaes G/kg/m2·s qw/W/m2 Ti/K Po/MPa

1 Helium 6.47 15,000 300 0.2
2 Helium 6.47 25,000 300 0.2
3 Nitrogen 5.80 5000 300 0.2
4 Nitrogen 5.80 10,000 300 0.2
5 HeXe14.5 7.88 20,000 300 0.2
6 HeXe14.5 7.88 25,000 300 0.2
7 HeXe28.3 8.32 10,000 300 0.2
8 HeXe28.3 8.32 15,000 300 0.2
9 HeXe40.0 5.00 1000 300 0.2
10 HeXe40.0 8.37 9000 300 0.2
11 HeXe40.0 8.37 12,000 300 0.2
12 HeXe83.8 8.00 4000 300 0.2
13 HeXe83.8 8.00 6000 300 0.2

The properties of helium and nitrogen refer to the National Institute of Standards
and Technology (NIST) database, which can be called by functions in ANSYS Fluent.
Additionally, Tournier et al. [32] proposed semi-empirical correlations for calculating
the properties of binary noble gases mixtures based on the Chapman–Enskog method.
The accuracy of those property correlations was verified by comparing with experimental
data [13–15]. In our previous papers [2,25,26], the variation in property for He–Xe was also
analyzed in detail. Therefore, the properties of He–Xe continue using the semi-empirical
correlations by Tournier in the present paper. Through user-defined functions (UDF), the
correlation properties of He–Xe are imported into Ansys Fluent.

2.2. Grid Independence Test

As Gr/Re2 � 1 is satisfied for all cases in Table 1, the gravitational effect is neglected
and a two-dimensional calculation domain can be adopted [33]. Firstly, three meshes are
used for the grid independence test (mesh 1: 40 × 3000 = 120,000, mesh 2: 60 × 4000 =
240,000, mesh 3: 80 × 6000 = 480,000). The test is carried out with case 9, and the calculation
results are shown in Table 2.

Table 2. The grid independence test.

Axial Position, x Parameter Mesh 1 Mesh 2 Mesh 3

x = 0.45 m
Tw (K) 351.24 351.19 351.22
Tb (K) 331.50 331.54 331.54

x = 0.60 m
Tw (K) 405.97 405.92 405.94
Tb (K) 386.10 386.13 386.13
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It can be calculated that the numerical deviation between mesh 2 and mesh 3 is less
than 0.01%, thus the grid of mesh 2, as shown in Figure 2, can be considered sufficient.
What is more, the laminar flow and heat transfer of constant properties is also simulated
with mesh 2. It is found that the deviation of calculated f compared with 64/Re and the
calculated Nu number compared with 48/11 in the fully developed region is less than 0.1%,
which further verifies the rationality of mesh 2.
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3. Applicability of Existing Property-Variable Correlations

As shown in Table 3, the Nu number and f of laminar flow and heat transfer for
three gases are calculated using Kays and Herwig correlations. The constant property
correlations are also introduced for comparison. The applicability of existing variable
property correlations to different gases are evaluated by comparing with CFD simulation
results. The simulated local Nu number and f of gases are obtained by the following
Equations (1) and (2), where λ denotes the cross-section average thermal conductivity, τw
denotes the local wall shear and ub denotes the average velocity.

Nu =
qw

Tw − Tb

D
λ

(1)

f = 8τw/ρu2
b (2)

Table 3. Existing variable property correlations of laminar flow and heat transfer.

Name Parameters Correlations

Kays [18]
f f

fcp
=
[

Tw
Tb

]1.0

Nu Nu
Nucp

=
[

Tw
Tb

]0.0

Herwig [30]
f f

fcp
=
[

Tw
Tb

]0.89

Nu Nu
Nucp

=
[

Tw
Tb

]0.02

3.1. Applicability of Existing f Correlations

As shown in Figures 3 and 4, the laminar f of helium and nitrogen in the fully devel-
oped region of tube (x = 0.6 m) is calculated. As the x/D increases, the Re number decreases,
and thus the laminar f increases. Compared with the CFD simulation results, calculations
by the constant property correlation are obviously underestimated. The predictions by
Kays and Herwig correlations for helium and nitrogen are found to be in good agreement
with the simulation results. This is because the coefficients of Kays and Herwig correlations
are determined mainly by fitting the experimental data of conventional gases, thus these
correlations have good applicability to helium and nitrogen.
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As shown in Tables 4 and 5, the prediction errors of the three f correlations for helium
and nitrogen are calculated based on case 1 and case 3, respectively. It can be found that
the prediction error of the constant property correlation is close to 30% in the region of
∆x/D ≥ 46.2. Under the conditions of different Tw/Tb and Re number, the calculation
errors of Herwig correlation for helium and nitrogen are less than 2.5% and that of Kays
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correlation is less than 2.0%, which further indicates that the two correlations have good
applicability to the f calculation for conventional helium and nitrogen.

Table 4. Calculation errors of helium by laminar flow f correlations.

∆x/D Tw/Tb Re Error, fcp Error, fHerwig Error, f Kays

46.2 1.27 1615 −20.9% −2.2% 0.5%
47.9 1.27 1606 −20.8% −2.1% 0.5%
49.6 1.27 1597 −20.6% −2.0% 0.5%
51.3 1.26 1589 −20.4% −2.0% 0.6%
53.0 1.26 1580 −20.3% −1.9% 0.6%
54.7 1.26 1572 −20.1% −1.9% 0.6%
56.4 1.26 1563 −20.0% −1.8% 0.7%
58.1 1.26 1555 −19.8% −1.8% 0.7%
59.8 1.25 1547 −19.6% −1.7% 0.7%

Table 5. Calculation errors of nitrogen by laminar flow f correlations.

∆x/D Tw/Tb Re Error, fcp Error, fHerwig Error, f Kays

46.2 1.39 1408 −27.0% −1.9% 1.7%
47.9 1.39 1395 −26.7% −1.9% 1.7%
49.6 1.38 1383 −26.3% −1.8% 1.8%
51.3 1.38 1371 −26.0% −1.7% 1.8%
53.0 1.37 1360 −25.6% −1.6% 1.9%
54.7 1.36 1348 −25.3% −1.5% 1.9%
56.4 1.36 1337 −25.0% −1.5% 1.9%
58.1 1.35 1326 −24.7% −1.4% 1.9%
59.8 1.35 1316 −24.3% −1.3% 2.0%

Correspondingly, the He–Xe with a molecular mass of 14.5 g/mol (HeXe14.5) is
selected [13,15], and the laminar f of HeXe14.5 is calculated. As shown in Figure 5, the
prediction error of constant property correlation is still large. It is worth noting that, unlike
conventional gases, the predictions by Kays and Herwig correlations are significantly
smaller than the CFD simulation results. As shown in Table 6, the prediction errors of Kays
and Herwig correlations for HeXe14.5 are also presented based on case 6. It can be seen that
the error of Herwig correlation is larger than 13% and that of Kays correlation also exceeds
11%. To explain the above deviations and propose a more applicable property-variable
laminar f correlation for He–Xe, it is necessary to conduct in-depth studies.

Table 6. Calculation errors of HeXe14.5 by laminar f correlations with case 6.

∆x/D Tw/Tb Re Error, fcp Error, fHerwig Error, f Kays

46.2 1.21 1018 −26.8% −13.1% −11.2%
47.9 1.20 1003 −26.1% −12.8% −11.0%
49.6 1.20 988 −25.5% −12.5% −10.7%
51.3 1.19 974 −24.9% −12.2% −10.5%
53.0 1.18 960 −24.3% −11.9% −10.3%
54.7 1.18 947 −23.7% −11.6% −10.0%
56.4 1.17 934 −23.1% −11.4% −9.8%
58.1 1.17 922 −22.6% −11.1% −9.6%
59.8 1.16 910 −22.0% −10.8% −9.3%
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3.2. Applicability of Existing Nu Number Correlations

As shown in Figures 6 and 7, the Nu numbers of property-variable laminar convective
heat transfer for helium and nitrogen are calculated. At the beginning of heating, the
thermal boundary layer is very thin and the thermal resistance is small, thus the surface
convective heat transfer coefficient is large, resulting in the Nu number of gases being
relatively high. As the thermal boundary layer becomes thicker, the heat transfer coefficient
gradually decreases as the x/D increases, thus the Nu number decreases accordingly. When
the gas flow reaches the fully developed state, the thickness of the boundary layer is stable,
and the change of Nu number tends to be gentle. What is more, it is found that in the region
of ∆x/D ≥ 46.2, all the calculations by the constant property correlation, Kays correlation
and Herwig correlation are in good agreement with the CFD simulation results, indicating
that the three existing correlations are suitable for Nu number calculation of laminar
convective heat transfer for conventional helium and nitrogen in the fully developed
region. Since the above three correlations do not consider the influence of the thermal
entrance, there exists significant deviation between calculations by correlations and the
CFD simulation results when ∆x/D ≤ 46.2. Additionally, predictions by the two property-
variable correlations are very close to those by the constant property correlation, which
illustrates that the variable property has a weak influence on the Nu number calculation for
the laminar convection heat transfer. In order to further describe the calculation accuracy,
the error of Nu number for the corresponding correlations is calculated. As shown in
Tables 7 and 8, when ∆x/D ≥ 46.2, the calculation error of the three correlations is close,
basically within 5.0%.
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Table 7. Calculation errors of helium by Nu number correlations with case 1.

∆x/D Tw/Tb Re Error, Nucp Error, NuHerwig Error, NuKays

46.2 1.27 1615 −5.6% −3.6% −5.6%
47.9 1.27 1606 −4.9% −2.9% −4.9%
49.6 1.27 1597 −4.4% −2.4% −4.4%
51.3 1.26 1589 −3.9% −1.9% −3.9%
53.0 1.26 1580 −3.5% −1.4% −3.5%
54.7 1.26 1572 −3.0% −1.0% −3.0%
56.4 1.26 1563 −2.6% −0.5% −2.6%
58.1 1.26 1555 −2.2% −0.1% −2.2%
59.8 1.25 1547 −1.9% 0.1% −1.9%

Table 8. Calculation errors of nitrogen by Nu number correlations with case 3.

∆x/D Tw/Tb Re Error, Nucp Error, NuHerwig Error, NuKays

46.2 1.39 1408 −4.9% −4.3% −4.9%
47.9 1.39 1395 −4.1% −3.5% −4.1%
49.6 1.38 1383 −3.6% −2.9% −3.6%
51.3 1.38 1371 −3.0% −2.4% −3.0%
53.0 1.37 1360 −2.5% −1.9% −2.5%
54.7 1.36 1348 −2.0% −1.4% −2.0%
56.4 1.36 1337 −1.5% −0.9% −1.5%
58.1 1.35 1326 −1.1% −0.5% −1.1%
59.8 1.35 1316 −0.7% −0.1% −0.7%

Continuing to explore the applicability of the existing correlations to the Nu number
calculation of He–Xe laminar convective heat transfer, as shown in Figure 8, it is found
that the calculations by three correlations are still in good agreement with CFD simulation
results in the fully developed region. As shown in Table 9, the calculation errors of Nu
number correlations for HeXe14.5 are presented. Results show that the calculation errors of
Herwig and Kays correlations are close to those of constant property correlation and are
less than 3.0%. Therefore, in the subsequent thermal hydraulic design, the Nu number of
He–Xe laminar convective heat transfer can still be calculated by existing correlations.

Table 9. Calculation errors of HeXe14.5 by Nu correlations with case 6.

∆x/D Tw/Tb Re Error, Nucp Error, NuHerwig Error, NuKays

46.2 1.21 1018 −2.4% −2.1% −2.4%
47.9 1.20 1003 −2.4% −2.1% −2.4%
49.6 1.20 988 −2.4% −2.1% −2.4%
51.3 1.19 974 −2.4% −2.1% −2.4%
53.0 1.18 960 −2.4% −2.1% −2.4%
54.7 1.18 947 −2.4% −2.0% −2.4%
56.4 1.17 934 −2.3% −2.0% −2.3%
58.1 1.17 922 −2.3% −2.0% −2.3%
59.8 1.16 910 −2.3% −2.0% −2.3%
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4. Analysis and Discussion
4.1. Impact Factor Analysis

When the gas flows through the heated tube, the density, thermal conductivity and
viscosity will change at the same time. It is difficult to directly theoretically derive the
control equations of laminar flow and obtain the property-variable laminar f correlation.
Herwig [30] used the Taylor expansion method to decompose the variable properties into
the constant property term and linear difference term. By solving the zero-order and first-
order equations respectively, a theoretical f correlation for the laminar flow with variable
properties was derived, as shown in Equation (3).

f
fcp

=

[
ρw
ρb

](−0.364/Pr)[µw
µb

]0.545
(3)

Based on Equation (3), the reason why the existing correlations underestimate the
laminar f of He–Xe can be explained. It can be seen that the Equation (3) is composed of
the property ratio term and the exponent item, thus these impact factors in Equation (3)
can be quantificationally analyzed one by one. As shown in Figures 9 and 10, the variation
of property ratio items with Tw/Tb is calculated.
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It can be found that the variation trend of property ratios with Tw/Tb for different gases
is basically similar. The gas laminar f is jointly affected by the density term and dynamic
viscosity term. As shown in Table 10, the values of viscosity term for different gases are
close under the same Tw/Tb. However, due to the difference in Pr numbers, the exponent
of density term of HeXe14.5 is smaller than that of other gases, making the value of density
term of HeXe14.5 is significantly larger. Therefore, under the same working conditions,
the value of laminar flow f for He–Xe is larger than that of the conventional gases. Since
Kays and Herwig correlations in Table 3 are proposed by fitting the experimental data of
conventional gases, their predictions of laminar f for He–Xe are lower.
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Table 10. Analysis of impact factors of property-variable laminar flow f.

Tw/Tb Gas Pr
Density Term Viscosity Term

f /fcp
ρw/ρb Exponent Value µw/µb Exponent Value

1.50

HeXe14.5 0.30 0.649 −1.213 1.690 1.351 0.545 1.178 1.997

Helium 0.67 0.649 −0.552 1.276 1.333 0.545 1.170 1.492

Nitrogen 0.70 0.639 −0.520 1.268 1.323 0.545 1.165 1.477

1.40

HeXe14.5 0.30 0.692 −1.213 1.563 1.280 0.545 1.144 1.788

Helium 0.67 0.692 −0.552 1.225 1.269 0.545 1.139 1.395

Nitrogen 0.70 0.689 −0.520 1.214 1.256 0.545 1.132 1.374

1.30
HeXe14.5 0.30 0.756 −1.213 1.404 1.209 0.545 1.109 1.557

Helium 0.67 0.756 −0.552 1.167 1.202 0.545 1.105 1.290

4.2. Modified with Temperature Ratio

Equation (3) is in the form of property ratios, which is difficult to be directly applied
to engineering problems. Although Herwig subsequently tried to establish a simplified
correlation with the temperature ratio correction, only the experimental data of air with a
reference temperature of 20 ◦C was used in the actual formula fitting, which limited the
application range of the simplified correlation. In terms of calculation accuracy, Herwig’s
simplified correlation is actually not good for He–Xe laminar f calculation. From Table 6,
it can be seen that the Herwig’s simplified laminar f correlation has a prediction error of
more than 13% for He–Xe in the fully-developed region. Therefore, it is still necessary to
propose a more applicable laminar f correlation for He–Xe. Since the property ratio of
He–Xe show an obvious relationship with Tw/Tb, the function between the property ratio
and the temperature ratio can be fitted to obtain a modified f correlation. As shown in
Figure 11, the variation of density ratio with Tw/Tb for He–Xe under different cases is firstly
calculated. It is found that the ρw/ρb of He–Xe is almost independent of the gas mixing
ratios, but only varies with Tw/Tb. By numerically fitting the data points, the expression of
ρw/ρb for He–Xe can be obtained:

ρw
ρb

= (
Tw
Tb

)
−1.063

(4)Energies 2023, 16, x FOR PEER REVIEW 13 of 17 
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As shown in Figure 12, the µw/µb of He–Xe is related to Tw/Tb, the mixing ratio x1
and the heat flux q. When Tw/Tb is small, µw/µb is basically not affected by x1 and q.
However, when Tw/Tb is large, µw/µb changes slightly with x1 and heat fluxes, which is
mainly caused by the fact that the viscosity of He–Xe does not vary monotonously with
the x1 and temperature. Since the deviation caused by different heat fluxes is small in the
range of 0 < x1 < 0.30 (4.003 < M < 42.5), the influence of x1 and Tw/Tb on the µw/µb can be
considered for simplification. By fitting the data points, the expression of µw/µb for He–Xe
can be obtained as follows:

µw
µb

= (
Tw
Tb

)
(0.802−0.119(2.53e−3)x1 )

(5)

Energies 2023, 16, x FOR PEER REVIEW 13 of 17 
 

 

1.0 1.1 1.2 1.3 1.4 1.5

0.65

0.70

0.75

0.80

0.85

0.90

0.95  HeXe14.5_case 5
 HeXe14.5_case 6
 HeXe28.3_case 7
 HeXe28.3_case 8
 HeXe40.0_case 10
 HeXe40.0_case 11
 HeXe83.8_case 12
 HeXe83.8_case 13ρ w

/ρ
b

Tw/Tb

fitted curve

 
Figure 11. Variation of ρw/ρb with Tw/Tb for He–Xe. 

As shown in Figure 12, the μw/μb of He–Xe is related to Tw/Tb, the mixing ratio x1 and 
the heat flux q. When Tw/Tb is small, μw/μb is basically not affected by x1 and q. However, 
when Tw/Tb is large, μw/μb changes slightly with x1 and heat fluxes, which is mainly caused 
by the fact that the viscosity of He–Xe does not vary monotonously with the x1 and tem-
perature. Since the deviation caused by different heat fluxes is small in the range of 0 < x1 
< 0.30 (4.003 < M < 42.5), the influence of x1 and Tw/Tb on the μw/μb can be considered for 
simplification. By fitting the data points, the expression of μw/μb for He–Xe can be obtained 
as follows: 

1(0.802 0.119(2.53 3) )( )
xew w

b b

T
T

μ
μ

− −=  (5) 

1.0 1.1 1.2 1.3 1.4 1.5
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

fitted curve
 HeXe14.5_case 5
 HeXe14.5_case 6
 HeXe28.3_case 7
 HeXe28.3_case 8
 HeXe40.0_case 10
 HeXe40.0_case 11
 HeXe83.8_case 12
 HeXe83.8_case 13μ w

/μ
b

Tw/Tb  
Figure 12. Variation of μw/μb with Tw/Tb for He–Xe. 

Combining Equations (3)–(5), the modified f correlation with temperature ratio for 
property-variable He–Xe laminar flow is obtained: 

Figure 12. Variation of µw/µb with Tw/Tb for He–Xe.

Combining Equations (3)–(5), the modified f correlation with temperature ratio for
property-variable He–Xe laminar flow is obtained:

f
fcp

=

[
Tw
Tb

](0.387/Pr−0.0649(2.53e−3)x1+0.437)
(6)

4.3. Error Analysis of Modified f Correlation

As shown in Figure 13, calculations by the new laminar f correlation are compared
with the corresponding CFD simulation values of He–Xe. It is found that in the fully
developed region, calculations by the new f correlation are in good agreement with the
simulated results, which is obviously improved compared with the existing laminar f
correlations. At the thermal entrance, the calculated value of new f correlation is slightly
higher than simulation results; this is because the thermal entrance effect is not considered
in the derivation of Equation (3). However, compared with Kays correlation, the prediction
of Equation (6) proposed in the present paper is more conservative.
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As shown in Tables 11 and 12, the calculation accuracy of the new f correlation for
He–Xe laminar flow is presented. The calculation error is found to be less than 3% for
∆x/D ≥ 46.2, indicating that the new f correlation has good applicability to the laminar f
calculation for property-variable He–Xe in the fully developed region.

Table 11. Calculation error of modified f correlation for HeXe14.5 with case 6.

∆x/D Tw/Tb Re Error, f Kays Error, fmodified

46.2 1.21 1018 −11.2% 1.34%
47.9 1.20 1003 −11.0% 1.18%
49.6 1.20 988 −10.7% 1.05%
51.3 1.19 974 −10.5% 0.93%
53.0 1.18 960 −10.3% 0.83%
54.7 1.18 947 −10.0% 0.74%
56.4 1.17 934 −9.8% 0.67%
58.1 1.17 922 −9.6% 0.61%
59.8 1.16 910 −9.3% 0.55%
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Table 12. Calculation error of modified f correlation for HeXe28.3 with case 7.

∆x/D Tw/Tb Re Error, f Kays Error, fmodified

46.2 1.15 1105 −12.4% 2.29%
47.9 1.15 1090 −12.2% 2.14%
49.6 1.14 1076 −11.9% 2.01%
51.3 1.14 1062 −11.6% 1.90%
53.0 1.13 1048 −11.4% 1.80%
54.7 1.13 1035 −11.1% 1.71%
56.4 1.13 1023 −10.9% 1.63%
58.1 1.12 1010 −10.7% 1.56%
59.8 1.12 998 −10.4% 1.50%

5. Conclusions

This paper numerically investigates the differences in laminar flow and heat transfer
between He–Xe and conventional gases. The applicability of existing f and Nu number
correlations to the property-variable He–Xe is evaluated. It is found that Kays and Herwig
correlations have good prediction accuracy for conventional gases, but obviously under-
estimate the laminar f for He–Xe. The calculation error of Herwig correlation is more
than 13% and that of Kays correlation also exceeds 11% in the fully developed region.
Theoretical analysis shows that the Pr number is a key factor affecting laminar f with
variable properties. By fitting the numerical simulation results, the functions of property
ratios with Tw/Tb and x1 for He–Xe are established, based on which a new f correlation
modified with the temperature ratio is proposed. The results show that the calculation
error of the new f correlation for He–Xe in the fully developed region is less than 3%, which
is obviously improved compared with the existing correlations. The model proposed in the
present paper can provide a reference for the subsequent thermal-hydraulic calculation of
the He–Xe cooled nuclear reactor system.
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Nomenclature

D diameter of tube (m)
f friction factor
G mass flux (kg/m2·s)
M molar weight (g/mol)
Nu Nusselt number
Pr Prandtl number
q heat flux (W/m2)
Re Reynolds number
T temperature
u velocity
x axial distance from inlet
x1 molar fraction of xenon
∆x axial distance from starting heated point



Energies 2023, 16, 1899 16 of 17

Greek letters
µ dynamic viscosity
λ thermal conductivity
ρ density
Subscripts
b average
i inlet
o outlet
w wall
cp constant property
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