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Abstract: The use of regenerative braking systems is an important approach for improving the travel
mileage of electric vehicles, and the use of an auxiliary hydraulic braking energy recovery system
can improve the efficiency of the braking energy recovery process. In this paper, we present an
algorithm for optimizing the energy recovery efficiency of a hydraulic regenerative braking system
(HRBS) based on fuzzy Q-Learning (FQL). First, we built a test bench, which was used to verify the
accuracy of the hydraulic regenerative braking simulation model. Second, we combined the HRBS
with the electric vehicle in ADVISOR. Third, we modified the regenerative braking control strategy
by introducing the FQL algorithm and comparing it with a fuzzy-control-based energy recovery
strategy. The simulation results showed that the power savings of the vehicle optimized by the FQL
algorithm were improved by about 9.62% and 8.91% after 1015 cycles and under urban dynamometer
driving schedule (UDDS) cycle conditions compared with a vehicle based on fuzzy control and the
dynamic programming (DP) algorithm. The regenerative braking control strategy optimized by the
fuzzy reinforcement learning method is more efficient in terms of energy recovery than the fuzzy
control strategy.

Keywords: fuzzy q-learning (FQL); hydraulic regenerative braking system (HRBS); bench test; energy
recovery efficiency

1. Introduction

In urban conditions of frequent starting and stopping, about 30–50% of the kinetic
energy is consumed by the frictional braking process. Due to the large mass and more
frequent start–stop events of city buses, a large amount of braking energy is wasted.
Therefore, recovering this energy is a way to increase the travel mileage of the vehicle [1,2].
At present, it is more common to charge the braking current to the battery or supercapacitor.
However, this approach to energy recovery efficiency is not ideal, due to battery life,
safety, and other issues [3]. Hydraulic accumulators have higher power densities and
better charging–discharging energy ratios than batteries, supercapacitors, and other energy
storage components [4].

The regenerative braking control strategy determines the distribution coefficient of
the braking force and the intervention time during regenerative braking, which has an
important impact on the safety of the vehicle braking, fuel economy, and power of the
vehicle [5,6]. Taghavipour et al. found that the use of radial-basis-based neural networks
improved the fuel economy of the vehicle while obtaining better maneuvering and sta-
bility [7]. Rule-based control strategies are widely accepted because they are simple to
implement, but they take a long time to optimize because they usually require a large
amount of experimental data and expert experience [8,9]. At the same time, it is difficult
to explore the full potential of the regenerative braking system and to adapt flexibly to
different driving conditions.

Based on the complex nonlinear time-varying characteristics of the regenerative brak-
ing of hybrid vehicles, many scholars have transformed the regenerative braking control
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problem of hybrid vehicles into an optimal solution problem [10–12]. Shangguan globally
optimized the main parameters of a parallel hydraulic hybrid vehicle based on the dynamic
programming algorithm, and the simulation results showed that the energy recovery effi-
ciency was improved [13]. Larsson et al. simplified the dynamic planning algorithm by
reducing the number of grid points generated by discretization, thereby reducing the com-
putational effort [14]. Tate et al. proposed a control strategy based on stochastic dynamic
planning, which is similar to the Markov decision process involved in artificial intelligence
theory [15]. Global optimization algorithms such as dynamic programming techniques
can calculate the optimal solution of each parameter of the system under known cycle
conditions. However, due to the complexity of the hybrid vehicle system and the many
constraints, the calculations are large and difficult to apply.

Along with the rapid development of learning-based artificial intelligence technology,
many researchers have started to apply machine learning, deep learning, and other algo-
rithms to automotive control [16,17]. Tian et al. separately collected data recorded during
past vehicle driving experiences and used machine learning methods to learn automotive
control strategies from them [18]. Reinforcement learning algorithms can learn through
continuous repetitive experiments using the model, do not require the accumulation of
preliminary data, and have a strong self-adjustment capability [19–21]. Qi et al. developed
a control strategy for a vehicle by continuously rewarding and penalizing their model
through the Q algorithm [22]. The learning algorithm based on neuron dynamic program-
ming does not depend on the known information of cyclic working conditions and can
adjust the energy management strategy parameters by itself, having good adaptability to
different working conditions [23].

However, most of the research on hydraulic regenerative braking systems involves
theoretical analyses and simulation experiments, and there is a lack of experiments fur-
ther verifying the influence of each component on the braking effect in the process of
hydraulic regenerative braking. Meanwhile, most of the existing regenerative braking
force distribution schemes are rule based. If the setting cannot be changed, it cannot be
applied to different driving conditions, and the braking energy of the vehicle cannot be
fully recovered. This paper proposes a hydraulic regenerative braking energy recovery
efficiency optimization algorithm based on fuzzy Q-learning (FQL) and a reward function
based on the hydraulic regenerative braking energy recovery system, which can solve
the problems of Q-learning and speed up the computation by introducing the method of
fuzzy logic. Xian et al. and Zhou et al. made improvements on the basis of fuzzy logic
and obtained a predictive model that is superior to other methods [24,25]. Furthermore,
reinforcement learning is a knowledge-free online learning process that can adapt the
regenerative braking control strategy to different driving conditions over time, which is
more advantageous than fuzzy control, which requires expert experience [26,27].

In Section 2, this paper establishes the vehicle dynamics model and the mathemat-
ical model based on parallel hydraulic hybrid power systems (PHHPS). In Section 3, an
optimized algorithm based on FQL for braking energy recovery efficiency is proposed.
In Section 4, we describe our experimental bench. By comparing the experimental and
simulated data, we obtain an accurate simulation model and combine it with the ADVISOR.
Finally, the simulation simulates the braking energy recovery of the fuzzy control, DP
algorithm and the fuzzy reinforcement learning control strategy under the 1015 cycle and
UDDS cycle. The conclusions are presented in Section 5.

2. Model of Hydraulic Regenerative Braking System (HRBS)

Electric vehicle batteries are energy storage devices that have high energy density and
low power density. However, such batteries cannot withstand high-power inrush currents,
resulting in electric regenerative braking being less effective than expected, impacting the
battery life.

The considered hydraulic braking energy recovery system is a parallel hydraulic
hybrid system (PHHS) consisting of a battery, an electric motor, a secondary component,
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a hydraulic accumulator, a clutch, and a torque coupling. By using the torque coupler to
match the torque and speed, the torque is transmitted to the gearbox, the final reducer,
and finally the wheels (Figure 1). Secondary components and hydraulic accumulators are
used to recover the braking energy. Since the two power systems, namely the electric drive
and hydraulic drive, are connected in parallel, the parallel hybrid vehicle has multiple
operating modes, including a pure electric drive mode, pure hydraulic drive mode, and
hybrid drive mode.
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Figure 1. Parallel hydraulic hybrid power structure: (1) accumulator; (2) relief valve; (3) pressure
sensor; (4) electromagnetic digital valve; (5) variable hydraulic pump/motor; (6) torque coupler;
(7) gearbox; (8) battery; (9) motor; (10) electromagnetic clutch; (11) tank.

The motor output torque and the hydraulic system output torque of the two-axis
parallel structure are connected through a torque coupler. Since the motor and the secondary
components are on two separate drive shafts, the electric system and the hydraulic system
can output torque independently, ignore the influence of speed and operate independently
in their respective high-efficiency zones, and make it easy to match the two power sources.
At this time, since the double-shaft parallel structure is relatively simple, there are fewer
energy transmission levels, which reduces the energy loss in the mechanical transmission
process.

During the vehicle braking process, the secondary component works as a hydraulic
pump that converts the kinetic energy into hydraulic energy, and then this energy is stored
in the accumulator. During the vehicle starting and hill climbing processes, the secondary
component acts as a motor, releasing the energy stored in the accumulator to drive the
vehicle. When the hydraulic accumulator is unable to provide the torque in the drive phase,
the electric motor will participate instead. During daily driving, the hydraulic system also
participates in providing torque when the motor output torque is insufficient.

In the HRBS, the secondary component has both energy storage and driving functions.
The torque provided by the secondary component is calculated as follows (N ·m) [28]:

Tp/m =
∆pqp/mηp/mi0igi

2π
(1)

where ∆p is the amount of accumulator pressure change (Mpa), qp/m is the displacement
of the hydraulic pump motor (mL/r), ηp/m is the mechanical efficiency of the secondary
component, i0 is the torque coupling ratio, ig is the speed ratio of the gearbox, and i is the
speed ratio of the final drive.
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The braking force required to brake the vehicle is expressed as:

Treq =

{
T+

req = Tmotor + T+
p/m (traction)

T−req = Tmech + Treg = Tmech + T−p/m (braking)
(2)

where Tmotor is the driving force provided for the motor, T+
p/m is the driving force provided

by the secondary component, Tmech is the mechanical friction braking force, and T−p/m is the
braking force provided by the secondary component.

The main parameters of the hydraulic accumulator include the initial pressure, volume,
displacement, and maximum working pressure. In the hydraulic system, when the initial
pressure of the accumulator is high, the braking torque and energy recovery efficiency
provided by the HRBS will also be high, but the maximum energy absorbed will be reduced.
The smaller the volume of the accumulator, the faster the accumulator pressure rises during
braking, the greater the regenerative braking torque, and the higher the regenerative
braking efficiency, but this will also cause the same energy storage capacity problem. In
consideration of the airtightness and safety of the accumulator, the maximum pressure of
the accumulator is usually 31.5 Mpa. According to Boyle’s law:

P0V0
n = P1V1

n = P2V2
n = const (3)

During braking, the energy recovered by the hydraulic accumulator is calculated as:

Ereg =
P1V1

n− 1

[(
P1

p

) 1−n
n
− 1

]
(4)

where P0 is the initial inflation pressure, V0 is the initial volume of the accumulator, P1 is
the minimum working pressure, V1 is the minimum working volume, P2 is the maximum
working pressure of the accumulator, and Ereg denotes the maximum energy that can be
stored in the accumulator (when p = P2).

The kinetic energy of the vehicle is selected as the main objective in braking energy
recovery, which is simplified as follows:

Eacc =
1
2

mu0
2 − 1

2
mu1

2 (5)

where m is the mass of vehicle, u0 is the speed of the vehicle before braking, and u1 is the
speed of the vehicle at the end of the braking phase.

The braking energy recovery efficiency can be expressed as follows:

η =
Ereg

Eacc
(6)

Combined with the operating characteristics of the PHHS, the secondary component
needs to meet the following requirements: (1) in the starting phase of the vehicle, the
hydraulic system can drive the vehicle independently, i.e., the hydraulic system’s output
torque is greater than the vehicle’s demand torque; (2) in the braking phase, the hydraulic
pump needs to provide as much regenerative braking force as possible to improve the
efficiency of the braking energy recovery.

To meet the requirements of the starting phase, the torque provided by the hydraulic
motor needs to be greater than the combined force of the rolling resistance, aerodynamics
resistance, and slope resistance. Therefore, the motor displacement needs to satisfy the
following equation:

qp/m ≥
2πrF

∆pηp/mi0igηM
(7)
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F = mg f cos α + mg sin α +
ρCD Au2

2
(8)

where ηM is the total mechanical efficiency, r is the wheel radius, g is the gravitational
constant, F is the sum of the vehicle driving resistance, f is the rolling resistance coefficient,
α is the ground inclination angle, ρ is the density of air, CD is the aerodynamics resistance
coefficient, and A is the front area of the vehicle.

In pursuit of maximum energy recovery efficiency, the HRBS needs to meet the light
braking conditions for all braking forces provided by the hydraulic pump; when the braking
strength is 0.1 (braking strength is defined as the ratio of deceleration to gravitational
acceleration), the hydraulic pump displacement needs to meet:

qp/m ≥
2πrmgz

∆pηp/mi0igηM
(9)

where z is the braking strength.
When the stored energy of the energy storage system reaches its limit, it is unable to

receive the recovered energy from the outside world and cannot effectively deliver the
required braking torque of the vehicle. In some braking situations, the increased braking
force of the HRBS cannot fully provide the required braking torque for the vehicle, so
friction braking is required in the achieving braking process. The total braking force of the
vehicle consists of the front and rear braking forces:

Fcar = Ff ront + Frear = f mg (10)

where Ff ront consists of mechanical braking and regenerative braking, and Frear consists
of mechanical braking only. During vehicle braking, the braking effect is related to the
utilization rate of the road attachment conditions.

When the adhesion conditions are not fully utilized, the vehicle is likely to slide
sideways or show braking instability. When the front and rear axles of the car are clutched,
the utilization rate of the road adhesion conditions is the highest, and the stability of
the vehicle when braking is also the best. Therefore, when both the front and rear axles
are locked:

Ff ront =
f mg

(
b + zhg

)
L

(11)

Frear =
f mg

(
a− zhg

)
L

(12)

where a is the horizontal distance from the center of mass of the vehicle to the front axle, b
is the horizontal distance from the center of mass of the vehicle to the rear axle, L is the
wheelbase of the vehicle, and hg is the height of the center of mass of the vehicle.

For each possible coefficient of adhesion, the following method can be used to obtain
the front wheel braking force with the front and rear wheels locked simultaneously:

Ff ront =
1
2

[
mg
hg

√
a2 −

4hgL
mg

Frear −
(

2Frear −
mga
hg

)]
(13)

The regenerative braking factor K proposed in the HRBS is defined as the braking
force provided by the hydraulic pump divided by the demanded braking torque of the
front wheel:

K =
Tp/m/r

Ff
(14)

The regenerative braking distribution strategy is based on safety, first through the
distribution of the front and rear axle braking torque so that the vehicle brake safely, and
then in the form of a combined regenerative and mechanical braking distribution in the
front axle.
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3. FQL Algorithm and Models

A large number of researchers have introduced fuzzy control theory to the vehicle
control process and achieved some results, but fuzzy control still relies on expert experience,
and for some nonlinear systems, fuzzy control cannot achieve optimal control results [29].
In addition, once a fuzzy controller has been designed and produced, the vehicle equipped
with the controller will follow this control rule in all operating conditions, leading to neglect
of some of the recoverable energy.

Therefore, to solve the problem whereby fuzzy control cannot handle complex nonlin-
ear systems, we introduce reinforcement learning algorithms and adjust the fuzzy rules of
the fuzzy controller using the Q-Learning algorithm. In our proposed controller, the FQL
algorithm acts as a decision engine that learns approaches to map the input states to the de-
sired output decisions. The controller can maintain the original expert experience, while the
FQL has an exploration function that improves the braking energy recovery performance.

The Q-learning algorithm is a table-driven learning algorithm. On the one hand, the
use of fuzzy logic can solve the computational capacity limit and storage problems of
Q-learning in the face of large-scale continuous state action problems, and fuzzy logic can
improve the generalization ability of the reinforcement learning state action space. On the
other hand, the FQL can optimize the control effect of the controller. Therefore, the FQL
algorithm makes up for the shortcomings of fuzzy control and Q-learning algorithms.

3.1. FQL Model

The Markov decision process is the basic model of reinforcement learning. To solve
a specific learning task, an agent is placed in an unknown environment, the agent takes
an action based on the state in the environment, and the action can change its state in the
environment and return a delayed numerical reward to the agent. The goal of the agent
is to learn a strategy with which to take an action that allows the agent to maximize the
accumulated reward in the task. Q- learning is a popular reinforcement learning algorithm
that learns knowledge by updating a Q-table through a reward mechanism. The Q value
is the expected cumulative reward that can be obtained by following the optimal policy
after taking a certain action in each state. After learning, the agent is able to construct an
optimal policy by simply selecting the action with the highest Q value in each state. The RL
problem is modeled as follows:

1. X =
{

x1, . . . , xn, . . . , xN} is the set of all environment states, xt ∈ X indicates the
state of the agent at the moment t;

2. O =
{

o1, . . . , on, . . . , oN} is the set of all actions that the controlled object can
perform, and ut ∈ U indicates the actions performed by the agent at the moment t;

3. rt is a scalar quantity indicating that the object of the controlled pair is under the state
xt, where at this time action ut is taken and the environmental state shifts to xt+1, at
which time the controlled object gets an immediate reward;

4. The Q value corresponding to each state action is updated by the temporal difference
(TD) method with the following rules:

Qt+1(xt, at) = Qt(xt, at) + β
[
rt+1 + γmaxa′Qt

(
xt, a′

)
−Qt(xt, at)

]
(15)

Here, rt+1 is the observed reward, β is the learning rate, and 0 ≤ β ≤ 1. High values
of β result in rapid learning and adaptation, while low values of β slow down the learning
and prevent the impact on the q-table from possible outliers. The maxa′Qt(xt, a′) denotes
the state xt of the estimated optimal value of Q under the discount factor γ, 0 ≤ γ ≤ 1. The
value of γ determines whether the optimization process should consider the long-term
reward or not.

Q-learning is not good at dealing with situations where the state space is relatively
large, since a large amount of memory is needed to store the q-table. Even if a large amount
of memory can be provided, agent learning requires a lot of trials and time to learn the
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required behavior, and vehicles driving urban routes require different environments to
satisfy q-table updates in all cases, thereby causing a lot of learning costs.

FQL is a fuzzy extension of Q-learning that can overcome this problem [30]. We
can encapsulate expert knowledge into a learning table to speed up the learning process.
In FQL, the decision part is represented by a fuzzy inference system (FIS), which takes
continuous and large discrete states as the inputs. The idea of the FQL algorithm is to use
the FIS to integrate continuous and large discrete state inputs into a so-called q-table, which
is different from the original q-table; the new q-table is based on evaluating the fuzzy rules
in the FIS as the basis for updating the q-table. Compared to the infinite action- state space,
fuzzy rules are finite and are used as inputs to the q-table so that the q-table can learn
knowledge without relying on large amounts of memory.

In FQL, the FIS is represented by a set of fuzzy rules J. Rule j ∈ J is defined as:

IF
(

x1 is L1
j

)
. . . AND

(
xn is Ln

j

)
. . . AND

(
xN is LN

j

)
THEN a = oj with q

(
Lj, oj

) (16)

where Ln
j is the label of the input variable xn base on rule jth, oj is the action of the rule

jth,Lj =
{

L1
j , . . . , Ln

j , . . . , LN
j

}
is the modal vector under rule j, and q

(
Lj, ok

j

)
is the

modal vector Lj and the action ok
j of rule jth in the Q value.

In the fuzzification layer of the FIS (Figure 2), the input states are fuzzified into the
affiliation degree of the corresponding label by the affiliation function, and each input
state is fuzzified to obtain a fuzzy set µn

L = {µ1(xn), . . . , µn(xn), . . . , µN(xn)}. Let Jx
denote the set of all rules in the rule evaluation layer, and each rule is a scalar obtained
by multiplying the fuzzy sets corresponding to the input states, then the set of rules is
the Cartesian product of the fuzzy sets corresponding to the input states. For the rules jth

(jth ∈ J), α denotes the activation degree of this rule, which can be expressed as follows:

αj(x) =
N

∏
n=1

un
Lj
(xn) (17)
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Figure 2. The FQL structure.

In the FQL algorithm, we take a two-stage action selection approach. In the first stage,
we select the local action according to the ε− greedy strategy to select local actions ol

j. The
agent makes it possible to explore untried actions instead of the action with the largest
Q value, in order to ensure a higher long-term payoff. At each time step, the agent selects
random actions with a fixed probability of 1− ε. At the beginning of the exploration, we
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let the agent take more random actions instead of greedily choosing the optimal action in
the q-table.  ε ∀j ∈ Jx : ol

j = argmax xk∈Kq
(

Lj, ok
j

)
1− ε ∀j ∈ Jx : ol

j = random xk∈K(ok
j )

(18)

where ok
j is the local action of the rule jth. In the second stage of the action selection, the

activation degree of the rule is obtained according to the input state, and the activation
degree multiplied by the local action can be used to obtain the final action; here, the agent
chooses the final action with the highest activation degree of the rule; then the final action
output can be expressed as:

a = maxj∈Jx αj(x)ol
j (19)

By adding the time index to the equation, the Q value can be approximated as:

Q(xt, a) = ∑
j∈Jx

αj(xt) × q
(

Lj, ol
j

)
(20)

After taking action, the agent obtains the status xt+1 and reward rt+1. Then, the state
xt+1 of the Q value is calculated as follows:

V(xt+1) = ∑
j∈Jx+1

αj(xt) × max
k

(
Lj, ok

j

)
(21)

Based on the above equation, the error is calculated by the TD algorithm as follows [31]:

∆Q = rt+1 + γV(xt+1)−Q(xt, a) (22)

Ultimately, we can update the Q value of each activation rule by using the above
equation as follows:

qt+1

(
Lj, ol

j

)
= qt

(
Lj, ol

j

)
+ βαj(xt)∆Q (23)

where γ and β are the same as in Equation (15).

3.2. Regenerative Braking Based on FQL

In this section, the above fuzzy reinforcement learning model will be simulated jointly
with the regenerative braking system for electric vehicles. Here, the HRBS for the electric
vehicles (HRBEV) is built in MATLAB and Simulink, which will be introduced later. The
FQL model is built in Python and simulated jointly with Python and MATLAB. At each
time step, the HBREV outputs state xt as the input of the FQL, which is fuzzed in the FIS.
Then, the optimal action is selected according to the fuzzy rules and q-table, and the agent
outputs action a to the HRBEV. In the next time step, the state xt+1 is output to the FQL
model from the HRBEV. The critic gives rt+1 from xt+1. Finally, the q-table is updated using
the TD method (Figure 3).
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3.2.1. FQL Components

The RBFQL consists of the HRBEV and FQL, and the FQL consists of the following
components.

• State: The input state consists of the vehicle speed, braking intensity, accumulator
pressure, demand braking torque, hydraulic pump providing torque, and other com-
ponents. Here, the vehicle speed, braking intensity, and pressure of the accumulator
are used as inputs of the FIS, while other components are used as inputs to the FQL
observation reward value:

xt = {u, z, p} (24)

where u denotes the vehicle speed, z denotes the braking intensity, and p is the accumulator
pressure.

• Action: The output action is the regenerative braking coefficient. The brake distribu-
tion factor needs to meet the vehicle braking safety and reduce the output when the
accumulator is full:

a =
{

αjo1
j , αjo2

j , . . . , αjon
j

}
(25)

• Reward function: The design of the reward function is the key to building a reinforce-
ment learning system. The agent gets a reward based on the observed state and uses
the reward to update the q-table. The goal of reinforcement learning is to maximize
the cumulative reward over time, and the agent seeks to produce the action with
the maximum Q value. In our system, the reinforcement learning goal is to seek to
maximize the regenerative braking energy. Therefore, our reward function can be
expressed as:

rt+1 =

(
1− ut+1

ureq

)
+

∆p
Pmax − P0

(26)

where ureq is the required speed at time t + 1 and ut+1 is the real vehicle speed at time t + 1,
∆p is the accumulator pressure change under braking conditions, Pmax is the maximum
pressure of the accumulator (31.5 Mpa here), and P0 is the minimum working pressure
of the accumulator. Obviously, to obtain a larger reward, it is necessary to make the real
vehicle speed ut+1 as small as possible and the accumulator pressure variation as large as
possible. If the reward is close to 0, this means that the action is invalid, and a negative
reward means a penalty for the action. For example, if the agent takes an aggressive
action in a certain state, i.e., takes a larger regenerative braking factor, the accumulator
pressure change becomes large, and a large reward is obtained. However, due to the torque
limitation of the pump, the pump does not provide enough braking torque, which will
result in the ut+1

ureq
being large, and the penalty will increase at this time. Therefore, the

method for dealing with the relationship between the reward and punishment is the key to
reinforcement learning.

3.2.2. Fuzzy Inference System

In this paper, we simulate the vehicle dynamics model in urban cyclic conditions
(1015 cycle and UDDS cycle). Due to the limitation of the vehicle′s operating environment,
it is not possible for all action states to be traversed, but we need the agent to output a more
appropriate action even when facing an inexperienced environment. Therefore, we choose
the fuzzy control approach to add knowledge to the action selection process in the form of
rules, which can improve the speed of the agent in dealing with complex continuous state
spaces or multidimensional discrete spaces [32].
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The FQL system inputs three input variables: (1) vehicle speed u, (2) braking intensity
z, and (3) accumulator pressure p; and one output—(4) regenerative braking distribution
coefficient k. The fuzzy division of these four variables is as follows:

1. The vehicle speed (u). Tu = {U1, . . . , U5}, and the range of the theoretical domain is
(0–80) (km/h);

2. The braking strength (z). Tz = {Z1, . . . , Z5}, and the theoretical domain range is
(0–1) (m/s2g);

3. The hydraulic accumulator pressure (p). Tp = {P1, P2, P3}, and the theoretical
domain range is (10–31.5) (Mpa);

4. The regenerative braking coefficient (k). Tk{K1, . . . , K5}, and the theoretical domain
range is (0–1).

The Sugeno method has the advantage of allowing simple calculations and facilitating
data analyses, so we chose to set up the fuzzy control system using the first-order Sugeno
method. The fuzzy control system performs the fuzzy inference process using fuzzy rules
to obtain the output under different operating conditions. The knowledge base of the fuzzy
system is described by a series of fuzzy logic rules in the form of IF–THEN, and the fuzzy
rules are used as follows:

IF u is Ui AND z is Zl AND p is Pm THEN k is Kn (27)

where Ui ∈ Ti, i = 1, 2, 3, 4, 5, Zl ∈ Tz, l = 1, 2, 3, 4, 5, and Pm ∈ Tp, m = 1, 2, 3. The
regenerative braking coefficient Tk = {K1, K2, K3, K4, K5} = {0, 0.25, 0.5, 0.75, 1} (Figure 4).
For example, when the vehicle speed is very low, the braking intensity is medium, and
the accumulator pressure is very low, the regenerative braking distribution coefficient will
be very high. When the vehicle speed is high, the braking intensity will be high, and the
accumulator pressure is medium, the regenerative braking distribution coefficient will
be very low. The idea of the rule set is to try to recover more energy at low speeds and
ensure safety at high speeds, and regenerative braking is not involved in the work. The
total number of rules in the rule set is 75(5× 5× 3).
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Figure 4. The fuzzy partition: (a) speed; (b) braking strength; (c) accumulator state of charge.

The FIS will be improved using the QL method to obtain better performance.

3.2.3. FQL Setup

In the FQL setup, we will set the discount factor through the phasing γ, learning rate
β, and random action selection probability 1− ε. In the early stage of learning and the
exploration stage, we set the discount factor γ to 0.2, because in the early stage of training,
Q(s) and V(s) do not converge, meaning the agent cannot correctly measure the expected
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future benefits. A higher discount factor will cause the agent to incorrectly estimate the
current action value, leading to instability when the algorithm is updated, even making it
difficult to converge. The discount factor will gradually increase as the training process
proceeds. Meanwhile, we set the learning rate β value to 0.9, as a larger learning rate at the
early stage of learning can reduce the training time, and the subsequent reduction in the
learning rate is beneficial to maintaining the system stability. The probability of random
action selection in the exploration phase 1− ε is set to 0.5; the agent needs to balance the
maximum value action and develop potential higher value actions, while the random
action selection probability will decrease with the learning process. Here, we compare the
regenerative braking system with the fuzzy controller without adding the QL algorithm, so
that we can judge the learning process and modify the above parameters. In addition, we
initialize the q-table to zero to start the knowledge learning process from zero.

So far, this paper has completed the modeling of the hydraulic parallel hybrid braking
system and vehicle dynamics, combined with the FQL to model the vehicle regenerative
braking problem. The next section will verify the above system and the simulation of
vehicle braking efficiency through experimental and simulation comparison methods.

4. Experiment and Simulation Results

In this section, we will apply the method proposed above for vehicle regenerative
braking energy recovery in three steps. First, we build a test bench and the above mathe-
matical model in Simulink to compare the test and simulation results. Then, we integrate
the obtained Simulink model into the ADVISOR environment to model the regenerative
braking torque distribution through fuzzy control. Finally, we use MATLAB API engine to
simulate ADVISOR in parallel with the fuzzy reinforcement learning algorithm in Python
to validate the proposed method.

4.1. Experiment Test

The experimental platform is built based on the PHHS established in the previous
paper. The difference from Figure 1 is that we use the flywheel moment of inertia to simulate
the kinetic energy of the vehicle to study the energy recovery efficiency of the hydraulic
system. The kinetic energy simulation part consists of the flywheel, magnetic powder brake,
electromagnetic clutch, three-phase synchronous motor, inverter, and console. Among
them, the magnetic powder brake is used to simulate the mechanical friction brake, the
electromagnetic clutch is used to open and close the direct connection between the motor
and the flywheel, the motor provides the initial kinetic energy of the flywheel, the inverter
is used to control the motor and adjust its speed, and the console controls the engagement
of the electromagnetic clutch and the switch of the inverter (Figure 5). The hydraulic
brake energy recovery part mainly consists of the secondary component, a hydraulic
accumulator, and an oil tank. The secondary component converts the kinetic energy of
flywheel rotation into hydraulic potential energy and fills the hydraulic accumulator with
liquid. The hydraulic accumulator is the energy storage element, and the hydraulic oil is
supplied from the oil tank. In addition to the above components, a speed sensor, voltage
sensor, current sensor, pressure sensor, electrical parameter tester, and acquisition card are
required to collect the experimental data. Table 1 shows the parameters of each component
of the experimental stand.
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Figure 5. The HRBS test bench: 1—motor; 2—electromagnetic clutch; 3—magnetic powder brake;
4—flywheel; 5—revolution speed transducer; 6—commutator; 7—electromagnetic clutch No. 2;
8—hydraulic pump and motor; 9—tank; 10—relief valve; 11—hydraulic pressure sensor; 12—hydraulic
accumulator; 13—hub motor; 14—proportional amplifier; 15—oil discharge valve.

Table 1. Main component parameters of the kinetic energy simulation part.

Name Model Key Parameters

Motor Y132S-4
Rated speed: 1440 r/min

Rated voltage: 380 V
Maximum power: 5.5 KW

Flywheel Rotational inertia: 45.3 kg ·m2

Secondary Component Secondary Component Maximum Displacement: 107 mL/r
Minimum Displacement: 38 mL/r

Hydraulic Accumulator NXQ Nominal volume: 25 L
Nominal pressure: 31.5 MPa

Voltage Sensor MIK-DZU-100V Measuring range: 0~100 V
Output: 0~10 V

Current Sensor MIK-DZI-150A Measuring range: 0~150 A
Output: 0~10 V

Pressure sensors MCY-X Measuring range: 0~35 MPa
Sensitivity: 2 MPa/V

Photoelectric speed sensor DK890 Operating voltage: 10~36 V
Measurement range: 0~10 kHz

Acquisition Cards USB3103A Signal channels: 16
Sampling frequency: 500 kHz

In the bench experiment, the flywheel starts braking when the hydraulic pump starts
working. The kinetic energy possessed by the flywheel is expressed as:

E f =
1
2

Jω2 (28)

We performed three different sets of experiments based on the above experimental
bench. By comparing the experimental data with the simulation data, we verified the
accuracy of our simulation model. The simulation model will be used as the basis of the
proposed algorithm.

First of all, we performed experiments and simulations with different initial flywheel
speeds (Figure 6a). Here, the initial pressure of the accumulator is set to 5.6 MPa; the
volume of the accumulator is 25 L; the displacement of the hydraulic pump is 50 mL/r; and
the flywheel speeds are 360 r/min, 300 r/min, and 240 r/min when the electromagnetic
clutch starts to close, and the flywheel drives the oil pump to rotate. It can be found
that the rising trend of experimental and simulated accumulator pressures are almost the
same, and the error is approximately 10%. In the experimental results, because the energy
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consumed by the friction will increase with the increase in speed of the flywheel, the energy
recovery efficiency will decrease. Additionally, higher flywheel speeds can achieve higher
energy recovery rates in the hydraulic regeneration system. The difference between the
experimental and simulated response times is caused by the hydraulic system needing
a response time of about 0.7 s, but the results of experiments and simulations will be
basically unchanged.
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Figure 6. Comparison between bench experiment and simulation results.

To find the energy recovery efficiency of the braking process, the braking energy
recovery efficiencies at different initial speeds can be calculated according to Equations (5)
and (28), as shown in Table 2.

Table 2. Final pressure and energy recovery efficiency of the accumulator at various speeds.

Component Description 240 r/min 300 r/min 360 r/min

Experimental results pressure 6.45 MPa 6.79 MPa 7.23 MPa
efficiency 84.96% 85.7% 85.97%

Experimental results pressure 6.25 MPa 6.62 MPa 7.05 MPa
efficiency 78.05% 76.65% 74.01%

Secondly, we performed experiments and simulations with different initial accu-
mulator pressures (Figure 6b). Here, the initial speed of the flywheel is 300 r/min; the
displacement of the hydraulic pump is 50 mL/r; the initial volume of the accumulator is
10 L; and the initial pressures of the accumulator are 4.5 MPa, 5 Mpa, and 5.6 MPa. It can be
found that an accumulator with a high initial pressure will also have a high final pressure
after the same braking process. The experimental results will be slightly lower than the
simulation results.

Thirdly, we performed experiments and simulations with respect to flywheel speeds
with different initial accumulator pressures (Figure 6c). It can be observed from the results
that the larger the initial accumulator pressure, the shorter the braking process time and
the larger the power of the hydraulic regeneration system to provide recovery energy.

For the trend of the three sets of experiments, it can be found that the greater the
accumulator instantaneous pressure, the greater the power of the hydraulic regeneration
system to provide recovery energy, and more braking energy can be recovered. The
experimental flywheel deceleration time is smaller than the simulated one, which is caused
by the existence of larger friction in the system.

Regarding the effect of the initial pressure of the accumulator on the braking energy
recovery efficiency, the simulation and experimental results are shown in Table 3.
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Table 3. Final pressure and energy recovery efficiency rates of the accumulator at various
initial pressures.

Component Description 4.5 MPa 5 MPa 5.6 MPa

Experimental results pressure 6.78 MPa 7.23 MPa 7.81 MPa
efficiency 80.3% 85.7% 81.2%

Experimental results pressure 5.91 MPa 6.51 MPa 7.56 MPa
efficiency 70.55% 73.65% 72.01%

The displacement of the accumulator affects the volume change in the accumulator oil
and the output torque per unit of time. Here, we set the flywheel speed to 360 rpm; the
accumulator volume is 16 L; the initial accumulator pressure is 5.7 MPa; and the hydraulic
pump displacement rates are 60 mL/r, 50 mL/r, and 38 mL/r for the experiment (Figure 7).

Energies 2023, 16, x FOR PEER REVIEW 15 of 20 
 

 

Regarding the effect of the initial pressure of the accumulator on the braking energy 

recovery efficiency, the simulation and experimental results are shown in Table 3. 

Table 3. Final pressure and energy recovery efficiency rates of the accumulator at various initial 

pressures. 

Component Description 4.5 MPa 5 MPa 5.6 MPa 

Experimental results 
pressure 6.78 MPa 7.23 MPa 7.81 MPa 

efficiency 80.3% 85.7% 81.2% 

Experimental results 
pressure 5.91 MPa 6.51 MPa 7.56 MPa 

efficiency 70.55% 73.65% 72.01% 

The displacement of the accumulator affects the volume change in the accumulator 

oil and the output torque per unit of time. Here, we set the flywheel speed to 360 rpm; the 

accumulator volume is 16 L; the initial accumulator pressure is 5.7 MPa; and the hydraulic 

pump displacement rates are 60 mL/r, 50 mL/r, and 38 mL/r for the experiment (Figure 7). 

 

Figure 7. Pressure change diagram of the accumulator under different displacement rates. 

From the experimental and simulation results, it can be seen that with larger 

displacement rates of the hydraulic pump, the braking torque output by the hydraulic 

pump increases rapidly, and the accumulator pressure rises rapidly at the early stage of 

braking. During the later stage, the braking torque output by the hydraulic pump tends 

to level off and the accumulator pressure rises slowly, then the pressure of the 

accumulator is consistent finally. Therefore, the simulation and experimental results 

generally tend to be consistent, and the simulation model has good accuracy. 

4.2. Simulation Results 

The vehicle model is based on the ADVISOR pure electric vehicle model for 

secondary development. A pure electric vehicle is selected in the ADVISOR module 

library, and its model parameters are modified according to a pure electric bus developed 

by a bus company. Here, we add the above hydraulic regenerative braking simulation 

model, modify the original vehicle control strategy, and train the FQL algorithm. Figure 

8 shows the torque transfer diagram of the HRBS. Figure 9 shows how we combined the 

electric vehicle HRBS model in the ADVISOR environment. In addition, according to the 

characteristics of the frequent starting and stopping of urban buses, the simulation 

environments for the 1015 cycle and UDDS cycle are selected, including the acceleration, 

deceleration, uniform speed, uphill and downhill conditions, and other working 

conditions, as shown in Figure 10. 

                                                                              

 
 
  
 
  
  
 
  
  
  
  
  
 
 
  
  
  
 
 
  

 
 
  
 
  
  
 
  
  
  
  
  
 
 
  
  
  
 
 
  

              

      

      

      

      

      

      

Figure 7. Pressure change diagram of the accumulator under different displacement rates.

From the experimental and simulation results, it can be seen that with larger dis-
placement rates of the hydraulic pump, the braking torque output by the hydraulic pump
increases rapidly, and the accumulator pressure rises rapidly at the early stage of braking.
During the later stage, the braking torque output by the hydraulic pump tends to level
off and the accumulator pressure rises slowly, then the pressure of the accumulator is
consistent finally. Therefore, the simulation and experimental results generally tend to be
consistent, and the simulation model has good accuracy.

4.2. Simulation Results

The vehicle model is based on the ADVISOR pure electric vehicle model for secondary
development. A pure electric vehicle is selected in the ADVISOR module library, and
its model parameters are modified according to a pure electric bus developed by a bus
company. Here, we add the above hydraulic regenerative braking simulation model, modify
the original vehicle control strategy, and train the FQL algorithm. Figure 8 shows the torque
transfer diagram of the HRBS. Figure 9 shows how we combined the electric vehicle HRBS
model in the ADVISOR environment. In addition, according to the characteristics of
the frequent starting and stopping of urban buses, the simulation environments for the
1015 cycle and UDDS cycle are selected, including the acceleration, deceleration, uniform
speed, uphill and downhill conditions, and other working conditions, as shown in Figure 10.
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Figure 8. Torque flow of the parallel hydraulic regenerative braking system.
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Figure 9. The electric vehicle model combined with the proposed HRBS model: (a) vehicle control
system; (b) driving condition system; (c) vehicle transmission system; (d) hydraulic hybrid system;
(e) electric vehicle system; (f) flywheel subsystem; (g) accumulator subsystem.
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The hydraulic pump displacement and the transmission ratio of the torque coupler in
the HRBS are selected according to the following rules. The hydraulic pump displacement is
0.025 L/r for the 1015 operating conditions and 0.03 L/r for the UDDS operating conditions.
The transmission ratio for both torque couplers is 2.5. The state of charge (SOC) of the
vehicle battery is set to 1 at the beginning of the simulation, and the vehicle SOC decreases
as the simulation proceeds, serving as an evaluation index of the energy recovery effect.

Compared with the two driving cycles, the 1015 cycle has a low braking frequency,
low intensity, and high percentage of regenerative braking forces. The UDDS cycle has a
high braking frequency and high intensity, so the UDDS regenerative braking torque is
higher than for the 1015 cycle (Figures 11 and 12). For each braking process, the HRBS with
reinforcement learning can obtain a greater final pressure rate from the accumulator, as
well as greater braking energy recovery efficiency and regenerative braking torque than the
HRBS with fuzzy control based on expert experience and the HRBS with the DP algorithm.
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It can be seen that the HRBS with FQL saves 9.62% more power than the hydraulic
braking system with fuzzy control and the DP algorithm under the 1015 conditions and 8.91%
more under the UDDS conditions (Table 4). Therefore, the FQL-algorithm-based optimization
strategy is effective and can be adapted to more operating conditions for adjustment.
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Table 4. The amount of electricity consumed.

Cycle HRBEV with FQL HRBEV with DP HRBEV with Fuzzy Control Average Growth Rate (%)

1015 0.0234 0.0259 0.0254 9.62%
UDDS 0.0651 0.0703 0.0715 8.91%

5. Conclusions

This paper presents an algorithm for optimizing the energy recovery efficiency of the
HRBS based on FQL for an urban electro-hydraulic hybrid bus. The experimental bench
of the HRBS was built to verify the simulation model and investigate the influence of the
HRBS parameters on the energy recovery characteristics. The whole hydraulic regenerative
braking electric vehicle model was established by integrating the Simulink model into the
ADVISOR. The vehicle regenerative braking control strategy was optimized using the FQL
algorithm and simulated under the 1015 cycle and UDDS cycle conditions. The results
showed that the control strategy optimized by the FQL algorithm recovered more braking
energy than the fuzzy control strategy based on expert experience and the DP algorithm. In
addition, the control strategy based on the FQL algorithm can output actions that are more
consistent with the training environment, which is more flexible than the fuzzy control
method. Therefore, we verified that this method can reduce the power consumption of
electric vehicles and improve the efficiency of the hydraulic regenerative braking process.
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